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Abstract: A novel, non-invasive low-field Magnetic Resonance Imaging (MRI) technique for studying
the osmotic dehydration process in fruits and vegetables is proposed. A saturated solution of
paramagnetic salt is used as both the osmotic substance and the contrast agent for MRI. Using
courgette as an example, it is demonstrated that the results obtained by the new method are consistent
with the standard mass transport analysis, but additional information about the spatial distribution of
osmotic substance within the sample and its evolution in time is provided. The MRI method is much
more efficient in terms of experiment time and the amount of biological material needed. Possible
extensions of the technique to improve its accuracy are discussed.
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1. Introduction

Processes related to the osmotic drying of fruits and vegetables are currently being extensively
investigated, as evidenced by recent review papers [1–3]. Osmosis leads to the transport of water from
the interior of the sample to the hypertonic solution (dehydration), with simultaneous transport of
the osmotic substance to the inside of the sample (impregnation). The leaching out of natural soluble
substances from the sample can be also observed during this process. In general, osmosis occurs when
osmotic pressure is generated on both sides of a semi-permeable membrane due to the difference in
chemical potentials [4].

Courgette and pumpkin are relatively large vegetables, from which it is easy to extract
homogeneous samples. Therefore, they are the subject of many investigations. For example, Kowalska
et al. studied the effect of courgette blanching and freezing on osmotic dehydration [5], while Mayor
et al. examined the microstructural changes during osmotic dehydration of the tissue [6]. Structural
studies of courgette using the Magnetic Resonance Imaging (MRI) method were performed for the
first time by Duce et al., who obtained high-resolution images of the tissue. They found that MRI was
sensitive enough to monitor structural changes caused by freezing and thawing, which eventually led
to the cell rupturing [7]. Similarly, Rossi et al. used an MRI technique to study the water distribution
and morphology in zucchini, which was fertilized in various ways [8].

However, reports on the use of the MRI method in the context of osmotic dehydration appear
sporadically, and so far, they only concern fruit. Evans et al. obtained profiles of the proton T2

relaxation time across a strawberry slice that was subjected to air-drying and osmotic dehydration
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in a sugar solution. Since the T2 parameter depends on water mobility, it becomes longer when
the water in the medium is less bonded. As expected, a decrease in T2 was observed during both
processes [9]. The effect was confirmed by Derossi et al., who examined the mass transfer during the
osmotic dehydration of apples. The T2 maps created from the series of MRI images clearly showed
a decrease in T2 during the osmotic dehydration process. Furthermore, by plotting T2 against the
penetration depth, it was proved that all layers of the apple tissue were involved in the dehydration
process at the same time [10].

Additional insight into the osmotic dehydration process can be obtained by studying the spatial
distribution of the osmotic substance within the sample and its evolution in time. In order to observe
this directly, in the present study we use a saturated solution of copper sulphate, which serves as both
the osmotic agent and the negative contrast agent in the low-field MRI experiments [11]. We aim to
evaluate the mass transfer after the osmotic dehydration of courgette and to calculate the diffusion
coefficient of the osmotic substance from the MRI measurements.

2. Materials and Methods

2.1. Sample Preparation

The ripe courgette (4 kg) of Astra Polka variety were purchased at the local market in Krakow,
Poland and processed the same day. After washing and manual peeling, 28 cylindrical samples, 20 mm
in diameter and 40 mm in height, were cut from the centres of the fruits using a stainless-steel cork
borer. To ensure maximum structural homogeneity of the samples, the tissue from the fleshy mesocarp
was taken, parallel to the main axis of the fruit. The average weight of fresh samples was 10.67 ± 0.50 g.
Analytical-grade sulphate pentahydrate (CuSO4 × 5 H2O) was purchased from Sigma-Aldrich (Poznan,
Poland) and used to prepare the osmotic solution.

2.2. Osmotic Solution Preparation

The osmotic solution was prepared by dissolving CuSO4 in distilled water at 37 ◦C. The final salt
concentration was 21% (w/w), which was close to a saturated solution at room temperature. The solution
to sample mass ratio of 11:1 (w/w) was maintained in all experiments.

2.3. Osmotic Dehydration

The osmotic solution was put into a 120 mL plastic vessel with the sample inside. A thin
nonmagnetic needle was mounted inside the vessel and driven axially through the centre of the
courgette sample so that it was attached to the base of the container and completely immersed. In order
to ensure that the geometry of the sample did not change over time, that is, that there was no strong
shrinkage effect, the maximum dipping time was limited to 8 h. The sample was held in the osmotic
solution for predefined times of 1, 2, 3, 4, 5 and 8 h. For each dipping time, three samples were used,
and the average results were calculated. Each sample was weighed before being subjected to the
osmotic dehydration process. After the defined time, the sample was removed from the solution,
gently dried with a paper towel to remove the excess solvent adhered to the sample surface and
weighed. Afterwards, the courgette was dried in an oven for two days at a temperature of 50 ◦C, and
the final weight of the product after the heat treatment was determined. The samples were dried until
a constant weight was reached.

In order to determine the initial dry mass of a treated courgette sample, which was needed
in further analysis, a separate experiment was carried out using 10 control samples. These were
weighed, then dried in an oven for two days at 50 ◦C and weighed again. This allowed us to qualify
what percentage of wet mass (Mo) constitutes dry mass (mo) for a homogeneous courgette tissue.
The average value for 10 samples was equal to (4.3 ± 0.1)%. Thereafter, the initial dry mass of each
treated sample was calculated using the equation m0 =

m%M0
100% , where m% is the percentage of the initial

wet mass of the fresh courgette, determined from the experiment described above.
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2.4. Mass Transfer Modelling

The mass transfer between the sample and the osmotic solution was evaluated using the following
parameters: water loss (WL, g/g wet basis) and solids gain (SG, g/g wet basis) [12].

WL =
(Mo −mo) − (Mt −mt)

Mo
, (1)

SG =
mt −mo

Mo
, (2)

where Mo denotes the initial mass of the fresh courgette sample, Mt is the mass of the courgette sample
after selected time t of osmotic dehydration (OD) treatment, mt is the dry mass of the courgette sample
after selected time t of OD treatment and mo is the initial dry mass of the courgette sample. All values
are expressed in grams. We used the kinetic model developed by Azuara et al. to determine the WL
and SG values in the equilibrium state (i.e., WLe and SGe, respectively) [13]. The Azuara model can
predict water loss and solid gain at equilibrium conditions on the basis of experimental data obtained
during a short-duration of osmosis. WLe and SGe parameters are related to the fractions of water loss
(WLt) and solid gain (SGt) at any time t, by the following equations:

t
WLt

=
1

S1(WLe)
+

t
WLe

, (3)

t
SGt

=
1

S2(SGe)
+

t
SGe

, (4)

where 1/S1 and 1/S2 are the intercept values obtained by fitting the above expressions to linear
functions, while 1/WLe and 1/SGe are the corresponding slopes.

Next, a mathematical model based on Fick′s second law for an unsteady state mass transfer was
used to determine the water and solute diffusivities during osmotic dehydration [14]. The following
assumptions were made: (i) homogeneous structure and uniform initial water and solid distribution
within the sample, (ii) constant salt concentration during the dehydration process, (iii) no shrinkage
during osmotic dehydration, (iv) negligible leaching of solids from the sample to the solution and
(v) negligible external resistance to mass transfer. For the above assumptions and for a finite cylinder
geometry, a simple analytical solution of Fick′s equation was proposed by Hamedi et al. [15] and is
given by the following equation:

km(WL∨SG) = 0.56e−
8.25
d2 De(WL∨SG)t, (5)

where:
km(WL) =

WLe −WLt

WLe −WL0
, (6)

or
km(SG) =

SGe − SGt

SGe − SG0
, (7)

are mass transfer coefficients describing the water flow from the sample and solute accumulation within
the sample, respectively, d is the diameter of the cylinder, De(WL) and De(SG) are the corresponding
effective diffusion coefficients of water and solutes. WL0 and SG0 from Equations (1) and (2) are both
equal to zero at the initial moment.

2.5. Magnetic Resonance Imaging

2.5.1. MRI Protocol

The mass transfer after osmotic dehydration of courgette was also evaluated using a low-field
MRI method. The MRI experiments were carried out on a home-made low-field MRI scanner, using the
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protocol reported previously [16,17]. The central component of the system was a temperature-stabilized
88 mT permanent magnet (AMAG, Krakow, Poland), with a homogeneous spherical operating volume
of 10 cm diameter. Magnetic field gradients were generated by bi-planar, actively shielded gradient
coils (Institute for Biodiagnostics, NRC, Winnipeg, MB, Canada), with an efficiency of 30 mT/m in
all three directions. The radio-frequency solenoidal coil had an 8 cm diameter and was tuned to the
resonance frequency of 3.74 MHz. All components of the system were computer-controlled by an
MR4200 console (Magnetic Resonance Research System, Surrey, UK). The magnetic field of the scanner
was in the vertical direction and the rf coil used was a solenoid tube that was easily accessible from the
side of the scanner. The internal diameter of the coil, at 8 cm, was large enough to incorporate the
120 mL plastic vessel containing the osmotic solution with the sample. The plastic vessel was centred
inside the coil using a sponge. The size of the coil and the sample container enabled easy positioning
and orientation of the object in the scanner. A fast spin echo (FSE) imaging sequence with eight
consecutive echoes was applied with the following parameters: field of view (FOV), 100 mm × 100 mm;
matrix size, 128 pixels × 128 pixels; slice thickness, 16 mm chosen from the centre of the cylindrical
sample, perpendicular to the cylinder axis; echo time (TE), 19 ms; effective echo time (TEE), 38 ms;
repetition time (TR), 300 ms; 16 acquisitions; and 11 min total acquisition time.

2.5.2. Contrast Agent

The copper sulphate pentahydrate solution (21% (w/w)) used for osmotic dehydration studies
also served as a contrast agent (CA) in the MRI investigations. The presence of paramagnetic
ions in the solution strongly affected the T1 and T2 relaxation times of the neighbouring water,
providing the contrast mechanism in images obtained by properly tailored imaging protocol. However,
the enhancement effect depends on the magnetic field strength and the concentration of CA within the
studied tissues [18]. At a low CA concentration in the tissue, T1 becomes shorter, making the tissue
appear bright in the Magnetic Resonance (MR) image. At a higher CA concentration, the T2 relaxation
time is dramatically reduced due to susceptibility effects, which leads to smaller signal intensity in
MR images. The latter is called T2-weighted MRI, and this negative contrast mechanism was used in
the present low-field studies, allowing us to distinguish parts of the tissue containing low and high
concentrations of CA, which appeared in the image as bright and dark segments, respectively.

Three cylindrical courgette samples were prepared for the MRI measurements, and the average
results were used in the further numerical analysis. The experiment protocol started with placing the
sample inside the plastic vessel containing the osmotic solution as shown in Figure 1. Next, the MR
images of the central transverse slice were acquired for each sample. First, a pre-contrast image
was measured immediately after placing the sample in the osmotic solution (t = 0), followed by the
post-contrast images acquired after immersion in the CuSO4 osmotic solution for 1, 2, 3, 4, 5 and 8 h.
During each experiment series, the sample was constantly immersed in the osmotic solution at a fixed
position in the MRI scanner.
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2.6. Image Analysis

All MRI data were exported to a PC workstation and analysed using the open source program
ImageJ to process the images [19]. The volume determination was based on the planimetric technique,
which is analogous to the one that is used in clinical trials [20,21]. We assumed that in the MR image
there were two separate regions within the courgette sample, one with CA and another without CA,
which appeared as dark and light areas, respectively. The signal in the former was attenuated due
to the reduction of T2. As a result of the CA diffusion into the tissue, the light area decreased in
time. The courgette boundaries in the cross-sectional MR image were traced manually and the ImageJ
program calculated the number of pixels within the boundary automatically. This allowed us to
estimate the area, and multiplication by the slice thickness yielded the volume of the tissue that was not
affected by the CA agent. By averaging the data from three separate experiments, the time-dependent
volume V(t), t = 0, 1, 2, 3, 4, 5, 8 was determined. Finally, the fractional volume αt occupied by the CA
can be obtained as αt = 1− (V(t)/V(0)).

There should be a linear dependence between the SGt and αt parameters that were determined
by the mass transport analysis and MRI, respectively. This can be checked by fitting the data to the
following equation:

SGt = R1 ∗ αt + R2, (8)

where R1 and R2 are linear regression coefficients, slope and intercept, respectively. This allowed us to
determine the diffusion coefficient of the osmotic substance from the MRI results, using Equations (5)
and (7).

3. Results

3.1. Determination of WL, SG and Diffusion Coefficient

The results of mass transport analysis are presented in Figure 2, where the time dependence
of water loss WL and solid gain SG are shown. Both parameters demonstrate a quasi-exponential
relationship, which is characterized by a rapid increase during the first 2 h of the osmotic dehydration
process. Similar behaviour was observed by other authors studying the osmotic dehydration of
vegetables. Physically, the effect can be explained by a large initial osmotic driving force between the
tissue and the osmotic substance, which gradually decreases over time. Moreover, a high concentration
of the CA at the interface closes up capillaries, forming a barrier to the water flow.
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The WL and SG parameters did not reach their equilibrium values because the experiment was
terminated after 8 h to avoid the sample shrinking effects. Presumably, for longer immersion times,
the shrunken outer tissue forms a resistance to the water flow from courgette to the osmotic solution,
slowing down the process even further.

The equilibrium values of these parameters, WLe and SGe, can be determined from the Azuara
model given in Equations (3) and (4). The experimental plots of t/WL and t/SG as a function of time
are shown in Figure 3a, and the results of weighted linear regression are presented in Table 1. High
correlation coefficients confirm that the linear fits provide adequate models for the data. The calculated
water loss and solid gain in equilibrium at the chosen initial salt concentration are 28% and 11%,
respectively, with acceptable experimental errors. Qualitatively, they agree with the direct results that
are shown in Figure 2, although the SGe value seems to be slightly overestimated. It was previously
reported that the Azuara model is less able to predict SGe values than WLe values [22].
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Table 1. The correlation coefficients and equilibrium values for water loss and solid gain during the
osmotic dehydration of courgette in CuSO4 solution estimated from the Azuara model.

Parameters from t/WL
(Water Loss)

Parameters from t/SG
(Solid Gain)

Pearson′s correlation coefficient 0.980 0.952
Slope 3.54 ± 0.32 9.5 ± 1.8

Intercept 19,000 ± 5300 167,000 ± 29,000
S1 (1.9 ± 0.5) × 10−4 -

WLe 0.28 ± 0.03 -
S2 - (0.57 ± 0.14) × 10−4

SGe - 0.11 ± 0.02

The calculated WLe and SGe values can be used to determine the effective diffusion coefficients
of water loss and solid gain De(WL) and De(SG), respectively. By taking logarithms of both sides of
Equations (6) and (7), a linear dependence of ln

(
WLe−WLt
WLe−WL0

)
and ln

(
SGe−SGt
SGe−SG0

)
as a function of processing

time is obtained. The weighted linear fits to the experimental points are shown in Figure 3b, and the
numerical results are presented in Table 2. Using Equation (5), the effective diffusivities were calculated
from the slopes of corresponding lines, and were equal to (2.91 ± 0.47) × 10−9 m2/s and (1.64 ± 0.17) ×
10−9 m2/s for the water loss and solid gain, respectively. These results agree well with the existing
literature [23–25].
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Table 2. The effective diffusivity coefficients for water loss and solid gain during the osmotic dehydration
of courgette in CuSO4 solution estimated from the analytical solution of Fick′s equation.

Parameters from km(WL) km(SG)

Pearson’s correlation coefficient −0.884 −0.966
Slope (−6.09 ± 0.90) × 10−5 (−3.38 ± 0.30) × 10−5

Intercept −0.30 ± 0.14 −0.071 ± 0.045
De(WL) (m2/s) (2.91 ± 0.47) × 10−9 -

3.2. Determination MRI Data Analysis

Typical cross-sectional MR images of the courgette sample subjected to osmotic dehydration by
the saturated solution of CuSO4 salt are shown in Figure 4 for consecutive processing times. The initial
control image reflects the water content in the sample (Figure 4: control). During dehydration, the light
region in the image decreases because the salt penetrating the tissue makes part of it invisible (Figure 4:
1–8 h). After 9.5 h, the salt covers the whole sample, making the detection of any MRI signal impossible
(not shown).
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Figure 4. Cross-sectional MR images of a cylindrical sample of courgette during osmotic dehydration
in CuSO4 solution. Image (control) acquired before the contrast agent was administered and images
(1–8 h) acquired at different times of the osmotic process. The dark spots in the centre of the images
indicate the location of the sample holder. The scale bar represents 20 mm.

Using the procedure described in the experiment section, the time-dependent volumes V(t) and
fractional volumes αt for t = 0, 1, 2, 3, 4, 5, 8 were determined. The results of the MRI and mass transport
analysis are compared in Figure 5a, illustrating the same time dependence of αt and SG. Finally, the SG
data were plotted versus αt and fitted to Equation (8), as shown in Figure 5b. The Pearson coefficient,
equal to 0.944, confirms the good quality of the weighted linear fit. Therefore, the MRI data can be used
independently to calculate the effective diffusion coefficient of the osmotic substance using Equations
(5) and (7). It is equal to (1.91 ± 0.11) × 10−9 m2/s, which agrees with the previously found value of
De(SG) = (1.64 ± 0.17) × 10−9 m2/s within experimental error.
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Figure 5. (a) Kinetics of solid gain (red circles) and relative volume (green triangles) during the osmotic
dehydration of courgette in the CuSO4 solution. (b) Correlation between the solid gain (SG) determined
from the mass transport analysis and the relative volume (αt) obtained from the MRI data. Error bars
represent standard uncertainty.

4. Discussion

We investigated the mass transfer kinetics and effective diffusivity during the osmotic dehydration
of courgette in a copper sulphate salt solution. The use of copper sulphate made it possible to perform
complementary measurements using the low-field MRI method, where CuSO4 is used as both the
osmotic substance and the paramagnetic contrast agent. The experiment was planned so that the
results could be subjected to a simple macroscopic analysis, which would verify the usefulness of
the proposed MRI method. The samples were taken from the homogeneous tissue of one vegetable.
The initial course of the experiment was analysed, where the shrinkage of the sample could be neglected.
Our results showed that both the analysis of the mass transport and determination of the spatial
distribution of the osmotic substance by MRI provided consistent numerical results for the diffusion
coefficients of water and the osmotic substance within the sample tissue. Using the same salt during
both trials allowed us to show that the paramagnetic agent in low-field MRI imaging is a great tool
for studying the OD process. However, it should be noted that the molar mass of CuSO4 differs from
NaCl mass (most often used during the OD process). Solute transfer is a complex phenomenon in
which a number of factors should be taken into account, including the physicochemical properties of
the osmotic agent and the properties of the structural material, as described in detail in the work of
Muñiz-Becera et al. [1]. Dissolved substances with ionic properties such as CuSO4 or NaCl will diffuse
inside the plant tissue, but the diffusion processes depend on the size of the particles, molecular weight
and molar volume. Another situation occurs with polar osmotic agents such as sucrose, where the
substances adhere mainly to the surface of materials. Surface adhesion, electrochemical interaction
and electrostatic forces are involved in the transfer of solutes during OD [26], which means that the
results obtained from the use of various osmotic agents should be considered separately.

5. Conclusions

Two experimental techniques were applied to provide complementary information on the osmotic
dehydration process occurring in the courgette (Cucurbita pepo convar. giromontiina) that was submerged
in the saturated solution of a paramagnetic salt. There are several advantages of the MRI method when
compared to the direct mass transport analysis. First of all, in order to determine the time evolution of
the dehydration process, several samples are needed for the mass transport method—namely, at least
one sample for each experimental point. In addition, a separate experiment is needed to find the initial
dry mass of the sample. This causes potential scatter of the results due to differences between the
samples and their inhomogeneities. In contrast, in the MRI method, a single sample is sufficient to
monitor the entire dehydration process, so experimental errors due to the diversity of samples are
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avoided. This is already observed in Figure 5a, where the scatter of SG data points is much larger.
Experiment time is also reduced significantly in the MRI method. Moreover, the moment when the
salt penetrates the entire interior of the sample can be precisely determined. All these advantages are
important in practical applications, especially when examining biological objects such as fruits and
vegetables. Therefore, the low-field MRI technique seems to be preferable for assessing the changes in
fruit or vegetable tissue during osmotic dehydration, and further studies are needed in this direction.
For example, the same paramagnetic salt can be used as a positive contrast agent in the T1-weighted
MR images, thus providing direct quantitative information on the volume penetrated by the osmotic
substance. This method can be easily incorporated into the currently proposed imaging protocol,
without significant increase in experiment time. In practical applications, one can take advantage of
the large operating volume of the permanent magnet in the low-field MRI system. A larger number of
samples can be imaged simultaneously, improving the accuracy of the method even further.
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