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Abstract: Mixing operations in biological processes is of utmost importance due to its effect on
scaling-up and heat and mass transfer. This paper presents the characterization of a bench-top
bioreactor with different impeller configurations, agitation and oxygen transfer rates, using CFD
simulations and experimental procedures. Here, it is demonstrated that factors such as the type of
impeller and the flow regime can drastically vary the operation as in the preparation of cultures.
It was observed that the bioreactor equipped with a Rushton generates a kLa of 0.0056 s−1 for an
agitation velocity and airflow rate of 250 RPM and 5 L/min, respectively. It is suitable result for the
dissolved oxygen (DO) but requires a considerable amount of power consumption. It is here where
the importance of the agitator’s diameter can be observed, since, in the case of the two propeller
types studied, lower energy consumption can be achieved with a smaller diameter, as well as a much
smaller shear cup 2.376 against 0.723 s−1 by decreasing by 4 cm the standard diameter of an agitated
tank (10 cm). Finally, the kLa values obtained for the different configurations are compared with the
maximum shear rate values of different cell cultures to highlight the impact of this study and its
applicability to different industries that use agitation processes for cell growth.

Keywords: bioreactors; impellers; stirred tank; mass transfer; oxygen diffusion; CFD

1. Introduction

Several sectors of industry use mixing processes, for example, in the synthesis of products such as
oils, cosmetics, pharmaceuticals, food additives, etc. Notably, in the biotechnology area, mixing is a
way of providing a correct microbiological environment in which microorganisms can grow with the
best living conditions. However, these processes are difficult to control. Even though it is possible to
establish the growth conditions in controlled surroundings, the scaling-up to industrial levels of these
processes can be troublesome. This is due to many variables, which are linked to specific agitation
parameters such as power number, pumping number and impeller type [1]. Many industries have
proposed optimization methods for steady mixing processes. However, some small-scale operations
that use stirred tanks are emerging, such as two-phase flows and agitation of fluids with high viscosity
or non-Newtonian behavior [2]. In addition, other parameters must be considered, such as ideality and
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regimen in which the agitation process is being carried. Concerning the latter aspect, the assumption
of ideal agitation processes is often used for reaction kinetics calculations, which need to ensure a
uniform mixing throughout the reactor at any given time.

On the other hand, controlled kinetics are the cases where it is not possible to assume ideality, only
being characterized by the mass transfer, where the agitation velocity and impeller type are mostly
irrelevant. Additionally, considering solving partial differential equations for momentum, energy and
continuity for an omnidirectional flow increases the complexity of the model. Taking these differential
equations into account makes problems more challenging to solve to a point where numerical methods
are needed to obtain a concrete solution. Some alternatives include finite differences, finite volumes or
finite elements [2].

Another aspect to consider in agitation processes is the flow pattern, categorized into tangential,
axial and radial. However, for a cylindrical tank without baffles and with any impeller on its vertical
axis, the flow patterns at the farthest distances from the impeller will mostly be tangential. In the areas
closest to the vertical axis, the impeller type that is used establishes the flow patterns. The axial flow
impellers generate a flow parallel to the axis up- or downwards according to its design; the radial
flow impellers create a flow perpendicular to the direction of the rotation axis. Many of the impellers
available today fulfill the requirements for controlled processes.

Furthermore, in the case of bioreactors, some of the sensors used in the measurements serve as
baffles and reduce vortex formation, but they are not as efficient as flat-walled baffles [2]. Stirred
methods are widely used in processes where it is necessary to enhance the mass transfer; the bulk
generated by the motion facilitates faster and more efficient mixing. Although there is molecular
diffusion, also called conductive diffusion, global mass transfer is mainly affected by convective
diffusion. Mass transfer is of great importance for bioprocesses due to the oxygen requirement in
aerobic cultures. The microorganisms present in the culture consume the available oxygen from the
liquid phase, and, in turn, the liquid phase becomes saturated with oxygen from the bubbles, which
enter the system through the diffuser. A differential concentration propitiates the mass transfer from
the bubble’s interface to the areas where no oxygen is present in the culture [3].

Mass transfer in bioprocesses is affected by several factors that can be classified into two types,
biological and operational. The former considers the type of cell required and the substrate used,
while the latter considers aspects such as mechanical power, sort of impeller, etc., [4]. This study
focused on the operational conditions that ensure the most significant mass transfer from the gas
bubbles to the liquid. This was done using Computational Fluid Dynamics (CFD), corroborated by
experimental approaches.

2. Literature Review

2.1. Previous Work

Studies to date show the importance of analyzing multi-impeller agitation systems to determine
their operational performance. Gogate and collaborators investigated agitation processes with single
and multiple impellers [5]. They found that, regardless of the type, the total power will be approximately
the sum of the separate powers. Additionally, they affirmed that the flow patterns in a system with
multiple impellers are remarkably similar to those with only one if the distance between them does not
exceed the diameter of either impeller. In addition, they provided some correlations for calculating
kLa with a different configuration, for example, in two Rushton impellers. Buffo and colleagues
analyzed the shear rate in systems with multiple impellers, for three different combinations, obtaining
correlations that connect the kLa, dissolved oxygen (DO), agitation and rheological constants of the fluid
to be mixed, determining this parameter of great importance for the cultivation of microorganisms [6].
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2.2. Dimensionless Numbers

The impeller supplies movement to the tank contents, integrating the components of the mixture,
increasing homogeneity and stability for a prolonged time. Agitation is considered fast when the
agitation velocity exceeds 500 RPM, due to the absence of baffles in the bioreactor, the presence of
vortexes at high speeds is inevitable, generating a physical restriction in the system. In general, for cases
where slow agitation is needed, a speed reducer is used, which is the case in biological processes [7].
The impeller choice depends on several factors, including mixing time and energy consumption. Some
of the criteria for agitation are the type of mixture (i.e., suspension, homogenization, dissolution,
diffusion and suspensions), the volume of fluid and the physicochemical properties. Finally, the flow
regime is determined. This is relevant since, in the laminar or viscous regime, there is little or no
introduction of air to the mixture, in contrast to the turbulent regime where there is high oxygen
dissolution, directly affecting the impeller power and growth rate of cells in bioreactors. Therefore, the
Reynolds number (Re) is determined by the expression in Equation (1), where ρ is the fluid density in
kg/m3, N is the angular velocity in RPS, D is the impeller diameter in m and µ is the dynamic viscosity
in Pa·s.

Similarly, the relationship shown in Equation (2) is used to determine power, where Np (power
number) can be found in the literature and depends on the impeller type. According to several authors,
the passage from laminar to the turbulent regime is not immediate [8–10]. For the case of an agitated
tank without deflectors, the laminar regime can be considered for Re lower than ten and turbulent for
Re above 10,000 (intermediate Re numbers are defined as in the Transition regime) [11].

Re =
ρND2

µ
(1)

P = NpρN3D5 (2)

2.3. Oxygen Diffusion

The most common way to determine the transfer of oxygen in a stirred tank is assuming that the
mass diffusion occurs in non-uniform, binary mixtures, where the concentration of any component
varies along any coordinate of the bioreactor. The molecules move from the area of the highest
concentration to the lowest, with the addition of a motion source, e.g., mechanical agitation (mixing
is mostly by convective phenomena). Thus, if an area perpendicular to the direction of diffusion
(e.g., y-axis) is considered, Fick’s law (Equation (3)) can be used, which states that the mass flow of
component A is proportional to the concentration gradient in that direction [3].

JA,y =
NA
a

= −DAB

(dCAj

dy

)
(3)

where dCAj/dy is the change in the concentration of component “A” along the “y” direction, also
known as a concentration gradient. j can be L or G depending on the liquid or gas, respectively. NA is
the molar transfer rate. DAB is the binary diffusion coefficient. This expression derives into a formula
that contemplates resistance to mass transfer due to motive force, mass transfer area and motive force
or bulk due to agitation. Equation (4) stands for the volumetric mass transfer rate, whereby NA has
units of mol m−3 s−1.

NA = ka∆CA = ka
(
C∗AL −CAj

)
(4)

In this study, it was necessary to consider the case where the mass transfer is in the gas–liquid
interface because it represents the oxygen transfer from the bubbles to the broth. The transfer of the
gaseous solute is analyzed in the same way as the transfer of liquid–liquid and solid–liquid. It is



Processes 2020, 8, 878 4 of 28

assumed that the solute is transported from the gas phase to the liquid phase. With this, Equations (5)
and (6) can be deduced [3].

NAG = kGa(CAG −CAGi) (5)

NAL = kLa(CAL −CALi) (6)

In 1989, Chisti and Moo-Young presented a refinement of these equations by considering the
following assumptions [12]: (i) Transfer through the gaseous bulk to the bubbles is fast. (ii) The
resistance imposed by the liquid–gas interface is assumed to be negligible. (iii) The stagnant film
around the bubbles, which is the highest transfer resistance, is minimal. This is because the tank is
considered to be adequately mixed, and there is a predominance of convective diffusion. However,
this film is the most considerable resistance to oxygen transfer, and the transfer in this area will be
predominant. (iv) The liquid bulk is neglected because the tank is well agitated. Besides, for the case
study, the viscosity is low enough not to affect oxygen transfer. This implies that the expression (6)
becomes zero due to the concentration differential. Finally, Equation (7) is obtained.

NA = kLa
(
C∗AL −CAL

)
(7)

where CAL is the oxygen concentration in the broth in mol ·m−3 and C∗AL is the oxygen concentration
in equilibrium with the gaseous phase also in mol ·m−3 known as saturation concentration or oxygen
solubility in the liquid. In the case of batch cultures, the rate of oxygen consumption varies over time
since the concentration of cells increases over time, and the rate of oxygen consumption is proportional
to the number of cells in the culture. The biomass consumption rate, known as the specific oxygen
consumption rate, also varies until a maximum is reached in the first stages of cell growth. Qo is
defined as the consumption rate by volume, and qo as the specific consumption rate, depending on the
biochemical cell nature and the nutritional environment. Equation (8) relates both terms.

Qo = qox (8)

where x is the cell concentration; both the cell concentration and the specific consumption rate, vary for
each type of culture, whether microbiological, plant cells or animal cells. Likewise, when the dissolved
oxygen concentration is lower than the minimum consumption rate of the cell (critical consumption),
the mass transfer depends only on the oxygen concentration in the liquid. It must be ensured that
the oxygen concentration in the culture is than the critical oxygen concentration (Ccrit) to ensure that
qo is constant and independent of CAL. Otherwise, if CAL falls below Ccrit, qo has a linear tendency
dependent on oxygen concentration. If it is assumed that there is no oxygen accumulation in the
reactor as the cell culture consumes oxygen at a constant rate in a given period, NA in Equation (7) can
be equated to Qo to obtain Equation (9).

kLa
(
C∗AL −CAL

)
= qox (9)

With this equation, several parameters of interest for the bioreactor design can be set up.

Minimum kLa to Cell Culture

This term refers to the minimum mass transfer coefficient (kLa) for CAL to be higher than Ccrit
(Equation (10)).

(kLa)Crit =
qox(

C∗AL −Ccrit
) (10)

With these parameters, it is known that the agitation in bioreactors must be slow since it needs a
low shear rate to ensure that the cells do not present a risk of rupture, especially in mammalian cells.
The speed ranges between 100 and 400 RPM.



Processes 2020, 8, 878 5 of 28

2.4. Governing Equation

For the equations that govern the fluid, it is essential to define three fundamental equations:
continuity, momentum and energy balances. However, only the first two were considered in this study
as it is assumed that the reactor is adiabatic.

2.4.1. Continuity Equation

The continuity equation (Equation (11)) models the conservation of matter in a continuous medium
for any fluid.

∂ρ

∂t
+∇.

(
ρ
→
v

)
= 0 (11)

The first term describes the transfer rate of matter in the medium and the last term accounts for
the mass entering and exiting the medium by diverging velocity multiplied by density.

2.4.2. Momentum Equation

The momentum equation describes the transfer of momentum through all the fluid in the system,
analyzing all the possible terms that affect the fluid from the perspective of this transport phenomenon
(Equation (12)).

∂ρ
→
v

∂t
+∇.

(
ρ
→
v
→
v

)
= −∇P +∇.

[
µ
(
∇v +∇vT

)]
+ ρ

→
g +

→

F (12)

On the left-hand side, there are two terms: the first term describes the rate of change of momentum
through the control system and the second considers the convection of the fluid. In contrast, on the
right-hand side, the first and second terms are the molecular contributions to the phenomenon and
the last two terms evaluate the possible external forces that could affect the fluid, such as gravity.
The following expression can be obtained from the momentum equation, assuming constant density
and viscosity (Equation (13)).

ρ
D
→
v

Dt
= −∇P + µ∇2→v + ρ

→
g (13)

The definition of substantial derivative is used to accommodate the terms on the left, and external
forces are neglected except for gravity. This is the Navier–Stokes (NS) equation, which is the point of
departure for the flow analysis [11].

2.4.3. Turbulence Model

As the above is defined for Re lower than 10, the regime is laminar. Then, to not make modifications
to the turbulence model, it was assumed that, for regimes in transition, the turbulence models described
below apply. The RANS (Reynolds-averaged Navier–Stokes) model allows for solving the NS equations.
Nevertheless, it requires of other models to be precise, since there are extra parameters that must be
calculated depending on the system, as it is the turbulent stress which counts at the same time with the
term known as Eddy’s viscosity [13].

The models for calculating this term of viscosity change depending on the number of equations
that try to describe it; one of these is the so-called k-ε turbulence model [14]. The k-ε turbulence is
a method of searching for the Eddy Viscosity term present in the RANS approximation, using two
equations: the k that describes the kinetic energy of the system and the ε which by definition is the
turbulent dissipation term and gives information on how much kinetic energy in the turbulence is
converted into thermal energy [15]. The model currently used is a variation called Realizable k-ε,
which is responsible for increasing the robustness of the initial model generating essential changes to
understand systems with vorticity in turbulence; therefore, it is widely used in industry [15].
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2.4.4. Eulerian Multiphase

To understand the Eulerian multiphase model, it is essential to understand the Eulerian framework.
For multiphase flow analysis, there are two approaches, the Lagrangian and Eulerian frameworks,
which do the same work modeling systems with different phases. However, both have different
approximations, mostly in the way they are resolved. The first one analyzes point by point the distinct
phases. In contrast, the second one approximates the phase as a continuum, and it is computed not
point by point, but instead of a fixed grid where the phenomenon will develop [16].

The Eulerian model divides every dependent variable into an average (U) and a fluctuating
component (u), generating the Eulerian wind field vector [u, Equation (14)]. On the other hand, 〈 〉 is
the average ensemble operation, thus it is correct to define c = 〈c〉+ c′, where c is the concentration of
a dispersed phase and c′ is the fluctuation part [17].

∂〈ci〉

∂t
= −U.∇〈ci〉 − ∇.〈c′i u〉+ Dm∇

2
〈ci〉+ 〈Si〉 (14)

where Dm is the molecular diffusivity and Si is the generation term for species, where chemical reaction
must be considered, and the terms U.∇〈ci〉, ∇.

〈
c′i u

〉
and D∇2

〈ci〉 correspond to the advection, turbulent
diffusion and molecular diffusion of the species [16].

This model assigns the momentum and continuity equations in phases and then joins them by
relations of pressure and the interphase exchange coefficients, according to the phase-type. This model
is widely used for bubble and fluidized bed column systems, which is why it was used to perform the
aeration in the bioreactor [16].

In addition, the Volume of Fluid model (VOF) works fine for systems with large structure phases
with a small total contact area. This model is used because of its numerical efficiency, even though
its risky approximation due to the behavior of the gas. However, since the system is not modeled
to analyze the bubbles, instead, it determines the functioning of the multiphase flow, considered a
reasonable estimate [18].

3. Materials and Methods

3.1. Experimental Methods

3.1.1. Impeller Design

In this study, a characterization of a bench-top bioreactor was carried out based on power number,
flow patterns and oxygen transfer rate. Three types of impellers were characterized: Rushton, 3-paddles,
and propeller (Figure 1A). They were designed according to the dimensions of a standard tank, which
have in general a diameter of 0.06 m [19]. Additionally, to make comparisons in the performance of
the diameter of the impellers, a new impeller with a smaller diameter was designed. Lastly, different
impeller combinations were studied, as shown in Figure 1B. The CFD software STAR-CCM+ v13.04
(SIEMENS) was used to simulate parameters such as power, torque and flow patterns of the bioreactor.
The impellers’ dimensions were recreated in the Autodesk Inventor Software®v.2018. The choice of
this software was due to the licenses available when this research project was carried out. Any 3D
modeling program (3D CAD) can be used since it can export files in Parasolid format (x_b or x_t).
Besides, the modeling assistant incorporated in the STAR-CCM+ software can be used for this purpose.
The isometric planes of each impeller and the vessel of the bioreactor are presented in Figure A1.
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Figure 1. (A) Impellers used for this study (from left to right): Rushton (six-blade turbine), three-paddle
helix impeller, Brunswick Bioflo/CelliGen 115 bioreactor default propeller and small propeller
(abbreviated as S. Propeller). (B) The impeller combinations used (from left to right): Rushton–paddles,
propellers–paddles, and Rushton–propeller. (C) The 3/4 section view 3D CAD models of: Brunswick
Bioflo/CelliGen 115 bioreactor (left); and transparent view (right).

3.1.2. Power Curve Determination

It was necessary to determine the Reynolds values and power numbers (Np) for each flow regime
to create the power curve for each impeller. This is essential to establish the behavior of each impeller
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from the laminar to the turbulent regime. The Reynolds number, as shown in Equations (1) and
(2), depends on ρ, N, D and µ. The power number, on the other hand, depends on P, ρ, N and D.
The power curve was calculated, ranging from 10 < Re < 100, 000.

Additionally, some variables were fixed, such as agitation velocity and impeller diameter, as shown
in Table 1. The experiments were performed at a constant temperature of 15 ◦C (Bogotá’s ambient
temperature). However, as previously mentioned, it was necessary to adjust the fluid’s viscosity to
precisely determine the power curve. For this, a viscosity curve of a glycerin–water solution at different
concentrations (%v/v) was carried out, as shown in Figure A2. Equation (15) is obtained to describe the
change of the broth viscosity as a function of the water percentage in a water–glycerin solution.

µ = 2849.1 · x−3.138
w (15)

Table 1. Impellers’ diameters.

Impeller Type Diameter (cm)

Rushton 6.09
Paddles 11.46

Propeller 10.40
S. Propeller 6.01

3.1.3. kLa Determination by Gassing Out Method

The oxygen content in a tank, at any given time, is a result of the oxygen consumption by the cells
within the culture medium and the continuous oxygen transfer to the medium. The oxygen transfer
rate to the tank must be considered to determine the oxygen uptake rate (OUR) of the cells. For this, it
was necessary to calculate the oxygen transfer rate coefficient (kLa), by controlling parameters such
as the airflow (in VVM, the volume of air per volume of medium per minute). Thus, oxygen at the
system outlet is considered to be the oxygen concentration fed into the system minus the consumption
of the cells, assuming that the dissolved oxygen is only used by the cells according to their OUR. Once
the bioreactor has been assembled, the pH electrode and the DO probe were calibrated. The latter was
set at a concentration of 20% initially. Subsequently, the DO was varied according to an established
experimental design (described below).

Moreover, the effects of the impellers’ combinations (Figure 1B) in the kLa were considered.
The oxygen in the reactor was displaced with nitrogen using the gassing out method. This consisted of
nitrogen or carbon dioxide injection until a minimum critical DO percentage was reached (for this study,
nitrogen was used). After this limit was achieved, the air valve was opened to reach the required value.

The concentration of DO was measured every 15 s using an oxygen probe until it stabilized.
Finally, by using Equation (16), which is a treatment of Equation (9), the term qox can be replaced by
a derivative definition (dCAL/dt). At the same time, the differential term can be integrated between
two points (t1 and t2), resulting in Equation (16). The slope of linear regression was determined,
corresponding to the kLa.

(t2 − t1)kLa = ln
(
1−

CAL
C∗AL

)
(16)

where ti corresponds with the time and has units of s. The value for oxygen solubility
(
C∗AL

)
was

obtained using Equation (17), initially proposed by Doran [3].

C∗AL = 14.616− 0.3943 T + 0.007717 T2
− 0000646 T3 (17)

where C∗AL has units of g l−1 and temperature (T) has units of ◦C. It is necessary to clarify that a common
problem in this type of analysis is the response time of the DO probe. However, taking into account
the nature of the controller (P&ID), the manufacturers adjusted the proportional constants so that the
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sensor response was immediate [20]. Additionally, studies such as the one carried out by Spanjers
and Olsson show that making a first-order adjustment to the curve has good results because it takes
the area in which the value of the slope changes in a linear way and thus the response time does not
significantly affect the results obtained, and this is one of the assumptions made when finding the kLa
values in this study [21].

3.1.4. Experimental Design to Establish Operational Effects in Dissolved Oxygen

Since it is desirable to determine the operating conditions that affect OTR, an experimental design
with three main factors that can influence bubble retention and mass transfer within the bioreactor was
proposed. Table 2 shows the factors and levels evaluated in this study.

Table 2. Experimental design to determine kLa.

Factors Levels

Impeller type

Propeller
Rushton
Paddles

Small Propeller

Airflow (L/min) 2.5
5

Agitation velocity (RPM) 100
200

Once all factors and levels were established, the statistic software Minitab® (version 18, Minitab
LLC, State College, PA, USA) was used to create the experimental design order shown in Table A1 and
to statistically evaluate the data.

3.1.5. Flow Patterns

The importance of the flow patterns resides in the capacity to maintain the oxygen bubbles as long
as possible, avoiding coalescing, which decreases the rate of oxygen transfer to the culture medium in
stirred tanks. In addition to oxygen transfer and power calculation, flow patterns depend on aspects
such as the agitation velocity, the fluid properties such as viscosity and the impeller type. Simulations
were carried out to define the flow patterns with each impeller.

3.2. CAD and Mesh Construction

3.2.1. Bioreactor Dimension and Geometry Design in Autodesk Inventor Software

To carry out the corresponding simulations and to be able to confirm with the experimental data,
it was necessary to determine the dimensions of the reactor studied. The measurements were taken for
the geometry of the Brunswick Bioflo/CelliGen 115 bioreactor (Eppendorf, Enfield, CT, USA), equipped
with temperature, pH and DO probes. The pH is sensed by a gel-filled pH probe in the range of
2.00–14.00. Control is maintained by a P&I controller which operates peristaltic pumps, assigned to
perform acid or base addition, or which controls the use of gas (es) for this purpose. A Polarographic
DO electrode senses the dissolved oxygen, and a P&I controller maintains control by changing the
speed of agitation, controlled in the range of 0–200%. It is thermal mass flow controller-regulated flow
rate, and the percentage of oxygen in aeration with a digital display in 0.1% increments [20], stirring
system and anti-foam control, with a capacity of 5 L [22]. The final model is shown in Figure 1C.

3.2.2. Mesh Independence and Preliminary Configuration

It was proposed to determine mesh independence, both quantitative and qualitative, to obtain the
best results for the simulations. For both techniques, a base value was chosen in the mesh. This value
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was determined based on the conditions of the geometry. The recommended amount is a deviation of
30%, as defined by Celik et al. [23]. The next thing was to choose the variable on which the comparison
between meshes would be made. The power and shear rate were determined since they are the primary
response variables analyzed in this case study. Simulations were performed, and the results are
interpreted in two ways. The first is a qualitative technique in which visual aids were used. In contrast,
the second is only quantitative in which the Grid Convergence Index (GCI) was determined, whose
process is described below [23].

A base mesh was made for the bioreactor. This mesh configuration was called “normal” and had
four prism layers to resolve the boundary layer near the wall correctly. Table 3 presents the mesh
configuration used in this study.

Table 3. Mesh configuration for CFD simulation of Brunswick Bioflo/CelliGen 115 bioreactor.

Parameter Brunswick Bioflo/CelliGen 115 Bioreactor

Base Size (cm) 2.55
Relative target size (to base size) (%) 10

Relative minimum size (to base size) (%) 10
Relative prism layer total thickens (to base size) (%) 10

Number of prism layers 4

Once the base mesh was defined, the next step was to create the different meshes. The first was
called “coarse” since it had a smaller number of cells, while the second was called “fine” because it
had a larger number of cells. Each simulation was performed using the same physical parameters.

Qualitative Method

This technique was required to graph the chosen variables, in this case, power and shear rate, and
to analyze the trend they have concerning mesh size. The ideal situation is to obtain a constant trend
as the base size decreases. However, this technique does not consider the extrapolated or interpolated
values. Therefore, many times, in between meshes must achieve the expected asymptotic result [24].
The results obtained in the independence were shown through the different reports generated.

Quantitative Method–GCI Calculation

The GCI was used to analyze the convergence factor that a mesh has for distinct types of variations,
as, in this case, for the base size. The step-by-step approach to calculating this index and correctly
performing mesh independence, is described in Appendix A, according to the fluid engineering
division of the American Association of Mechanical Engineers (ASME) [24]. With the GCI, it is possible
to determine whether a subsequent refinement of 30% less was necessary, giving a percentage that
must be carefully examined since it is up to the researcher’s consensus whether to continue with new
simulations or not. For this case, an acceptability percentage of 10% was defined, since each of the fine
meshes generated has many cells, so that the time of convergence would indiscriminately increase if
there were a lower criterion.

3.3. Modeling Approach

The modeling was focused on the power and flow patterns analysis of the bioreactor. Therefore,
two different routes, with distinct initial and boundary conditions, were considered. The simulations
were performed on two virtual machines (Microsoft, Redmond, WA, USA) with 12 cores and 120 GB of
RAM provided by the Information and Technology Services Management (Dirección de Servicios de
Información y Tecnología, DSIT) of the Universidad de Los Andes.
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3.3.1. Power Analysis

The power analysis was performed as a single-phase steady-state simulation using water as a
fluid that fills the bioreactor, varying the revolutions per minute to modify the flow regime of the
system. The only condition of the process was the moving reference frame (MRF), as shown in Figure 2.
The convergence criteria used for the power analysis simulation was to inspect the residuals for the
different solvers until they reached a value of less than 1 × 10−4 when the variations between the
response were minimal.Processes 2020, 8, x FOR PEER REVIEW 11 of 33 
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3.3.2. Flow Patterns Analysis

On the other hand, an implicit unsteady gas–liquid simulation was conducted in other to analyze
the flow patterns in the bioreactor. A Rigid Body Motion (RBM) scheme was implemented to predict
the flow patterns with a rotation involved. The air is introduced into the system through a perforated
probe, leaving an opening located in the cap of the bioreactor (Figure 2). Using the VOF scheme,
the system initializes by filling the tank with water up to 3/4 of its height, and the rest is completed
with air. By simulating in the transient state was essential to determine the duration of the physical
time, which, in this case, was aimed to analyze the system until the impeller made three revolutions.
The flow becomes quasi-static from the second 0.0002, where the power of the tank stabilizes and
remains constant. It takes 0.72 s for the agitator to make the three expected rotations.

4. Results and Discussion

4.1. Mesh Independence

Due to the nature of this study, it was necessary to determine the quality of the simulated models,
so a mesh independence analysis was needed. Table 4 shows the different errors and GCI. The absolute
error only considers the interior interval between the meshes already obtained, so it is an indicator
of how much the results vary between the fine mesh and the normal mesh. The extrapolated error
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gives information on how precise the mesh is for base size values smaller than fine; thus, it provides
information beyond that which could be simulated.

Table 4. GCI parameters result for Brunswick Bioflo/CelliGen 115 bioreactor simulations.

GCI Parameters Value

φ = Power
e21

a (%) 3.98
e21

ext (%) 4.85
GCI21 (%) 6.38

φ = Shear rate
e21

a (%) 0.66
e21

ext (%) 0.27
GCI21 (%) 0.34

For Brunswick Bioflo/CelliGen 115 bioreactor, high values of both GCI and errors were observed.
These values imply that this model has an oscillatory convergence. Therefore, refinement was necessary
until it reached the desired asymptotic trend. However, this method did not consider computational
time. Hence, its refinement was carried out until the computational expense and time allowed it
was met.

Mesh Independence Analysis

The GCI values were analyzed, considering an acceptability value of 10% in computational
time. The meshes defined across the qualitative method were used, bearing in mind that, even if the
quantitative approach is precise, it does not consider the computational time required to carry out the
simulations. Figure 3 shows the power and shear rate versus the number of cells. It can be observed
that, as finer meshes (higher numbers of cells) are used, the evaluated variables tend to keep their
values unchanged, which is expected behavior. It should also be noted that, as the number of mesh
cells increases, the computational time also increases. As for the shear rate, the behavior between the
different meshes was not constant, but the variation from normal to fine mesh was minimal.
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It was necessary to add a new mesh between normal and fine, which was called semi-fine (reducing
the base size by 15%), to validate if there was a consistent behavior in that area. The results of mesh
independence for the semi-fine mesh (selected mesh) can be seen in Table 5. It was considered that the
computational time for a finer mesh would generate an increase in the cost of each simulation, thus the
semi-fine mesh was chosen as the main mesh for the different simulations.
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Table 5. Overall parameters of the Brunswick Bioflo/CelliGen 115 bioreactor mesh.

Parameter Brunswick Bioflo/CelliGen 115 Bioreactor

Mesh Semi-fine
Number of Cells 2.58 × 106

Angular Velocity (RPM) 600
Power (W) 44.59

Shear Rate (s−1) 83.80

4.2. Simulation Model Validation

Initially, the analysis was realized with only water, evaluating the torque for different angular
velocities in the Brunswick Bioflo/CelliGen 115 bioreactor, using various impellers. However, it was
not possible to measure the torque for low RPM due to sensor sensitivity. Nevertheless, it was possible
to obtain a single point at 100 RPM for inclined paddles. Moreover, it was necessary to design a script
in JAVA®, which only uses the geometry and mesh of the bioreactor as inputs, to calculate the Re vs.
Np curve automatically.

The inclined paddles were the first approach used to validate the simulated model with the
experimentation, as shown in Figure 4A. Notice that the experimental curve fits well at the beginning
of the simulated power. However, this tendency changes at higher RPM, where the experimental data
end at 1.5 W, and the simulated ones increase to approximately 1.9 W. This variation between the
experimental results and the CFD model could be due mainly to a couple of factors: the first one is
purely experimental, because the torque sensor worked better for more viscous substances. The second
one is due to the CFD model. Therefore, we propose in future studies switching the RANS model, to
observe if there is any significant variation in results (Figure 4A).
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Figure 4. (A) The first experimental process approximation for the calculation of power on Brunswick
Bioflo/CelliGen 115 bioreactor using the impellers with inclined paddles. The curves for simulated
power (•) and experimental data (�). (B) Analysis between the experimental and simulated data for
the power of Brunswick Bioflo/CelliGen 115 bioreactor using impellers with inclined paddles.

On the other hand, it is possible to create a new plot analyzing the behavior between the
experimental and simulated power, linking the data with RPM in Figure 4B. As shown in Figure 4B, it is
reasonable to say that both power values increase as RPM increase, and the simulation model behaves
correctly at low RPM. However, it is impossible to determine the accuracy of the experimental model
without the analysis at low RPM. As mentioned above, the solution for this issue was to create a new
experimental model where the RPM variable is changed with the Re number, using different viscosities.
The purpose of this is to be able to use the definition of Re (1) and change the viscosity according to
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Equation (15). This facilitates the construction of the Re vs. Np curve, as shown in Figure 5. This is how
Figure 5A was obtained, which shows a similar linear behavior of inclined paddles for laminar and
transition regime for the experimental and simulated curves. A continuous line for turbulent regions is
also observed.
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The Re vs. Np curve for Rushton is shown in Figure 5B. Five experimental points were used for
comparison. Meanwhile, for the simulated curve, additional points were obtained. As expected,
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both curves have a similar trend. However, the last experimental point for Np can be considered an
experimental error. Nevertheless, the differences between both curves are minimal or negligible with
relative errors of about 28%, which is still consistent due to possible experimental errors affecting
the measurements.

A small propeller was designed, 3D printed, and experimentally tested to validate the model.
If the results show at least similar trends, then the simulation can be regarded as adequate. The results
are shown in Figure 5C. The behavior and performance of the experimental data displayed that the
model presents some small variations, usually of experimental errors. However, due to the closeness
of the data, it can be asserted with certainty that the model is accurate.

4.3. Power Analysis

Once the simulation model was confirmed, the power curves for all the impellers were reproduced
using CFD models. It is necessary to clarify that, experimentally, the torque of the inclined paddle,
Rushton, and small propeller agitators was measured. The scope of the model extends to cases where
there is more than one agitator in the reactor, thus the Re vs. Np curve of the proposed combinations
(Figure 1B) was also determined via simulation.

As can be seen in Figure 5A, the experimental data and the simulation data do not have the same
range due to measurement difficulties at Re lower than 700. One can argue that the inclined paddles
have a low-power consumption behavior for the laminar regime. Contrarily, the tendency for turbulent
and transition regimes is of high-power consumption.

The generic propeller of the bioreactor was only simulated, as shown in Figure 5D. With the
CFD model approach, more data can be collected, even for regimes that cannot be replicated in the
laboratory. The generic propeller presents a high-power consumption at the laminar and transition
regime. On the other hand, the small designed propeller has a lower power consumption. For Re equal
to 10, the propeller has an Np value of 323.45, while the small designed propeller has an Np value
of 65.30, a difference of an order of magnitude. Furthermore, for turbulent flows, the propeller has a
better performance than the designed impeller.

As previously demonstrated, the model presented an excellent performance. Different
combinations of impellers were analyzed, taking advantage of the model, determining and predicting
improvements in the stirring process. Figure 5E shows, for the laminar regime, that the differences
between propeller–Rushton and Rushton–paddles are negligible. Similarly, the differences between
the last two and the paddles–propeller are around one order of magnitude, having similar behaviors.
On the transition regime, the data diverge since the paddles–propeller has an order of magnitude lower
than the other two combinations. In contrast, in the turbulent regime, the responses of Rushton–paddles
and paddles–propeller are similar, whereas the propeller–Rushton has a different performance, with a
lower order of magnitude.

4.4. Flow Patterns

Following the bioreactor distinction, it was decided to model in CFD the behavior of the flow
patterns of the primary impellers (Figure 6). It was possible to understand the importance of agitation
to increase the bubble residence time in the medium, promoting mass transfer.

In Figure 6A, the axial flow in the tank is visible, where the fluid is propelled parallel to the
impeller axis [26]. This is important since these patterns have an upward tendency, crashing and
returning by the action of the hydrodynamic force, causing vortices to form at the tips of the impeller.
Then, it is possible to notice that the fluid has a remarkable perturbation over the whole tank, which is
favorable because the bubbles found in the medium can effectively reach the cell culture, improving
diffusion. Likewise, due to the size and shape of the blades, oxygen may remain longer in the system.
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On the other hand, the Rushton impeller has a radial behavior due to the shape and geometry
of its blades. In Figure 6B, the impeller moves the fluid to the tank walls, where it collides and is
propelled to the bottom and the top of the tank, a typical behavior in radial flows, as exposed by
Spogis [26]. It is important to note that, due to its nature and size, a Rushton impeller is not adequate
at keeping air bubbles in the medium because it concentrates only on one specific area of the entire
bioreactor. This phenomenon makes the Rushton–Rushton configuration the one typically used to
prevent the formation of dead zones.

The propeller has an axial behavior, which is similar to the inclined paddles. In this case, the flow
goes in the rotational direction, causing the fluid to hit the bottom of the tank and return, forming
a vortex of greater magnitude than from inclined paddles around the blades. Even if this impeller
is smaller than the paddles, it can impart a substantial momentum over the entire fluid column,
something that Rushton does not accomplish. Agitation is vital in oxygen diffusion. Depending on
where the sensor is located in the vessel, there may be errors in the measurement. Nevertheless, it is
assumed that perfect agitation is achieved and that the oxygen diffusion is almost instantaneous along
with the tank. The most crucial role of the agitators and, in particular the flow patterns formed, is how
fast the oxygen diffuses into the medium. On the other hand, the flow patterns strongly define the
movement of the bubbles; with this, it is understood that radial patterns promote the time in which the
bubbles remain in the reactor since a type of barrier can be formed that prevents the bubbles from
moving in a vertical direction towards the air outlet.

4.5. Oxygen Diffusion

4.5.1. Experimental Design

Considering the factors and levels proposed in the experimental design (Table 2), the measurement
of each experimental configuration was carried out evaluating the concentration of dissolved oxygen in
the bioreactor. The statistical results are shown in Table A1. Likewise, an Analysis of Variance (ANOVA)
was carried out to determine each variable statistical significance and the interactions between those
variables Table A2 shows the results for a significance of 5% (0.05). As shown in Figure A3, the average
of the response variable increases as the airflow and stirring speed increase. This is expected since,
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at more significant airflow, more bubbles will be present in the medium, promoting mass transfer.
Concurrently, increasing the stirring velocity stimulates the turbulence of the system, increasing
the retention of bubbles in the medium. The type of impeller also has a significant effect on the
response variable. However, the lowest average is obtained when a propeller-type impeller was used.
The difference between the paddle impeller and the Rushton impeller is approximately 5%, being
higher than the average obtained when using a Rushton type impeller. According to the ANOVA,
each of the variables analyzed is statistically significant since the type of impeller, the airflow and the
agitation velocity have p-value values of 0.002, 0.004 and 0.004, respectively. It is important to note
that the change in agitation velocity has a more substantial impact on the average of the response
variable. If each factor were evaluated separately, the maximum possible average would be achieved
by setting the stirring speed to 250 RPM. Considering only the graph of main effects (Figure A3),
the configuration that ensures a higher rate of transfer of oxygen is a Rushton-type impeller, an airflow
of 5 L/min and 250 RPM.

As for the interactions, only binary interactions were studied. The results obtained show that the
only significant interaction (p-value = 0.034) is the one between the type of impeller and the agitation
velocity. This indicates, as already mentioned, that these two factors directly affect the mean DO and
are following the results obtained in Figure A3. The interaction between the type of impeller and
any other factor influences the average response differently than the main factors Figure A3. As the
impeller speed increases, the performance of the impeller is affected. However, once the stirring speed
is increased, the paddle-type impeller presents better results in DO. When blades and a stirring speed
of 250 RPM were used, the highest possible value was achieved in the response variable. With the
propeller-type impeller, it is observed that when the agitation velocity is increased, both propellers
have the same performance. With the interaction between the airflow and the impeller type, the same
pattern is obtained, being better the performance of the paddles when there is more significant airflow.
Finally, concerning the interaction of the air with the agitation velocity, this is consistent with Figure A3.

4.5.2. kLa Determination

Once all the bioreactor–impeller configurations (single or combined) were obtained, the mass
transfer coefficients (kLa) were determined by the gassing out method. Initially, the measurements with
one impeller were carried out, followed by the impeller combinations measurements, at four cases of
operation for airflow and agitation velocity: (i) 2.5 l min−1 and 100 RPM; (ii) 2.5 l min−1 and 200 RPM;
(iii) 5 l min−1 and 100 RPM ; and (iv) 5 l min−1 and 250 RPM .

One Impeller

For the case where each impeller was evaluated separately, measurements were made for the
four proposed impellers (Figure A4). Additionally, in Table 6, the exact slope values of each curve are
given, corresponding to the kLa for each configuration, together with its corresponding power and
shear rate values.

Different analyses were obtained, as shown in Figure A4. First, the effect of agitation on propeller
performance: as agitation increases, the slope of the small propeller was higher than the standard
propeller. For cases where great revolutions are used, it is preferable to use the small propeller
because it requires less power, and the shear rate is lower. Therefore, there is less risk of cell wall
rupture. This reflects, among other things, the effect of diameter on power consumption and shear
rate, by comparing the runs made with the propeller (Runs 5–8) and the small propeller (Runs 9–12).
Specifically, when comparing Runs 5 and 9 where the conditions are the same, the kLa value obtained
with the small propeller is lower by only 0.0005 s−1, but, when observing the power consumption, it is
lower by one order of magnitude. Likewise, the shear rate is lower for the case of the small propeller
(2.376 against 0.723 s−1). This indicates that the reduction of the diameter is a factor to take into account
since the same results can be achieved with a standard propeller of 0.06 m with lower power and less
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shear stress on the cells. This analysis can be performed by comparing any of the runs between the
large propeller and the smaller diameter propeller.

Table 6. kL a values, power and shear rate for different operational combinations.

Impeller (l min−1) (RPM) Run ID kLa
(s−1)

kLa
(h−1) Power (W) Shear Rate (s−1)

Paddle 5.0 100 1 0.0025 9 0.192 15.211
Paddle 5.0 250 2 0.0061 21.96 7.714 32.857
Paddle 2.5 100 3 0.0017 6.12 0.192 15.211
Paddle 2.5 250 4 0.0045 16.2 7.714 32.857

Propeller 5.0 100 5 0.0026 9.36 0.069 2.376
Propeller 5.0 250 6 0.0029 10.44 0.940 8.631
Propeller 2.5 100 7 0.0019 6.84 0.069 2.376
Propeller 2.5 250 8 0.0018 6.48 0.940 8.631

Small Propeller 5.0 100 9 0.0021 7.56 0.001 0.723
Small Propeller 5.0 250 10 0.0032 11.52 0.013 3.948
Small Propeller 2.5 100 11 0.0013 4.68 0.001 0.723
Small Propeller 2.5 250 12 0.0022 7.92 0.013 3.948

Rushton 5.0 100 13 0.0032 11.52 0.020 1.306
Rushton 5.0 250 14 0.0056 20.16 0.334 8.446
Rushton 2.5 100 15 0.0023 8.28 0.020 1.306
Rushton 2.5 250 16 0.0044 15.84 0.334 8.446

Paddle–Propeller 5.0 100 17 0.0032 11.52 0.178 13.659
Paddle–Propeller

(inv) 5.0 100 18 0.0031 11.16 0.178 13.659

Paddle–Propeller 5.0 250 19 0.0062 22.32 2.869 37.119
Paddle–Propeller

(inv) 5.0 250 20 0.0080 28.8 2.869 37.119

Paddle–Propeller 2.5 100 21 0.0019 6.84 0.178 13.659
Paddle–Propeller 2.5 250 22 0.0049 17.64 2.869 37.119
Paddle–Rushton 5.0 100 23 0.0034 12.24 0.231 14.968
Paddle–Rushton

(inv) 5.0 100 24 0.0031 11.16 0.231 14.968

Paddle–Rushton 5.0 250 25 0.0056 20.16 3.702 41.458
Paddle–Rushton

(inv) 5.0 250 26 0.0047 16.92 3.702 41.458

Paddle–Rushton 2.5 100 27 0.0020 7.2 0.231 14.968
Paddle–Rushton 2.5 250 28 0.0056 20.16 3.702 41.458

Propeller–Rushton 5.0 100 29 0.0030 10.8 0.069 3.727
Propeller–Rushton

(inv) 5.0 100 30 0.0026 9.36 0.069 3.727

Propeller–Rushton 5.0 250 31 0.0028 10.08 1.111 13.792
Propeller–Rushton

(inv) 5.0 250 32 0.0043 15.48 1.111 13.792

Propeller–Rushton 2.5 100 33 0.0018 6.48 0.069 3.727
Propeller–Rushton 2.5 250 34 0.0028 10.08 1.111 13.792

Depending on the case, the Rushton impeller is better than the paddle. In most cases, both
impellers present favorable results for DO. However, at low velocities and low airflow, the difference is
more remarkable, and Rushton has the best performance. In all other cases, the choice of the impeller
will depend on the power required and the shear rate of each one.

Impeller Combinations

Special consideration was made for the impeller combinations, that is the location of each one.
The possible combinations are shown in Figure A5, and it was decided to measure the concentration of
dissolved oxygen for cases where the positions of the impellers are inverted. This is only for situations
where there is an airflow rate of 5 l min−1, because, as previously shown, the variation in the speed
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of agitation has a more significant effect on the diffusion of oxygen. Therefore, it was assumed that
inverting the positions does not affect the power or the shear rate.

As shown in Figure A5, in general, the combination of Rushton–paddles has the most significant
slope in most cases. However, when the stirring speed increases to 250 RPM, the inverted
propeller–paddle combination has the best performance; in turn, this combination at operating
conditions of 5 l min−1 and 250 RPM has the highest slope of all, which means they have the highest
overall kLa value. This result is remarkable because the performance of the propeller is lower than the
rest, even though the combination of Rushton–propeller impellers had the lowest slope in all cases.
It is important to note that flow patterns play a vital role in these measurements. With the mixing of
two impellers, the flow patterns are also combined. Placing the propeller at the bottom of the tank
cuts dead zones at the bottom of the bioreactor, and the blades increase turbulence. This achieves the
highest efficiency in transferring oxygen from the bubbles into the broth. Finally, to give applicability
to the kLa values obtained for each impeller and combination to different operating conditions, these
values are presented in Table 6. For this study, only one nozzle size was used for kLa determination.
However, this is an important factor when optimizing the oxygen transfer rate to the culture. Studies
show that the smaller is the nozzle size, the smaller are the bubbles, and the higher is the oxygen
transfer rate. This is since the smaller is the bubble, the longer is the bubble retention time in the
bioreactor. Likewise, as the volume area ratio increases, the smaller is the bubble size, the larger is the
surface area and the higher is the oxygen diffusion rate [27,28].

Shear Rate

To analyze the data obtained from the shear rate for each of the operating conditions proposed
in Table 6, it was decided to compare these with maximum shear values of common cell strains
used in biotechnology. Data were taken from seven different cell strains: the bacterium Escherichia
coli (EC), the yeast Saccharomyces cerevisiae (SC) [29], the mammalian Chinese hamster ovary (CHO)
cell [30,31], Aspergillus glaucus (AG) [32], Trichoplusia ni (NT-368) and Spodoptera frugiperda (SF-9) [33]
and HeLa cells [34,35]. The properties of the cells and their cultures, such as shear rate and viscosity,
are presented in Table A3. With this information and the shear rate values in Table 6, Figure 7 was
obtained, which compares each of the operating conditions studied with the typical shear values of the
cells, to determine which is the most appropriate for a selected range of cultures.

In Figure 7, it is observed that the shear rate values obtained for each operating condition are
below the maximum shear rate values of the EC and SC cultures. Likewise, all values exceed the
maximum shear rate value for CHO cultures. In general, cell lines such as CHO cells (mammalian cells)
do not require mechanical agitation, and, in cases where agitation is present, it is usually gentle [30].
According to Figure 7, for cells such as AG, some of the conditions studied show a higher shear rate
than the maximum supported by this cell type. Examples of this are Runs 2, 4 and 19. However, 26
of the 34 conditions are feasible, and it is possible to find the optimal configuration with which to
grow an AG culture. For the other cell types analyzed, the maximum rate is higher than the topmost
shear rate data presented in Table 6. Therefore, any evaluated operating condition is operable for cells
such as EC, SC, TN-368, SF-9 and HeLa. The choice of the best agitator will then depend on the kLa
value required to keep the culture conditions and the power needed for the agitation process, and it is
ensured with the 34 operating conditions studied.
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Figure 7. Shear rate values for each operation condition compared with the maximum shear rate of
three different cell cultures.

5. Conclusions

The three factors studied, impeller type, agitation rate and airflow, have a direct influence on the
oxygen transfer coefficient kLa. The agitation velocity proved to have a more significant impact on the
mass transfer because, as it increases, the diffusion of oxygen in the bioreactor becomes more favorable.
This is due to the turbulence increase, and the bubbles’ residence time inside the fluid is longer.
The type of impeller with the best performance is the Rushton type. However, with increasing agitation
velocity and the addition of constant airflow, inclined paddles are highlighted if only one impeller is
used in the reactor. Another aspect that is relevant to the study, even though it was not profoundly
analyzed, is the size of the bubbles. When the bubble size is smaller, the surface area–volume ratio is
larger, and therefore there is a higher oxygen transfer rate. Similarly, when the bubble size is reduced,
it tends to remain in the vessel for more extended periods.

The addition of a second impeller presents benefits for the oxygen transfer in mixing processes.
When the two impellers are of a different type, their flow patterns are combined to provide a longer
bubble residence time. Just as in the case where there is only one impeller, the variables of agitation
velocity and airflow can increase the kLa value. The performance of the propeller-type impeller rises
dramatically as the agitation rate increases. Thus, when it is decided to operate the reactor with
a stirring speed of 100 RPM, the combination of paddle-type impellers and Rushton ensures more
significant mass transfer in less time. However, when the reactor is operated at 250 RPM, the propeller
paddle combination performs better. Concretely, the location of the propeller at the bottom and the
blades at the top of the reactor so that the flow patterns favor the transfer.

Moreover, considering only the power requirement for the different impellers, it can be concluded
that the propeller requires less energy to break the inertia for turbulent and transitional flows. In contrast,
for laminar flows, the inclined paddles require less power. However, analyzing the combined impellers,
it can be appreciated that all have an unfortunate development for laminar zones, while, for transition
and turbulence, present results similar to the propeller. The propeller and inclined paddles showed
flow patterns that can increase the residence time of the bubble plus add vorticity to the entire system,
which makes the bulk reduced; this is important because these two impellers have the lowest energy
requirement compared to Rushton.



Processes 2020, 8, 878 21 of 28

The studied conditions proved promising for bacterial and yeast cultures, but the shear rates
showed a deleterious effect on mammalian cells (CHO cells). This study is of interest to the bioprocess
engineering area, especially in bioreactor design, since it shows a fast, reliable and affordable alternative
to ensure proper mixing and oxygen availability in the system, parameters directly affecting cell
growth, yield and productivity in a bioprocess.

Follow up studies will consider improving the power analysis, changing to a multiphase system,
first using the VOF equations and then moving to a purely Eulerian scheme, where the drag forces of
the system are considered, analyzing whether the power is affected by the aeration of the system to
reduce the model error. Each phase can be differentiated with a separate turbulence equation, handling
the continuous phase with a k-omega model and the dispersed phase with a k-epsilon model, as
proposed by Karpinska and Bridgeman [36,37], who presented excellent results in agitated systems
with air injection. On the other hand, the present study considered the case where the temperature does
not change over time. This is an assumption that may not be correct in all cases. Therefore, studying the
influence of heat and mass transfer may result in a complete model from the computational perspective.
This makes the model more robust, requiring additional computational resources due to the larger
number of equations needed.
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Nomenclature

Romanic symbols

a
[
m2

]
Gas–liquid interfacial area

CAG
[
mmol l−1

]
Oxygen concentration in the gaseous phase

CAL
[
mmol l−1

]
Oxygen concentration in the liquid phase

C∗AL

[
mmol l−1

]
Oxygen concentration in equilibrium with gaseous phase (oxygen solubility)

Ccrit
[
mmol l−1

]
Critical oxygen concentration to ensure the cell culture growth

D [m] Diameter
e21 [−] GCI relative error-index
DF [−] Degrees of freedom
DAB

[
m2s−1

]
Binary diffusion coefficient

Dm
[
m2s−1

]
Molecular diffusivity

GCI [−] Grid Convergence Index
JA

[
mol s−1 m−2

]
Molar flux of component A

kG
[
s−1

]
Mass transfer coefficient in the gaseous phase

ki
[
s−1

]
Mass transfer coefficient of i

kL
[
s−1

]
Mass transfer coefficient in the liquid phase

MS [−] Mean square
N [RPS] Angular velocity
NA

[
mol s−1

]
Molar transfer rate of A

Np [−] Power number
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Nq [−] Pumping number
P [W] Power
qo

[
mol g−1 s−1

]
Specific uptake rate

Q
[
m3s−1

]
Total flow

Qo
[
mol l−1 s−1

]
Volumetric oxygen uptake rate

Re [−] Reynolds number
RANS [−] Reynolds-Average Navier–Stokes
SS [−] Sum of square
t [s] Time
T [◦C] Temperature
→
v

[
m s−1

]
Velocity vector

VOF [−] Volume of Fraction
x

[
g l−1

]
Cell concentration in the broth

xw [%] Water fraction in solution
y [−] Cartesian plane coordinate

Greek symbols

µ [Pa s] Viscosity
ρ

[
kg m−3

]
Density

φ [−] GCI analysis variable

Appendix A. Data S1. GCI Step by Step Calculation

Step 1. A representative size is defined for the mesh; this value can be the base size, minimum size or target
size, among others. In the investigation, it was defined that the most representative value for the mesh is the base
size since all other parameters can depend on it.

Step 2. Three series of meshes are selected to perform the simulations in such a way that the value defined
in Step 1 has a variation of 30% above and below its value. In addition, it is chosen which critical variable (φ) is
going to be evaluated, in this case, the power and the shear rate. With two different variables, it is necessary to
carry out two different analyses.

Step 3. With h1 < h2 < h3 and r21 = h2/h1, r32 = h3/h2, the apparent order p of the method is calculated
using the following set of equations:

p =
1

ln(r21)

∣∣∣ln|ε32/ε21|+ q(p)
∣∣∣ (A1)

q(p) = ln

 rp
′21 − s

rp
′32 − s

 (A2)

s = 1·sgn(ε32/ε21) (A3)

where
ε32 = φ3 −φ2

ε21 = φ2 −φ1

sgn is the sign function, which delivers the sign of the value it receives.
It should be noted that (A1) and (A2) are dependent on each other, thus it requires a numerical method or

software for its solution; in this case, the fsolve function of MATLAB®was used.
Step 4. One of the reasons this method is widely used for mesh independence is because it calculates

approximate values extrapolated from φ, to have a notion of the behavior of the variable as the number of cells
increases or decreases. For this, the following equations are used:

φ21
ext =

(
rp

21φ1 −φ2
)
/
(
rp

21 − 1
)

(A4)

φ32
ext =

(
rp

32φ2 −φ3
)
/
(
rp

32 − 1
)

(A5)

Step 5. As a final step, the different errors are calculated and analyzed, as well as the mesh convergence index:

Relative error : e21
a =

∣∣∣∣∣∣φ1 −φ2

φ1

∣∣∣∣∣∣ (A6)
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Extrapolated error : e21
ext =

∣∣∣∣∣∣∣φ
21
ext −φ1

φ21
ext

∣∣∣∣∣∣∣ (A7)

GCI21 =
1.25e21

a

rp
21 − 1

(A8)

This analysis is not performed for 32 because it is essential to analyze the refinement of the mesh, not the
thickening of the mesh. In conclusion, according to NASA’s Glenn Research Center, the GCI is a percentage
measure of how far away the result of a simulation is from the asymptotic trend between meshes; thus, the smaller
it is, the more constant the response will be and the better the discretization will be refined.Processes 2020, 8, x FOR PEER REVIEW 24 of 33 
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Figure A3. Statistical analysis: (top left) the main effects of dissolved oxygen, where the velocity label
corresponds with agitation velocity [RPM] and the airflow has units of [L/min]; (top right) interaction
effects for oxygen dissolved; (bottom left) data homoscedasticity; and (bottom right) Pareto chart of
the standardized effects.
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Figure A5. kLa determination for two impeller configurations: (A) 2.5 l min−1 and 100 RPM;
(B) 2.5 l min−1 and 250 RPM; (C) 5 l min−1 and 100 RPM; and (D) 5 l min−1 and 250 RPM.
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Table A1. Experimental design.

StdOrder RunOrder PtType Blocks Impeller Airflow Velocity DO (%)

12 1 1 1 Paddles 5.0 250 90.3
2 2 1 1 Propeller 2.5 250 52.2
3 3 1 1 Propeller 5.0 100 64.0
6 4 1 1 Small Propeller 2.5 250 52.2

13 5 1 1 Rushton 2.5 100 57.4
7 6 1 1 Small Propeller 5.0 100 43.5
9 7 1 1 Paddles 2.5 100 46.9

11 8 1 1 Paddles 5.0 100 64.9
5 9 1 1 Small Propeller 2.5 100 28.8
1 10 1 1 Propeller 2.5 100 47.6

16 11 1 1 Rushton 5.0 250 88.2
14 12 1 1 Rushton 2.5 250 84.9
15 13 1 1 Rushton 5.0 100 66.2
4 14 1 1 Propeller 5.0 250 70.3

10 15 1 1 Paddles 2.5 250 84.7
8 16 1 1 Small Propeller 5.0 250 66.8

Table A2. Analysis of variance.

Source DF Adj SS Adj MS F-Value p-Value

Model 12 4694.14 391.18 38.96 0.006
Linear 5 4234.85 846.97 84.35 0.002

Impeller 3 1803.46 601.15 59.87 0.004
Airflow 1 618.77 618.77 61.63 0.004
Velocity 1 1812.63 1812.63 180.53 0.001

2-Way Interactions 7 459.28 65.61 6.53 0.076
Impeller*Air flow 3 69.26 23.09 2.30 0.256
Impeller*velocity 3 373.42 124.47 12.40 0.034
Air flow*velocity 1 16.61 16.61 1.65 0.289

Error 3 30.12 10.04
Total 15 4724.26

Table A3. Cells reference information.

Parameter Viscosity (Pa·s) Max Shear Stress
(Pa)

Max Shear Rate
(s−1)

Cell Concentration(
cells
cm3

)
EC 1.18× 10−3 1292 1.09× 106 2.81× 108

SC 1.31× 10−3 1250 9.54× 105 1.20× 109

CHO 2.80× 10−1 0.10 3.58× 10−1 4.44× 105

TN-368 1.13× 10−3 0.29 2.56× 102 2× 1011

SF-9 1.61× 10−3 13.1 8.11× 103 2× 1011

AG 6.0× 10−2 1.5 2.5× 101 1× 108

HeLa 1.0× 10−3 2 2, 0× 103 6× 105
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