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Abstract: This study highlights the development of small-scale reactors, in the form of microstructures
with microchannel networking. Microreactors have achieved an impressive reputation, regarding
chemical synthesis ability and their applications in the engineering, pharmaceutical, and biological
fields. This review elaborates on the fabrication, construction, and schematic fundamentals in the
design of the microreactors and microchannels. The materials used in the fabrication or construction
of the microreactors include silicon, polymer, and glass. A general review of the application of
microreactors in medical, biological, and engineering fields is carried out and significant improvements
in these areas are reported. Finally, we highlight the flow patterns, mixing, and scaling-up of
multiphase microreactor developments, with emphasis on the more significant industrial applications.
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1. Introduction

Modernization in engineering has led to remarkable improvements in small-scale reactors and
microreactor-based (<1 mm) application models. Microreactor technology has improved over the years,
signifying the new standard of microreactors for batch operations, prevailing over macrosize constant
reactors. A microreactor is an instrument that processes chemical reactions within capillary channels [1].
The reactor is customarily a continuous flow reactor, as compared with a batch reactor. Microreactors
offer many advantages over large-scale reactors, as related to energy efficiency, the velocity of
reactions, and the total output of products, as well as having the most straightforward methodology
management [2]. Microreactors can also be used to boost various unit operations and reactions in
microspace. Hence, innovative microfluidic devices have been utilized in an immense variety of
processes, due to their expedience and potential range of applications. The best microreactors are
comprised of micrometer-sized capillaries less than 1 mm in diameter or a network of channels leading
into a substrate. In 1959, Richard led the development of microreactors by conceptualizing the use
of micromachining and microsized relays. Small-scale reactor technology has recently expanded
beyond micromachining [2–5]. These studies have shown that microreactors can be used to carry
out complex reactions such as esterification, chemical hydrogenation, and free radical chemical
reaction synthesis, which entail complex side-chain reactions and some synthetic reaction methods.
Suryawanshi et al. described the micromixer, microreactor dimensions, and synthesis products of
nanomaterials in microreactors in detail [6]. Microreactors provide pivotal improvements in an
analytical chemistry system design, leading to excellent output yield of chemicals, allowing for the
viewing of biological cells and amino acids, and having good transportability. Due to these factors,
microreactors have improved the theory and application of reaction synthesis in both chemical and
medical (pharmaceutical) industries [7–10].
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At present, researchers and industrialists use several different types of microreactors, which has
made it difficult to categorize them, regarding selectivity and performance [11,12]. This effect has led
to different construction methods, with respect to the required size, length, and resolution. Moreover,
the fabrication of microreactors is under high demand, and there has been increasing pressure on
micromachining methods [13]. In the way forward between laboratory and industrial production,
small-scale reactors need to combine or integrate numerous compatible mechanisms of operation and
industries need to develop simple and efficient processes by developing integrated chips with good
design and functionality [14–16]; however, attempting to accomplish these tasks could lead to some
challenges in fluid complexities and the management of chemicals. Wohlgemuth et al. have conceded
this effect, in microfluidic devices, in the process of output repossession [17]. This work reports the
crucial aspects of microreactors, which have seen momentous improvements, from their background
in systematic classifications to the high-throughput synthesis of organic or inorganic chemicals,
the well-organized transmission of biological cells and amino acids in proteins, the manufacture of
convenient expedients, and the investigation of chemical reaction kinetics. Effective microreactor
operations depend on many factors, from construction to the mode of functionality, considering
modern forms and perspectives. The fundamental and principal mathematical concepts have been
described, in detail, by Wang et al. [18].

2. Construction of a Microreactor

The bulk of established microfluidic fuel cells have utilized fabrication approaches that have been
previously recognized for physical science and microfluidic chips. Characteristically, these devices are
comprised of a microchannel, two electrodes, and a liquid-compact maintenance arrangement [19–21].
Microchannels are still classically fabricated, using speedy prototyping, conventional disbursal
lithography, and soft lithography protocols [21–24]. By gearing toward microfluidic electric cell
devices through side-by-side flowing [19–21], the channel organizations have been formed in
polydimethylsiloxane (PDMS) and wrapped in a robust substrate, which housed the conductor
configuration. Various channel construction techniques can be found throughout the literature,
as mentioned by Kjeang et al. [25]. Industrially, the lenient lithography-based method is performed by
pretreating a substrate or using a photoresist layer to improve a silicon wafer, after which a coating is
applied. The layers of the microchannel are spin-coated by photoresist materials, which determine the
functionality of the layers.

For a steady photoresist mechanism, the coated substrate is gently heated on a hot plate.
Measurement of the resolution of the constructed channel is done using CAD software, which contains
a photomask and enables high-resolution image print-out. The substrate is then permitted to absorb UV
radiation, which develops both the exposed and unexposed parts of the photoresist. The measurement
is carried out by the substrate absorbing fluid. A positive decoration shows a proper polymerized
photoresist ridge. PDMS is used to duplicate the channel design by molding, followed by exposure to
vacuum conditions on a hot plate [19–21,26,27].

Some microfluidic microreactors are compatible in the application of enzymatic biofuel cells
(or fuel cells, in general) through the utilization of organic catalysts. Biofuel cells operate or synthesize
energy in a redox reaction form by catalyzing macromolecules (glucose) with the use of an organic
catalyst [28,29]. The total revenue base for microfluidic devices was $1.8 billion in 2014, and it is
expected to increase by $7.7 billion by the year 2020 [30]. The world is advancing in the improvement
of the reactor design, in which microreactor fabrication plays a part in both the simulation and analysis
of chemical reactions. The industry’s growth has been stimulated by the availability of excellent
materials at low cost for constructing microreactors. A small-scale reactor is made using different
material types (e.g., silicon, glass, steel, and ceramics) in combination with polymers and polymeric
materials. Small-scale reactors can be designed as capillary reactors or chip-form reactors, which allows
their wide application in different scientific fields possible, as shown in Figure 1. Capillary reactors
are designed in terms of size and length, considering the associated fluid properties. In contrast,
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chip-based microreactors are typically designed with mostly silicon, glass, or even certain types of
plastic made by micromachining, etching, and lithography methods [8,31,32].Processes 2020, 8, 891  3 of 32 
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Figure 1. Microreaction applications in different fields of science.

Conversion of ethanol to 1,3-butadiene is an organic reaction that can be carried out using a
microreactor; a specific microcapillary reactor has been found to yield high output and a better ethanol
conversion rate [33,34]. In this process, mass transfer, momentum, and balance are necessary for the
efficiency of the reaction, and the reactor is exposed to high temperatures (400 ◦C). Methanol synthesis
has been performed using a copper-based catalyst in a fixed-bed reactor [35]. A novel mesh-type
γ-Al2O3/Al support was prepared by anodization technology, in order to decrease dimethyl ether yield
in methanol steam reformation [36]. As reported by Yen et al., cadmium selenide (CdSe) nanocrystals
can be produced in a continuous flow microreactor, which has a hot mixer channel with a capillary
within it [37]. The evidence of their experiment explains the nucleation and advancement of the
changes in the nanocrystal, demonstrating the ability of the capillary-type microreactor for use in
the formation of nanoparticles (nanocrystals). A scale-up study of capillary microreactors for the
solvent-free semi-hydrogenation of 2-methyl-3-butyn-2-ol has been reported by Cherkasova et al. [38].

Chip microreactor forms are suitable in the application of microfluidics and can be combined
into a simple one-operation unit. They are composed of many channel shapes and forms in order
to control the quantity of the volume of the liquid. A different route in the synthesis of a chemical
is applicable in multichannel microreactors, considering the network of construction of the channel
in a single-chip reactor [39,40]. Microreactors can be used for some chemical separation methods,
for example, in the separation of an organic solution and a fluorous fluid-based system, as reported by
Kralj et al. [41]. Based on the principle of equilibrium, microreactors can separate and extract solvents.
This can also be extended to bioenzymatic reactions through the use of a multiprocess microreactor [42].
Some available studies on microreactors, which have made use of batch and stirred reactors, are not
applicable to chemical engineering and chemical reactions. However, the construction of small-scale
reactors has become more advanced and has been introduced into specific engineering fields, such as
the electronics and semiconductor industries [43–45]. Urban et al. presented an electrochemical
microsensor system for a multiparametric detection Pt-based electrode by changing the dissolved
concentrations of hydrogen peroxide (H2O2) and oxygen (O2) inside a direct synthesis membrane
microreactor [46]. Chucherd et al. reported the effects of applied voltage in electrospinning for
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nanofiber fabrication, as well as the effects of the thickness of microchannels in the microreactor and
initial metal concentration in the feed stream on the extraction efficiency [47].

2.1. Materials Used in Microreactor Construction

The construction of small-scale microreactors has usually been interpreted as the combination
of devices, in which the passage of liquids occurs, and distinguished organic chemicals in general
and bio-organic substances are often disbursed. The key term analytical system has been often used,
as these reactors have specific potential operations. Their mode of fabrication provides them many
clean and significant potential uses in the chemical field. Due to their high electro-osmotic flow,
microreactors can direct fluids from a syringe pump or other sources of hydraulic displacement,
which is advantageous in specific separation techniques. The construction of these reactors is carried
out using various different materials, such as Si and steel [48–52], as listed in Table 1. To fabricate a
microreaction, the specific key material is needed, and the material in question should have significant
properties concerning functionality, resistance to high pressure and temperature, the selectivity of the
reacting mixture, and its physical properties such as pH, viscosity, and phase (i.e., liquid, solid, or gas),
which should all be considered in order to ensure the ease of construction and rapid expansion of
production. Silicon is easily attainable and less expensive than other materials, which is why it has
been widely used in microreactor construction. In general, silicon has many functions in electronic
industries, such as chip fabrication, which make it compatible with the development of small-scale
microreactors, due to its flexibility. Silicon reactors can operate some high-demand industrial liquid
and gas reaction syntheses. Due to excellent streamflow mechanisms, silicon microreactors can obtain
good product yields in some surface reactions. The molding process provides an easy way to construct
a microreactor, where the most popular material used in this process is polydimethylsiloxane (PDMS).

Table 1. Merits and demerits of the distinctive constituents used for microreactor construction.

Materials Merits Demerits

Metal 1. No clean-room necessary 1. Auxiliary through noble metals material

2. Long-lasting materials 2. Concerns with variable pressure descent

3. Unshakable fabrication performances

Glass 1. Good reaction synthesis and flow dynamics 1. Trouble in making better aspect-relative structures

2. Possibility of better electro-osmotic properties

3. Endures good functioning condition

Polymers 1. Low cost 1. Organic compatibility

2. Disposable microreactors possible 2. Good control of heat

3. Various fabrication techniques

Silicon 1. High-precision fabrication 1. Costly fabrication methods

2. Well-characterized material 2. Clean-room needed

Ceramic 1. High thermal strength 1. Time-consuming

2. Good chemical resistance 2. Costly manufacturing of components

Certain materials, such as silicon, have an excellent laminar flow dynamic system (even under some
poor surface conditions), which enables their use as a hypergolic fuel, as indicated by Saksena et al. [53].
Silicon microreactors make these fuels oxidizers, thus having significant applications in chemical
industries. Floyd et al. described this phenomenon of laminar flow technique in microreactors,
expressing the concept of rapid mass transfer under high-temperature velocities with specificity in
liquid-phase reactions [54]. Small-scale silicon microreactors are versatile, regarding the reaction
conditions; for example, exothermic gas-phase reactions are generally well-conditioned, as the reactors
can allow the smooth flow of heat even at extreme temperatures (i.e., 600–800 ◦C) [55]. Some silicon
microreactors have been designed to detect the temperature by using temperature-sensing chips in
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the reactor. Due to this functionality of silicon microreactors, they can achieve selectivity and the
high conversion of products in different chemical reactions. Apart from silicon, polymers are also
essential materials in the construction of microreactors, as they have some basic physical and chemical
properties, such as elasticity and formation modes, which are easy to determine and can eventually
be used in the fabrication of chip microreactors. Many polymers are available in nature, where the
basic properties of many polymers are still under debate; however, some polymers are available for
the construction of microreactors, especially for small-scale microfluidic reactors. One such polymer
is PDMS, which has different forms, as mentioned in the literature, and is typically synthesized in
thermoplastic versions [56–60].

The universal application of PDMS in the microreactor industry has been well-indicated;
for instance, in the fabrication of fuel cells reported by Shah et al., where a small-scale reactor
was developed by using PDMS in a proton exchange membrane, which can be used as a biofuel cell or
for other biosensor devices [61]. Due to the cheap nature of PDMS materials, many microfluidic-based
technologies can be developed at a large scale. This is advantageous to the concerned industries,
as the rapid mass production increases the production potentials and the realization of the schemes
and inventions of researchers, as reported by Azouz et al. in the development of microfluidic cells by
means of cyclic olefin copolymerization techniques [56]. In a real sense, polymers are suitable for the
manufacturing of microreactors in different forms and shapes; however, they do have limitations in
certain aspects. At high temperatures, some polymers can deform during polymerization and might
not balance the momentum of energy. These difficulties are experienced in small-scale microreactor
biofuel cells (or fuel cells, in general), as they principally operate under the fundamental principles of
energy consumption and conservation. There is ordinarily thermal compatibility for small volumes of
reactions, which is fascinating.

Glass materials are also a well-organized source for microreactor fabrication due to their natural
physical characteristics. They have shown excellent synthetic chemical reaction advancement. Glass
materials have some limitations for reactor schematic designs, in terms of the required forms of shape
used in the creation of microreactors. Nevertheless, they are suitable for a good-standard chemical
process reaction, as they can withstand the typical osmotic pressure and osmotic flow of liquids (polar).
In glass reactors, the delocalization of electrons is typically observed, as the electrodes are inserted in
solution, thus showing good electro-osmotic flow when a certain voltage is applied [62]. An example
of a glass-based reactor has been reported by Tigger et al., which was used for the synthesis of an
organic acid [63].

In every chemical reaction, the frequency of colliding particles can be observed kinetically in both
linear and non-linear reaction paths. These chemical aspects of reacting species or reacting systems are
based on the principles of diffusion and equilibrium, as described in several publications [5,64–67].
The elasticity of materials used in microreactor fabrication must be considered, as an individual
reaction that involves high temperature and the reaction enthalpy of the chemical reacting mixtures
affect the surface interactions of molecular species; this effect must be addressed, as it is significant
for the smooth relationship between the thermodynamics of both the materials and the reacting
solvent or medium. Some polymer materials do face thermodynamic hindrances with respect to
some chemicals, thus limiting their application (especially in high power generation applications) or
operation in microreactors. In the advancement of the electromicroreactor industry, specific polymers
can be molded into a fuel reactor that generates power, as detailed by Vican et al., who used an
aluminum power generator with the aid of UV-radiation curing. Later on, this mechanism was used
in the commercialization of thermal electric operations [68]. The fashioning of microreactors is not
limited only to ceramics or polymers—it has also been extended to metals, as they have an active and
efficient mode of microreactor construction; however, they have shown some limitations, in terms of
physical design, due to the rough surface achieved during principle molding of the reactor. Metal
synthesis microreactors have shown effective ways to synthesize nanoparticles; for example, Cu-based
microreactors have demonstrated a good output of palladium nanoparticles, which are produced in an



Processes 2020, 8, 891 6 of 31

interrupted (continuous) flow system. These nanoparticles are, then, used in fuel cell operations [69].
The fabricated microreactor can produce a nanoparticle with an appropriate size scale of greater than
5 nm at the apex reaction function. For the improvement of the physical and chemical selectivity
of the palladium nanoparticles, proper mixing of the reacting mixture was necessary, involving the
mass transfer mechanism and, eventually, increasing its production. The process can be used for the
production of Pt nanoparticles, where the only difference between the modes of reaction is that Pt
nanoparticles can be produced at room temperature (25–27 ◦C) [70].

The general fabrication scheme of microreactors has been explained, in detail, by Tsao et al.
They based their method on PDMS polymer materials, which generally make it easy to construct
microfluidic devices [71,72]. The channel design for PDMS is constructed using the lithography
technique. The reaction mixtures of PDMS are micromolded and then interconnected by covalent
bonding, which enables more durable compartments [72] (Figure 2). The PDMS is cast into a mold,
which is later followed by solidification with the help of chemical agents in a relative ratio for
quantitative relation. The solidification temperature is normally 80–85 ◦C for a duration of 1–3 h [73].
Later, the formed PDMS is separated from the micromold. Photoresistors, in combination with rosin,
are used to finish the casting. This technique gives a high output of PDMS [73]. The addition of
PDMS to the microreactor is a straightforward method, and the layers are discharged accordingly.
The PDMS and the microreactor are held together by intermolecular Van der Waals bonds, which makes
the combination compact and efficient for chemical reaction applications [74]. For an active process,
the PDMS is standardized by treating it with chemical agents to induce Silicon–oxygen bonding in the
PDMS layers [75].
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Small-scale reactor construction techniques have improved and gained significant design attention
over the years, where certain materials used for the fabrication of microreactors have garnered some
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concern with respect to their effect on the reactant mixture. In some cases, the microreactor may interfere
with the reaction solution in the microreactor; typically, this effect is predicted to be inert, as reported
in some publications [78]. Nevertheless, the intermolecular changing of some reacting mixtures and
the intersurface reactions of the microreactor should be detailed. This is important, as specific chemical
syntheses may have unwanted products due to a surface reaction within the microchannels and the
reactants. Industrial or laboratory preparation of organic or inorganic chemicals has many application
areas; the techniques used in these processes usually are a choice. Thus, the method chosen should be
related to the construction materials of the microreactor, the medium in which the reaction is carried out
(i.e., gas, liquid, or solid phase), and the modes of synthesis method and extraction of chemicals. In the
microreactor industry, the general fabrication and compatibility of materials used in the microreactor
should be alienated from the linear flow dynamics in the microchannel [5,72,78].

Mills et al. have detailed the chemical reactions of butadiene using specific microreactors.
They used Ti/Fe oxides to catalyze the chemical oxidization of butadiene to various products, which,
in turn, increased oxygen conversion [78]. The effect of the materials used for the fabrication of the
microreactor plays a vital role in the rate of oxygen conversion, which signifies the concept of the
inertness of the microreactor: Some synthetic chemical reactions generate free-radicals which, in turn,
propagate in a substitution reaction mechanism form and produce an unwanted outcome. The principal
channel design of a microreactor, regarding the area and the ration of superficial area, is key to defining
the operation conditions and efficiency of the microreactor [79]. There are different channel designs in
different microreactors, as each chemical reaction has a different reaction condition, which means that
the channel dimension must be suitable for the reaction process. The chemical reaction of butadiene to
furan is performed in a small-dimension microchannel design, which eases the chemical oxidation
process. The significant effect of the wall surface ratio within the microreactor in relation to the reacting
species determines the operational performance of the microreactor and the conversion output of furan
from the chemical oxidation of butadiene. The rate of reaction is determined by the surface area of the
microreactor channel, which, in turn, depends on the volume of chemical substances to be synthesized.
This method determines the total production output of the microreactor and, hence, is significantly
relevant to the chemical industry [6,75,80].

Ceramic microreactors are applicable in specific chemical syntheses or reactions in which metal or
polymer systems cannot be used, as ceramics have particular properties (e.g., thermal and chemical
resistance), as mentioned by Knitter et al. [81]. Nevertheless, the use of ceramic microcomponents
is usually non-ideal, due to the long and expensive production of elements adhering to model
specifications (typically at the micrometer scale). An encouraging answer to this downside may
be a speedy prototyping method chain, comprised of the quick and accurate fabrication of ceramic
elements down to the micrometer accuracy, by relating stereo-lithography with lower pressure
ceramic injection molding. The swiftness and versatility of such a method may permit the rapid
expansion and production of ceramic elements as practical models or in small sequences. For use in
chemical microreactor technology, a standard ceramic microreactor with inner magnitudes within the
submillimeter range has been industrialized.

2.2. Manufacturing Methods of Microreactors

Many techniques for the construction of microreactors, which meet the standards of large-scale
production of synthetic chemicals exist, hence increasing the economic impacts of the chemical industry.
Some techniques, such as micromachining, etching (wet) molding, and lithography, among others, have
been used in the construction of microreactors [82–84]. The most common methods applicable to the
design of microreactors are micromachining, lithography, electroplating, molding (e.g., lithographic,
galvanoforming, and abforming), and etching.
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2.2.1. Etching Methods for Microreactor Construction

Generally, etching involves removing materials from a substance called a substrate. It can be
divided into two main forms: wet etching and dry etching. The application of wet etching is generally
done in a laboratory for experimental purposes and is applicable to glasswork and the development of
microchannels for laminar flow systems. High-performance operations are needed for dry etching,
as it involves significant capital and is typically applied industrially for large-scale production [85].
A photosensor is used during etching, and this process typically refers to metals. The photosensor is
used in combination with a mask, in which the molecular layer is present and leads the photosensor to
the source of light, thus aiding the etching process. Many photosensors are used in etching applications.

Typically, there are two parts of a material to be exposed to light. The exposed part undergoes
polymerization, while the unexposed portion is directly dissolved in a chemical solution such that
the material has two parts: one soluble and the other insoluble [3]. The ratio of abundance matters
in wet etching; thus, the highest is taken to be 0.5–0.6. A standard ratio is yet to be determined in
dry etching, as the method is costly. Wet etching uses an isotopic abundance system to determine the
half-circular structure visible on the wet solvent. Pyrex glass demonstrates an excellent example of wet
etching (Figure 3). Meanwhile, dry etching can form many geometric structures in many shapes and
ratios. The construction of different microchannel sizes and forms has been detailed by Pattek et al.
and Suryawanshi et al. [6,85].
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Most etching applications use a liquid medium that is inserted into a big tub of etchant that should
be stressed under proper management. Buffered acid is mostly preferred to perform etching. Silicon
etching is performed on semiconducting material substances [16,86]. Wet etching is used as an etching
method for solid materials under an excessive chemical reaction. Throughout these processes, either
the substrate is placed within the reactant, or the reactant is sprayed on the substrate. Wet etching
processes are principally identical, independent of crystalline orientation [11,67]. High selectivity
implies that the print rate powerfully depends on the incised material. To imprint the crystalline
structure, an attacked semi-conducting material (e.g., Si) is maintained additionally within the locality
of the surface [1,10,76]. Anisotropic printing or etching is when the plasma etches perpendicularly and
in one direction, whereas isotropic etching is when the plasma etches in all directions. Anisotropic and
isotropic etchings have been used to accomplish Thierry’s low-pressure plasma systems [18,87,88].

Selectivity is vital during the etching process, as it determines the rate at which the substance
is etched. Selectivity varies in wet etching, mostly between the photosensor and the materials or
substance [89,90]. Materials can be etched in some directions (horizontally or vertically) at different
rates. However, for dry etching, the plasma is etched at a specific position (basically by anisotropic
etching); this is also called plasma etching.

2.2.2. Micromachining Method for Microconstruction

Industrially, micromachining has many operational units that involve the construction, application,
and production of small-scale microelectronic systems involving microreactions ranging from
microfluidic devices to other types of microreactors. The general term used for such technologies
is micro-electro-mechanical systems (or, in short, MEMS). These technologies can produce many
kinds of small-scale reactors, especially for the chemical synthesis of both organic and inorganic
chemicals of various qualities and quantities [91,92]. In some sense, micromachining can involve the
physical drilling of a substance with the aid of an electronic beam instrument [16,93]. This technique
is used in the industrial production of microreactors, as it is essential in creating structural layers in
the microchannel and forming small channels, thus making the microreactor effective and capable
of performing multipurpose analyses in every applicable field. The best form of application of
micromachining is in semiconductor companies, where the process can help in the mass production of
microreactors [14,94,95].

Moreover, micromachining is a useful technique for the fabrication of small-scale reactors,
involving many grinding steps to create specific shapes and forms that need several edges and specific
geometries. Depending on the materials used, it is sometimes easier to develop the reactor if the
material is flexible or less elastic. This technology is operational at a lower cost, compared to other
techniques used for microreactor production. A well-known method used in changing the integrity of
a material is by exposing it to high temperatures. This helps to melt (evaporate or decompose) the
material to change its form from one phase to another for secure processing. This can be done by
either optical device machining or mechanical machining [15,96,97]. For good surface structure, copper
materials can deliver advantageous surface structure layers by mechanical machining [7,72]. Radiation
is also an excellent method to create substances for the fabrication of microreactors, specifically laser
radiation. Depending on the ductility of the materials or metals (e.g., Cu and Ni), specific tools such
as diamond cutters (Figure 3) are used to cut hard metal materials. Drills are also used to cut hard
materials or substances in micromachining [95,98].

2.2.3. Lithography, Electroplating, and Molding or Lithography, Galvanoforming, and Abforming
(LIGA) Methods

The development of these technologies started in Germany, with the name LIGA (or lithography,
electroplating, and molding). This technique has proved to be useful, as it can be applied to many
types of materials, ranging from metal substances to polymer derivatives and even plastic materials.
As the name, lithography, implies, this technology employs electronic X-ray radiation to aid in the
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molding or graphing of materials to specific forms [78,90]. Generally, this technique can be divided
into three necessary steps: (i) pattern transfer to a photosensor (which is usually a resin-type material),
(ii) followed by electroplating of the material’s surface area by removing some structural layers,
and (iii) withdrawal of the photoirradiation, which is provided by the photoresistor or photosensor [10].
Microreactors can be used in biological application reactions, such as for the extraction of DNA
in organisms. Effenhauser et al. constructed a PDMS–silicon-based microreactor for the chemical
extraction of DNA [99], in which the microchannels were made up of silicon-semiconductor substances.
They used PDMS techniques for the operation condition of the fabrication process. The fundamental
processing technique involved lithography, electroplating, and molding.

3. Schematic Fundamentals and Approaches in the Microreactor’s Design

Economically, the manufacturing of microreactors varies in both production application and
functionality, as they are based on different schematic fundamentals [5,66]. As the design and operation
of microreactors are based on the mathematical and engineering conceptualization principles of Laminar
continuous flow, it is typically a challenge to synthesize chemicals in microreactors due to these effects.
The application of fundamental data is usually a challenge industrially due to different processing
styles and reactor design concepts. Still, the batch date makes it is easy to minimize the problem.
As microreactors operate on small surface area concepts, which means the frequency of colliding
molecules is high kinetically, this aids the speed of production of the final product. Microreactors
can perform multitask chemical reactions and, therefore, are preferable for the mass production of
synthetic materials or chemicals in industries.

Two types of mixing occur in microreactors: passive mixing and active mixing. The type of
mixing is determined mechanically and through some interexternal bonding powers [100]. Active
mixing operates by the principle of kinetic energy in the form of electron speeds or hydrofluidic
dynamic motion, and the consequent construction design of the microchannel must be specific [101].
However, passive mixing operates on the principle of concentration diffusion over the surface area
of the microchannel, and is efficient in many-phase fluid-flowing systems because a pressure drop is
attainable with relative diffusion. Industrially, passive mixing is a good mixing process in a multiphase
system, which increases the operational output in chemical synthesis [83,101,102].

A passive mixture creates laminar flow conditions in a multifluidic flow system, which leads to
a massive increase in surface-area for concentration diffusion. Mixing in microreactors is controlled
by the lamination system, which is essential for the pressure drop in the microchannels [11,100,103].
In many-phase microreactor systems, passive mixing decreases ineffective operational functionality
(Table 2). The general movement of fluids in the microchannel takes the form of a continuous flow
with passive mixing segments. The laminar flow system in the microreactor is, therefore, termed
as a continuous flow or segmented- or disintegrated-flow. Disintegrated flow can occur in both
gas and liquid systems, either as a gas–liquid disintegrated flow or liquid–liquid disintegrated flow.
In general, the flow profiles of continuous flow with passive mixing are conferred consistently [104].
Solution homogeneity is essential during mixing in microreactors and, thus, for a batch-reactor system.
The condition could be a continuous flow, but if the mixing is not passive, it may cause superficial
alteration or modification in the chemical reaction conditions.

Conversely, as the fluid usually flows at intervals in the bedded region, the intermolecular
diffusional concentration of substances improves compounding. The surface area plays a vital role
in continuous flow systems, as it determines the frequency of distribution of substances in different
intervals; the reaction conditions also play a part in this. The velocities of molecules in a gas–liquid
disintegrated-flow system depend on the frequencies of the collision between the gas or liquid
molecules, which determine the flow configuration of the system (Table 2). The homogeneity and
residence time in gaseous mixtures or liquid–gas mixtures depend on the bonding forces that are exerted
between fluid segments; these forces improve mixing and, hence, provide a better residence time of the
eluent. The flow direction of a fluid or liquid–gas mixtures in a continuous flow system determines the
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flow rate in the same location, and affects that at in same directional distances. The general properties
of liquids, such as viscosity, and the flow rates determine the rate of diffusion in the microchannel.
This phenomenon has been discussed by Ganan-Calvo et al., who operated a microbubble with a small
intercircular area to observe these properties in a liquid–liquid system [105].

Table 2. Applications of microreactors in multiphase systems.

Type Phase Merits Demerits Ref

Membrane reactor S-L, G-L-S The experimental phases are
easily separable

Expensive
Enzyme inactiveness [106]

Monolith microreactor L-S, G-L-S
Ease of pressure control
No hindrance in active

transportation of molecules

Only applicable to certain phase
Immobilization of Catalyst [107]

Segmented
flow microreactor L-L, G-L-S, L-L-G-S Low pressure drop

Higher surface area Inadequate choice of flow rates [108]

Co-flow microreactor L-L Good mass transfer
Lower pressure drop Inadequate choice of flow rates [109]

Falling film microreactor G-L, L-S, G-L-S Good surface area in L-G Poor residence time [110]

Overflowing bed
microreactor L-S, G-L-S

Easy to operate
Good enzymatic loading for

enzymatic reaction
Unequal flow rate control [111]

G: gas, L: liquid, S: solid.

Different reaction phases are often easily controlled in a microreactor, even if the reaction is
intricate in the mechanism. This type of chemical reaction is generally termed as organic–fluid or liquid
in an aqueous medium, and they have zero immiscibility [102,112]. Suryawanshi et al. and Doku et al.
have reported other multiple systems, detailing the principles of laminar flow mechanisms in the
microchannel during the flow of liquids in small quantities [6,113]. In the microchannel, the mixer
regularly provides an improvement by aiding in either diluting or evening out the flow of fluid.
The flow pattern is shown in Figure 4a. Due to intermixing, the effects of deletion and diffusion must
be considered [114]. If liquids are mixable, the intermolecular diffusional area can stop unwanted
chain-reactions [3,65,115]. Liquid–liquid systems can maintain a continuous flow, allowing diffusion
reactions to happen in crosswise boundaries.

Liquid systems create intersurface tension (especially if immiscible liquids are involved) and,
in turn, integration is observed (Figure 4b) [116,117]. When experiments were conducted in a
two-phase liquid–liquid flow at varying flow rates and flow ratios using a water–cyclohexane system,
three typical distinct flow regimes were observed, namely, a well-defined slug flow, a drop flow, and a
deformed interface flow [118]. In phase-transfer catalysis, liquid–liquid or liquid–liquid–solid phase
transfer catalysis are useful tools for synthesizing organic chemicals from immiscible reactants [119].
Phase transfer alkylation in a microreactor was found to proceed smoothly, where the reaction was
more efficient than that in a round-bottomed flask with vigorous stirring [120]. The substitution
reaction of hexachlorocyclotriphosphazene with phenol to synthesize the partially substituted
(phenoxy)chlorocyclotriphasphazene was investigated by using a segment flow reactor in an organic
phase/alkaline/catalyst system [121]. The liquid–liquid catalytic phase transfer reaction between benzyl
chloride with sodium sulfide has been investigated in a capillary microreactor assisted by ultrasound
irradiation [122]. Ahmed-Omer discussed the contact between immiscible liquids in a microfluidic
system when creating a segmented flow for biphasic organic chemical reactions, showing significant
advantages over conventional flask techniques [123]. For biphasic hydrolysis, the application of various
reaction conditions in microreactors using segmented flow can dramatically increase the reaction rate,
especially when sonication and phase transfer catalysis are combined with segmentation [123].

Integrated microfluidic devices (called lab-on-a-chip) can offer many advantages, such as deficient
volume consumption, inexpensiveness, small-sized, and short sample-to-result time, over traditional
analytical devices. Wang et al. discussed the mixing performance in Smale, Baker, and Helical
mixers, as shown in Figure 4c [124]. The Baker mixer had better stratification and, hence, better
mixing efficiency at low Reynolds numbers than that in the Smale and Helical mixers. However,
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the superiority of mixing efficiency in the Baker mixer faded away with an increase of the Reynolds
number, as convective mixing dominates over diffusion mixing at high Reynolds number. Anika et al.
reported the rough effect by using a direct numerical simulation based on the lattice Boltzmann
method in an irregular wall channel flow initially in a laminar regime and discussed the turbulent
characterization [125].
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Using modern technology, the analytical simulation of microreactors is typically done using
software [65,66,103,127]. Software technology can be used to determine the flow rate and the
microchannel dimensions of certain specific microreactors for a given chemical or synthetic reaction.
Such software has made the job of engineers more accessible and accurate, regarding the scaling of
small-scale reactors [72,128]. The advantage of this software industrially is basically to reduce the
labor cost and to aid in the mass production of microreactors. If a microreactor model or prototype is
assumed, then the software can run analytical stimulations to discern the fabrication details of that
specific microreactor. As microreactors normally operate as a continuous flow-system, the momentum
balance concerning heat and mass transfer should be considered. Kinetically, the principal and
fundamental linear momentum of the phase characteristic can be defined. The simulation of the
specifics and the chemical reaction conditions of the microreactor are run by code-based computer
software [73,99,128]. In the modern world of artificial intelligence (AI), the production of microreactors
is becoming more straightforward, as the results and the conversion output of the microreactor
can be well-detailed if appropriate parameters are input into the software. Usually, finite element,
volume, and part strategies are used as the boundary methodology, which helps to improve the
fundamental principles (mathematical prototype) and the linear kinetics (continuous laminar flow) of
the microreactor. These methodologies are most well-liked, as they have been supported by significant
evidence and can avoid empirical issues. Ferziger et al. and Fletcher et al. described the application of
mathematical computer-based code software in detail [7,129].

In the fabrication of microreactors, some specific considerations are followed to achieve a
good fabrication design. Schematic fundamental principles are widely followed (i.e., for the finite
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element method and the finite volume method), such as the element in use for the fabrication of the
microreactor, which must have a specific chemical characteristic requirements for use with the physical
geometric characterization and high facet ratios in the processing of the microreactor [116]. Volume
characterization is also vital, as microreactors operate under the laminar flow principle, which means
a low Reynolds number is required for the smooth continuous flow of the eluent to be observed.
There are some challenges in the creation of microreactors following these schematic principles but,
using the finite method (which is generally used) can overcome some of the geometric difficulties
inherent to small-scale reactor industries [3,7,130]. In the chemical industry, there exists some software
(Fluent, CFD-ACE+, CoventorWare, and COMSOL Multiphysics) for calculating the fundamental
mathematical principles of microreactor design. These are used to examine the liquid–fluidic behaviors
under different geometries in microreactors. By setting the right parameters, the software can simulate
the laminar flow and kinetic characterization of the fluid dynamics, regulating the various prototypes,
and generating the results within a reasonable time frame. The microfluidic device is operated in
a particular mathematical stimulation principle, which is important as the fluid dynamics and the
laminar flow system are essential. Ericson et al. developed a comprehensive report on the software
used in the operation of microreactors in fluid flow systems [128]. Work continues in the field of
microreactor application, as mass production is always essential in chemical industries [78,90,93];
especially fluidized-bed microreactors [131].

In general, the microreactor types include capillary reactors, plate reactors, and laminar reactors
for different applications, as shown in Figure 5a. Microreactors can provide high heat and mass
transfer rates for a multiphase system when used as a single channel. For industrial-scale production,
the scaling-up of microreactors is essential to achieve throughput in the required range, which is done
by the numbering-up of a single channel. Numbering- or scaling-up (i.e., multiple parallel repetitions
of microchannel processing units, as shown in Figure 5b was among the significant predictions of
microreactor benefits made in pioneering works, later becoming a topic of in-depth industrial analysis
on process intensification [132,133]. Numbering-up is also one of the most prominently recognized
features in chemical microprocessing. Mendorf et al. reported design and control techniques for the
numbering-up of capillary microreactors with uniform multiphase flow distribution [134]. Cherkasov
estimated that a throughput of about 10–50 kg day−1 of the liquid product could be achieved in a single
reactor at the reaction pressure of 50 bar, based on their results. At the same time, a further increase
is expected by numbering-up and process intensification using higher temperatures and pressures,
through microwave- or radio-frequency heating [38]. The excellent heat transfer characteristics of
microfabricated devices also avoid the risk of potential significant industrial accidents caused by
thermal runaway [135]. Model-based scale-up predictions have been presented, including heat and
mass balances. The scale-up from microreactors (inner diameter of 0.5 mm) to milliscale pilot reactors
(inner diameter of 2 mm) through increasing the channel diameter and flow rates has been investigated
using inline FT-IR spectroscopy [65]. The scale-up of a microreactor with a mixer designed for
liquid–liquid reactions has been studied by scaling the hydraulic diameter at increased flow rates and
keeping the average rate of energy dissipation constant [16]. As the analytic system or (bio)chemical
process is typically complicated—for example, micro-total-analysis-systems (µ-TAS) or a lab-on-chip
(LOC) including pumps, valves, mixers, reactors, and separators—the process must use the network
system to produce the target product, as shown in Figure 5c.
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4. Innovative Solicitations of Microreactor

The operations of small-scale reactors are well-known, with the quality of their selectiveness,
ease of operation, low use of energy, and most importantly, reduction of pollution by low waste output
having been demonstrated. They are also cheaper, compared to other large-scale reactors [66,116,137].
The potential for mass transfer in a microreactor is good, where the agitation of a chemical reaction
influences its rate of reaction. The structures of these reactors are suitable for small-scale application
operations. As microreactors have significant operations industrially, their industrial and laboratory
applications have increased significantly. Researchers have discussed the application of microreactor
technologies, with reviews highlighting the increasingly detailed application of microreactors and
their significance in science and engineering as a whole [87,138,139]. Small-scale reactor technology
(microreactor) applications are relevant in the following sectors: synthesis of organic chemicals and
(bio)polymers, biological and pharmaceutical applications, and synthesis of nanoparticles.

4.1. Synthesis of Chemical and (Bio)Polymers

Industrially, small-scale reactors have many vital uses regarding production yield, with various
specific application fields. The use of microreactors in industrial chemistry has paved many new
ways to synthesize (bio-)organic chemicals and certain medical (pharmaceutical) products [129,140].
During the chemical synthesis of these chemicals, certain conditions are of paramount concern for
engineers, especially the chemical reaction rate (kinetically), the heat and mass transfer phenomena,
and the poisonous nature of certain bio-organic or inorganic compounds. The precaution level
is high during the operations of microreactors, due to these specifics of the synthetic chemical
processes [141,142]. The general application of small-scale reactors is purposely for industrial
production, as their production yield is faster, which makes large-scale production more attainable.
As they operate in a laminar continuous flow system, the production of certain organic chemicals



Processes 2020, 8, 891 15 of 31

involves facile synthesis techniques, such as addition reactions to generate cyclo-compounds, as detailed
by Nettekoven et al., who demonstrated the chemical synthesis of an organic cyclic compound
with a yield higher than 4.98 g using a small-scale microreactor with commercialized production
mechanisms [143]. By utilizing the microreactor to its full potential, they generated a high yield of
product (cyclo-compound) with a high conversion rate, demonstrating the effectiveness and efficiency
of the microreactor. Small-scale reactors can be amalgamated with the superficial extension of the
edges of an irradiated substance, as seen against a dark background. This process is called irradiation,
where an electron beam is exposed on the surface of the object, making the edges significant in the
chemical synthesis process. This idea has been reported by Aillet et al., who achieved a high production
output in a minimal amount of time [144]. They detailed the full transformation of an extremely
concentrated liquid mixture within a small radiation period [144]. Individual organic reactions
(e.g., esterification reactions) may have complicated reaction rates and, hence, introduce difficulty in
deducing their chemical kinetics; however, using a Y -shaped small-scale reactor, this problem could
be eliminated.

The synthetic esterification of organic fatty acids can be effectively carried out using microreactors.
Surprisingly, a catalyst is not needed in the process, and the rate of selectivity can reach up to 98–99%
at room temperature in a short period. This principle has been demonstrated by Zanati et al. [145].
Some organic chemical reactions, in general, have multiphase, such as liquid–liquid, gas–liquid,
or even a solid-medium phase; in these cases, a catalyst may be introduced into the microreactor.
The simulation process of a catalyst in a microreactor is convenient and efficient. Glass, as the
primary source of the fabrication of a microreactor, is well suited to many-media chemical reactions.
Inoue et al. demonstrated this type of reactor with a many-phase system, using palladium as the
catalyst at 25 ◦C [146]. In some cases, a catalyst is glazed on the walls of the microchannel during
the synthesis or fabrication of microreactors. Peroxide has correspondingly been synthesized in
this form, with palladium as a catalyst, with the preparation of peroxide being well-documented by
Paunovic et al., Freakley et al., and Suryawanshi et al., who discussed the continuous flow mechanisms
and the preparation of the catalyst based on the fabrication of the microchannels [6,147,148]. Peroxides
have been widely synthesized using small-scale reactors; however, they have also been decomposed at
high temperatures using sodium as the primary catalyst, which shows that microreactors are versatile
regarding chemical reactivity [52]. Small-scale reactors disintegrate the generated heat throughout the
chemical feedback (synthesis) more expeditiously than typical batch-reactors, due to the high mass–heat
transfer constant [149]. Due to the excellent mass transfer balance in microreactors, dehydrogenation
reactions can be completed at steady-state, as suggested by Riano et al., using a rubidium-based catalyst.
Pressure drop is usually a concern in a continuous batch reactor system; however, microreactors
have shown excellent regulation of pressure, which is why many organic chemical syntheses can be
accomplished using small-scale reactors, such as the toluene synthesis, dehydrogenation, and other
multiphase complex organic reaction, due to the high-temperature accommodation properties of
microreactors [150]. In general, microreactors can achieve temperatures as high as 300 ◦C [151,152].
Likewise, regulation is set to certainly eliminate side-chain reactions due to high temperatures.

The general application of microreactors can also be extended to polymers, which has been achieved
in the form of biomedical devices, cosmetics, and biometers, among others, using polymerization
reaction syntheses. Polymers can easily be manufactured using continuous flow high-temperature
microreactors. Different shaped microfluidic devices can be used to synthesize polymers for drug
delivery, as proposed and demonstrated by Kucuk et al., who formed a solid-based polymer using
a V-shaped microreactor [59]. The synthesized polymer could be used to locate drugs, assisting in
the study of the pharmacokinetic behaviors of drugs. Ethylene glycol combined with a lactone-cyclic
diester has been used as a polymer-based compound in biomedical engineering, which was effective in
delivering drugs (in vivo) in patients. The mass production of these polymers is vital, as it aids medical
departments in diagnosis. Using 3D continuous flow small-scale reactors, the mass production of
ethylene glycol in combination with a nanosubstance has been reported by Min et al., where the geometry
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was well-arranged for the mass production of the polymer [153]. The ideal characteristic of their work
was to eliminate any aggregation of the substance, leading to the production of ethylene glycol with its
substituent polymer. In a nutshell, Wang et al. designed a microreactor purposely for the production
of “Acrylic acid”, which is used in nanomedicine; the condition of the chemical synthesis occurred in a
gaseous–liquid medium and the reactor were compartmentalized [154]. In any field, the regulation
of specific products is necessary, especially in the medical field. Thus, certain microreactors have
been built to regulate the production of some polymers used in drug delivery systems; an excellent
example of this is the drug PTX (paclitaxel), sold under the name Taxol [155,156]. Polymers have high
molecular weight, which is vital in knowing some properties of any polymer substance. Polymer
materials have many uses in engineering, ranging from chromatographic analysis, resin materials,
and making drugs in capsule form. These substances can easily be made using small-scale reactors,
as the technology provides mass production and can evenly organize the compositional arrangement.
Although polymerization reactions have some free radical side-chain reaction concerns, the production
of polymers using microreactors has been increasing. Using the continuous flow mechanisms of
small-scale reactors, appropriate residence time can be achieved, thus limiting the formation of
free radicals.

Regarding reducing the molecular weight distribution of polymers, Corrigan et al. established a
microreactor that utilized a certain chemical reaction (polymerization) mechanism, which eliminated
the high molecular weight distribution by using a Zn catalyst, which induced a photoreaction and
terminated the free radical propagation stage eventually resulting in the termination stage, hence
reducing the molecular weight distribution. The Zn catalyst assisted in facile chemical reaction
synthesis of the monomeric polymer in an open system, and the process occurred in a redox-induced
reaction [157]. Polymers can be used in the cleaning of water systems, and polymer-based nanoparticles,
paints, and coating-surfaces have been increasingly used in industrial systems over the years. Due to
some pollution and health concerns about the emulsions and paints, their commercialization continues
to face some challenges. Paclitaxel, as a drug delivery additive, can be synthesized from butyl-acrylate
in a continuous laminar flow system small-scale reactor, as reported by Daniloska et al., in which
the pressure drop mechanism was well addressed [158]. Their method achieved a high output of
product with high functionality of the microreactor. Polymerization reactions usually take time, but in
this case, the reactor was correctly optimized with no hindrance, leading to the efficient production
of microsubstance structures [6,86,159]. The free-radical polymerization of butyl acrylate has been
conducted using the numbering-up of capillary microreactors for homogeneous processing [160].
Su et al. described the engineering principles, such as mass transport phenomena and energy
dissipation, related to polymerization processes in microreactors [161].

4.2. Microreactors for Biological and Pharmaceutical Applications

Organic (biological) and medicinal uses of microreactors primarily involve biogenesis and
organic chemistry progressions, protein evaluation, organic transmission analyses, and systematic
evaluation [44,139]. A chemical reaction in a small-scale reactor is usually composed of highly
composite mechanisms, which is essential in the pharmaceutical industry, as the production scale must
be abundant. A microfluidic biosensor can be made to detect blood sugar and other essential medical
parameters. This idea can be used in the chemical industries for the large-scale production of drugs or
pharmaceuticals [1,162].

Studies have been carried out on the application of small-scale reactors in the area of basic
experimental laboratory analysis; however, some have been focused within the field of medication
and biomedicine [43,44,76]. The development of small-scale reactors makes manufacturing easier and
laboratory analysis more enjoyable. The rate of production is always a concern in the pharmaceutical
industry. Thus, the development of more efficient techniques is still required for the upgrading of
different chemical syntheses, as well as catabolic and anabolic investigations of organic chemicals and
drug pharmacokinetics in drug delivery systems. It is necessary to achieve this determinant in order to
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reduce prices and to meet the demand and supply of the market [75]. In the biomedical field, advanced
studies have been carried out to assimilate different analytical processes into single definite entities,
which can be achieved using a microreactor and accurate chemical analysis. Specific biological analyses
such as cell lysis, detection, and extraction can all be performed by a single microreactor within a
short period. The adaptable and scalability of chemical reaction vessels can modernize the medical
system and encourage rapid improvements in the health sector. Microreactors have been interestingly
used in other fields of biological engineering (e.g., tissue and microengineering) advancement. Tissue
engineering is a new field of research, which has paved the way for organ transfer and the induced
embedding of devices (in microform) to aid affected organs [163,164].

The biological function of tissue is subordinate in building conventional organs with structural
cell density. With the aid of a small microdevice, a cell-tissue skeleton can be made to support a cellular
system. As cell-tissues are easily damaged under certain conditions, the body system is exposed.
Thus, a microreactor is needed to help generate new cell-tissue to balance the cell propagation, such that
the perfect auxiliaries and variations occur. A microreactor could serve as a nutrient delivery agent,
as well as removing the unwanted materials in a cycle chain-linkage form [94,95]. Biological small-scale
engineering can exploit the benefits of microfluidic technology in all forms, as this equipment has the
advantage of working in a laminar flow system, which is also essential in the bloodstream system
of the body, and applicable to interaction with individual body cells. It is, therefore, ideal to find a
solution that aids in the arrangement and understanding of both the nervous system and somatic cell
relocation [5].

Small-scale reactors can perform multiple purposes at once. Microreactors can simulate both
the analysis and organization of models at the same time using only one microfluidic reactor with
compartmentalized microchannel [165]. In medical laboratories, this kind of reactor can measure
the quantification of immune cells, such as CD8+ (cytotoxic) T cells and CD4+ Helper T cells, in a
blood sample [165]. Microreactors can also be fabricated using paper, which enables the natural
diffusion of liquid in the form of capillaries, which could be a drug delivery-induced substance [166].
Cholestenone is produced from the organic oxidation of cholesterol, and this process can be easily
observed in a conceptual microreactor with good channel design, Marques et al. have detailed this
effect by fabricating a channel dimensional-system in a microreactor [167]. Esterification reactions are
best used in food industries, such as for synthetic grape juice; microreactors can also aid in the synthetic
process, as reported by Gumel et al., who manufactured methyl benzoates using a microfluidic device
(benzoates derivatives are used as flavoring agents for certain food products) [168]. The use of a lipase
enzyme is essential to the catalysis of this reaction. This kind of micro-based reactor can be applied to
some biological reaction syntheses. Microfluidic devices can also be used to analyze blood samples,
as evidenced by Wu et al., who made a small, transparent, and elastic poly-urethane microreactor
for blood analysis [169]. For general DNA analysis, microreactors are well suited to separation and
ligation. Small-scale reactors can be utilized in chemistry-related processes, such as the carbon–carbon
bond formation, which is highly useful in the industrial pharmaceutical complex [170].

Generally, biological reactions involve a temperature coordinated mole-to-mole ratio balance
between reactants and products. Small scale-reactors are well-defined, regarding heat and mass
transfer processes, which makes them suitable for such chemical reactions [171]. The homogeneity
of the mixture is always essential in the preparation of nano-based particles, for medical concerns,
by determining pharmacokinetic and other vital properties. The concept of homogeneity can be
addressed using Si-based microreactors, which have an excellent output production for continuous
flow systems [172]. Bolivar et al. documented the application of biocatalysts in small-scale reactors,
as reports of chemical synthesis transfiguration have described [173]. Enzymatic reactions are slow
processes due to the specificity and selectivity of the active site mechanisms. Thus, this creates a need
for a small-scale reactor, which allows easy detection of reaction synthesis [6,173].
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4.3. Nanoparticle Synthesis Using Microreactors

Nanoparticles have been a groundwork focus for over 20 years. The arrival of microreactor
technology has provided different means for the production of nano-based particles in small-scale
reactors [174]. Recent achievements in the amalgamation of nano-based particles in microreactors
have been reported by Zhao et al. [174]. Nano-based particles can be synthesized by continuous
flow mechanisms, gaseous–fluidic metameric flow systems, and drop-based small-scale reactors [174].
Variation of nano-based particles can be achieved using micro-liquid chemical synthesis methods
(Table 3). Organic or inorganic chemical reactions provide the most effective way to make
nano-based particles in large quantities, where a microfluidic device is generally used as the reaction
vessel. The reaction characterization occurs during the nucleation and pretreatment processes [6].
The organization and synthetic processes of the nano-based particle have been elaborated [66,72,100].
Nano-based particle production denotes those techniques aimed at constructing nanoparticles.
Nanoparticles can be derived from bigger particles or fragments, or synthesized using some chemical
processes. Amalgamation can be exemplified by structural conjugation to a bioselective substance [12].
The solicitation of nano-based particles in medication is influenced by the tractability to manufacture
substances with completely altered shapes, dispersity, biochemical configuration, and magnitude [42].
The production of some nano-based particles, such as TiO2 or metal–silica compounds, among others,
is based on a technique involving either continuous flow or segmented- or compartmentalized-flow
systems under standard pressure conditions [175]. High pressure is also used in some cases. Generally,
in such chemical reaction conditions, most of the nano-based particles are in the aqueous phase. Table 3
gives some details of the production of nanoparticles using different microreactors.

Table 3. Nanoparticle synthesis with different reactor designs.

Reactor Design Dimension (mm) Flow Rate (mL/min) Nanoparticle Size (nm) Refs

Capillary Reactor D = 0.26, L= 110–152 0.06 PbS/PbSe 3–6 [176]
Y-shaped Capillary D = 0.2, L = 350 0.2 CdSe-ZnS 2 [139]

Interdigital Micro mixer D = 1.4, L = 1000 0.5 SiO2 173 [177]
Capillary D = 0.74, L = 1400 0.22–0.84 Zeolite 279–427 [178]

Y-shaped Microchannel D = 0.9, L = 2200 0.8 Cu2Cr2O5 68–265 [179]
Y-shaped Microchannel D= 0.9, L = 113 3–30 Fe3O4 10–23 [180]
T-shaped Microchannel - 7 Zn/Fe3O4 4 [4]
Y-shaped Microchannel

with tubes
interconnected

D = 0.35, L = 3.5 2–6 ZnO 17 [181]

Microchannel D = 0.5, L = 20 64 BaSO4 60 [182]

4.3.1. Microfluidic Synthesis Schemes of Nanoparticles

Continuous Flow Microreactors

The combination of two chemical substances, which eventually results in a chemical reaction,
is what forms nano-based particles. Solubility plays a significant part in the production of
nanoparticles, as lower solubility favors good precipitation reactions, which, in turn, lead to the
synthesis of nanoparticles [59]. Precipitation creates nucleates and proper development. Isolation
of product yield is a challenge in the materialization of nanoparticles. As microreactors are a
technology that can be processed autonomously, such a synthetic process is well-determined [85].
Micro-based reactors can be divided into continuous flow and segmented- or compartmentalized-flow
microreactors. Compartmentalized-flow reactors can be gaseous–liquid and aqueous–aqueous
segmented microreactor [142]. Continuous flow microreactor systems have the same operational
fundamentals as batch systems. This system is widely used in the microreactor industry due to
its uniqueness [167]. Its production output is excellent and, hence, uniformity can be substantially
achieved. Diminishing the microchannel permits facile modification of tentative circumstances
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on the order of microseconds, while the feedstock capacity can be significantly condensed to
microliter scales [59,130,150]. The oxidative methanol reforming reaction has been carried out using
Cu/ZnO/Al2O3/Cr2O3/CeO2 with a wash coat by ethylene cellulose (EC) sol on a plate microchannel
reactor, as shown in Figure 5a [183].

For droplet-based reactors, the chemical content of the compositional mixtures is different in both
chemical reactants, and the solution mixture is not evenly homogenized; this is essential, as reactions
with different or multiple pathways lead to different outputs. Commercially, continuous systems lead
to high production yield of the synthesized chemical; therefore, they are vital and reasonably applicable
industrially, as they lower the cost and reduce the production timeframe. In a continuous flow system,
the channels are connected, in an array, in either capillary form or chip-form [59,85,97]. Other types of
continuous flow microreactors are capillary tube microreactors, coaxial flow microreactors, and 2D
micromixing base microreactors. The concept of the capillary tube reactor system can be extended
to microfluidic biofuel cells, using enzymes as biocatalysts to oxidize glucose or other biological
substances. Table 4 details the nanomaterials used as electrodes in microfluidic biofuel cells, as well as
explaining the co-laminar flow systems in the multichannel system array in microreactors. Furthermore,
the design geometries of the microfluidic devices are also summarized, which explains the adaptability
of the microreactors to different complex chemical reactions.

Gas–Liquid Segmented Microfluidic Microreactors

Double methods can assist compounding in small-scale reactors. Submissive compounding is
primarily used, as it can delineate better, affecting the quality of the microchannel configurations [10].
The contrary method is a vigorous combination, which utilizes splitting to enhance compounding.
Both liquid–liquid and gas–liquid interactions in the segmental-flow reactor are used for such
determination. Gas–liquid metameric flow reactors are enticing, due to the straightforward separation
of the gas from the liquid [9]. Additionally, compared with continuous flow microreactors, they have
a good duration residence time distribution (RTD). Therefore, a wide particle size distribution,
due to the parabolic speed profiles of segmental flow microreactors, reduces the RTD by finishing
reactions in metameric liquid slugs, where segmenting gas is employed to force recirculation, therefore
enhancing compounding among the liquid slug [184]. For a continuous flow of reactants without
interrupting the transportation of molecules, microfluidic reactors provide good strategies, in the
form of gas–liquid segmented flow systems. The segmented flow is produced by wetting part of
the chip, which alters the down-flow stream to a partly wetted reaction passage, which helps to
detach the liquid lumps. The residence time is directly proportional to the channel dimensions
(i.e., length and width) [73,113,145]. It is typically established through an experiment that subdivides a
reaction; for example, using nitrogen fizzes is operative for the contraction of the element thickness
when forming CdSe nanocrystals in capillary tube microreactors. Characterization of gas–liquid
microfluidic reactors has led to the reduced size distribution of silicon oxide particles. RTD could be a
vital parameter in determining the performance of a gas–liquid metameric reactor, most significantly,
for the scale distribution of nanoparticles. Therefore, it is vital to experimentally characterize and/or
theoretically predict the RTD [73,113,145]. Completely different tracers such as decorated colors,
glowing species, or hydrogen ion concentration indicators could also be inserted into the scheme to
describe the combination characteristics and ensure appropriate RTD [185,186].



Processes 2020, 8, 891 20 of 31

Table 4. Nanomaterials used in microreactors.

Electrolyte Nanomaterials Microchannel Scheme (W/H/L) Electrodeposition References

Phosphate solvent
0.1 M

Palladium
Palladium or Platinum

Co-laminar flow
T-shaped2.0 mm/0.072–0.173 mm/

10.2 mm
Bottom-most wall [21,187–189]

H2SO4 Solution 0.3 M Platinum-black
Platinum-black

Co-laminar flow
Y-shaped

0.54 or 1.0 mm/0.53 or
1.0 mm/30.2 mm

Side walls [190–192]

H2SO4 0.1 M Platinum
Co-laminar flow

F-shaped
0.383 mm/1.0 mm/50.1 mm

Top-/bottom-most
walls [191,193]

PBS
and NaCl

(0.1–0.2 M)

Glucose dehydrogenase
enzymes
Platinum

Distinct stream
I-shaped

3.0 mm wide/1 mm height
Bottom-most wall [191,192,194]

Phosphate
and NaCl

(0.1–0.2 M)

Glucose
dehydrogenase enzymes
Bilirubin oxidase enzyme

Distinct stream
I-shape

3.0 mm wide/0.1–1 mm height
Bottom-most wall [191,195]

H2SO4 (2–3 M) -
Co-laminar flow

Y-shaped
2.0 mm/0.123 mm/27.1 mm

Bottom-most wall [196]

H2SO4 (0.3 M) and
NaOH (1 M)

Platinum
Platinum

Passive electrolyte
0.22 mm/0.07 mm/20 mm Bottom-most wall [191,197]

NaOH (2.9 M) Palladium
Gold or Palladium

Co-laminar flow
T-shaped

3.1 mm/0.34 mm/12.2 mm
Bottom-most wall [187]

H2SO4 (0.1 M) Platinum/Ruthenium-black
Platinum-black

Co-laminar flow
F-shaped

1.0 mm/1.0 mm/50 mm

Top-/bottom-most
walls [198]

PBS (pH 7.15)
Alcohol dehydrogenase

Enzyme
Platinum

Distinct stream
I-shaped

0.2 mm/0.1 mm/25 mm
Bottom-most wall [199]

H2SO4 (0.5–0.6 M) and
KOH (1–2 M)

Platinum /Ruthenium
Platinum

Co-laminar flow
F-shaped

2.0 mm/3.0 mm/22.1 mm

Top-/bottom-most
walls [200]

H2SO4 (0.5 M) Platinum
Platinum

Co-laminar flow
I-shaped

0.5 mm/0.051 mm/20.1 mm
Bottom-most wall [201]

KOH (0.2 M) Nickel hydroxide
Silver oxide

Distinct stream
I-shaped

0.12 mm high

Bottom-most wall;
interdigitated [202]

H2SO4 (0.5–1 M) Platinum
Platinum

Sequential radial flow
Circular shaped

25.42 mm diameter
Bottom-most wall [203]

NaOH (0.8 M) H2SO4
(0.4 M)

Platinum
Platinum

Co-laminar flow
H-shaped

1 mm/0.05 mm/10 mm
Bottom-most wall [204]

4.4. Numerical Models of Microreactors

The characterization of fluids in microchannels can be categorized in microfluidic devices.
Microfluidic technology can be used in different scientific fields, ranging from chemical synthesis and
nanoparticle synthesis to biological experimentations or optics technology [28,205,206]. Traditionally,
as the basic scientific and technological ideas are developed, other complications must be addressed,
such as selecting and concentrating on initial applications, developing strategies to comprehend the
cycle of improvement, and commercialization. Fluid flow in microscale devices is usually laminar
and associated with low Reynolds numbers, where viscous properties control inertial properties,
and surface forces are more significant than body forces. In a microfluidic channel, the connection
between the fluid velocity and the absolute pressure for an incompressible viscous liquid is given by
classical fluid dynamics theory and the well-known Navier–Stokes equation [207]:

∂
→
υ
∂t

+
(
→
υ ·
→

∇

)
→
υ = −

→

∇

(
P
ρ

)
+ µ∆

→
υ , (1)
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where v denotes the fluid velocity vector, each carried for a set of Euler components (x, y, z, t), P is
the absolute pressure, ρ is the relative density, and µ is the kinematic viscosity [19]. In the instance
of a microfluidic horizontally straight channel (x-direction), the flow is continuously laminar under
the squat pressure drop most significantly, resulting in a unidirectional flow and a constant total
pressure in the cross-section, intended at a fixed pressure drop between the inlet and the outlet of the
channel [208–210]. Equation (1) can be streamlined as:

∂
→
υ
∂t

= −
1
ρ
−
∆P
L

+ µ

(
∂u2

∂y2 +
∂u2

∂z2

)
(2)

where L denotes the length of the microchannel [211]. When the flow is stretched, the time derivative
period is zero [19,212,213]. Therefore, Equation (2) can be rewritten and evaluated as:

−∆P
ηL

+
∂u2

∂y2 +
∂u2

∂z2 = 0, (3)

where η is the dynamic viscosity, the product of the dynamic viscosity, and the relative density. Owing
to the rectangular cross-section of the microchannel, a 2D technique is often used, which assumes a
pseudo-infinite plate flow, except for at the side-wall borders. The directions along the length and
height of the microchannel are indicated by the x and y coordinates, respectively. For a dimensionless
group, the Reynolds (Re) and Froude (Fr) numbers are considered for the flow system, Peclet number
(Pe) for molecular diffusivity, and the Damk¨ohler number for the reaction system (Da). In order to
facilitate the characterization of flow patterns and extent of interdiffusion in microchannels, Re < 10 is
required to guarantee microfluidic laminar flow, and Pe ≈ 10,000 is required to alleviate the solute
crossover [114].

High mixing efficiency, narrow residence time distribution, and nearly isothermal reaction control
are preconditions for determining reliable kinetic data. Mixing times should be short compared to
the duration of a chemical reaction. Fath et al. reported that the theoretical mixing time tmixing of
intertwined lamellae (including molecular diffusion and shear in a tube in the laminar flow) could be
described as a function of the Peclet number [65]:

tmixing =

(
d2

Dm

)
8Pe

ln(1.52Pe), (4)

where d is the diameter, and Dm is the diffusivity. They also showed the dimensions and calculated
dimensionless parameters for selected residence times for a lab reactor with pilot millireactors
(as empty tubes).

5. Conclusions

Microreactors play an essential role in the synthesis of organic chemicals, biopolymers,
nanoparticles, and many other substances, in general. The small-sized nature of the microreactor
can perform unpredictable chemical reactions with complex pathways and reaction mechanisms.
This work presented details of the operations, fundamentals, and structural materials used in the
fabrication of small-scale reactors. Their construction/fabrication mechanisms, along with their
principal application technologies, were also described, and their commercial significance and mode
of chemical production—used for both biological and pharmaceutical purposes—were elaborated.
Microreactors can help the medical industry in designing drug delivery systems through effectively
synthesizing additives and providing embedded devices. The general substances or materials used in
the fabrication of microreactors are also mentioned.

Recently, the technological aspects of small-scale reactors have been gathering an impressive
amount of attention in the research world, due to their performance, efficiency, and rapid mass-transfer
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mechanisms. In the future, microreactors may serve to fully replace conventional batch reactors.
In contrast to batch reactors, microreactors can synthesize a nanoparticle in a short period. The possibility
of integration of different reaction routines within a single reactor is another unique quality of
microreactors. However, microreactors still face some challenges, such as commercialization and
specific reaction integration problems, which make it difficult for some organic chemical syntheses to be
operated in them. Serious investigation of some necessary steps, such as synthesis ability, measurement
analysis, extraction, and detection need to be carried out, such that microreactors can be applied widely,
throughout all relevant fields of study.
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