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Abstract: The cooling effect of room-temperature oxygen in oxygen blast furnaces with top gas
recycling (TGR-OBF) delays the coal combustion process. To further explore the oxygen–coal
combustion mechanism and intensify coal combustion in TGR-OBF, the effect of oxygen temperature
on coal combustion was investigated using computational fluid dynamics (CFD). A three-dimensional
model was developed to simulate the lance–blowpipe–tuyere–raceway of TGR-OBF. The effect of
oxygen temperature at the same oxygen velocity and mass flow on coal combustion was investigated.
Results showed the cooling effect of room-temperature oxygen was weakened, and the coal burnout
was greatly increased with the increase in oxygen temperature. In particular, the coal burnout
increased from 21.64% to 81.98% at the same oxygen velocity when the oxygen temperature increased
from 300 to 500 K. The results provide useful reference for the development of TGR-OBF and coal
combustion technology.
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1. Introduction

Blast furnaces are the main facilities to produce hot metal because of their high productivity and
competitive cost compared to other ironmaking technologies [1–4]. However, the production process
of hot metal consumes a lot of fossil fuel and produces significant amounts of CO2. Therefore, there
is great environmental concern about blast furnaces, and it is necessary to further conserve energy
and reduce CO2 emissions. It is hard to significantly change carbon consumption and CO2 emissions
under the present conditions. Consequently, there is a need to develop a new process of blast furnace,
and this is also key to maintaining the use of blast furnaces.

Oxygen blast furnace with top gas recycling (TGR-OBF) is a new blast furnace process, representing
the development direction of blast furnaces [5–8]. A schematic diagram of the TGR-OBF process
is shown in Figure 1a. Compared to the traditional blast furnace (TBF) (shown in Figure 1b),
room-temperature oxygen is injected in TGR-OBF instead of hot air. Furthermore, the CO2-stripped top
gas is heated and recycled into the blast furnace. In theory, the CO2 emission and carbon consumption
of TGR-OBF can be reduced by 76% and 24%, respectively, compared to TBF [9]. The CO2 concentration
in the top gas of TGR-OBF also increases significantly, which is very beneficial for the removal of
CO2 in top gas. Furthermore, the main component of top gas is CO and CO2, and it can be used
for the production of methanol [10–12]. Therefore, the additional value of top gas is enhanced.
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The blast parameters of TGR-OBF change greatly compared to those of TBF, and the coal combustion
characteristics will then also change significantly. Therefore, the crux of high pulverized coal rate
(PCR) in TGR-OBF is to further reveal the coal combustion characteristics and then explore a proper
solution to the problem.

Figure 1. Schematic diagrams of (a) oxygen blast furnace with top gas recycling (TGR-OBF) and
(b) traditional blast furnace (TBF).

In our previous work [13], the coal burnout at 70% O2 was found to be only 21.64%. The coal
burnout of TBF is 71.78%, meaning TGR-OBF does not have any advantage over TBF. Although the
oxygen concentration in TGR-OBF increases significantly, the cooling effect of room-temperature
oxygen has some adverse effect on coal combustion. The oxygen temperature may be the main reason
causing this phenomena, so properly increasing it may be helpful for coal combustion.

Many investigations by other scholars have focused on the coal combustion of TBF.
Shen et al. [14–16] investigated the effect of blast temperature and oxygen content on coal combustion
in TBF. Chen et al. [17–19] investigated the effect of coal lance configurations on coal combustion
in TBF. Sato et al. [6] discussed the next-generation ironmaking process based on TGR-OBF using a
material and energy balance model. Sahu et al. [20,21] simulated the behavior of TGR-OBF under
different operating conditions using a two-zone furnace model. However, investigations on coal
combustion in TGR-OBF are lacking. Most of the current research remains in the theoretical stage, and
there is still much deficiency in the understanding of TGR-OBF. Therefore, it is necessary to carry out
further investigations on coal combustion in TGR-OBF. This will be beneficial for better understanding
TGR-OBF. Furthermore, it will be helpful for the development of TGR-OBF.

It is very difficult to carry out a pulverized coal injection trial in a real or simulated blast furnace
because of the hazardous environment and complex condition in the raceway region of the blast furnace.
Fortunately, computational fluid dynamics (CFD) has become a powerful tool for the investigation of
coal combustion in blast furnaces. Furthermore, the reliability and superiority of CFD have been fully
proven by many scholars [15,17,22,23].

Considering the aforementioned reasons, in this study, a three-dimensional model was developed
to simulate the lance–blowpipe–tuyere–raceway of a TGR-OBF. The effect of oxygen temperature at
70% O2 on coal combustion was investigated. The effect of oxygen temperature at the same velocity
and mass flow on coal combustion was also investigated. The results provide useful insight into the
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development of the TGR-OBF process. Furthermore, it helps explore an effective way of intensifying
coal combustion in TGR-OBF.

2. Mathematical Model

2.1. Basic Equations

The gas–particle flow and coal combustion in the tuyere and raceway regions were calculated
based on the framework of software package ANSYS-FLUENT. The model formulations of the gas and
particle phases have been described in our previous works in detail [24–26].

2.2. Combustion Process

Coal combustion is regarded as a multistage overlapping process consisting of (i) preheating,
(ii) devolatilization of raw coal, (iii) combustion of volatiles, and (iv) oxidation/gasification of the
residual char [27].

(1) Devolatilization of Coal
The devolatilization process releases volatiles (CαHβOγNδ) and char (C(s)). The coal

devolatilization process is simulated using the so-called two competing reactions model. A pair of
reactions with different rates (k1, k2) and volatile yields (α1, α2) compete to pyrolyze the raw coal.

Raw Coal
k1 ↗ α1VM1 + (1− α1)C1 (Low Temperature)
k2 ↘ α2VM2 + (1− α2)C2 (High Temperature)

(2) Gas Combustion
The gas combustion reactions are as follows:

CαHβOγNδ + aO2 → bCO + cH2O + dN2 (1)

CO + 0.5O2 → CO2 (2)

CαHβOγNδ + aO2 → bCO + cH2O + dN2 (3)

In turbulent flow, the gas reaction mechanisms are represented by the finite rate/eddy dissipation
model. The net reaction rate is determined by the chemistry rate and the mixing rate.

(3) Oxidation/Gasification of Residual Char
For the char reactions, the heterogeneous surface reaction model is used [28]. The following

reactions are considered during the coal combustion process:

C(s) + 0.5O2 → CO (4)

C(s) + CO2 → 2CO (5)

C(s) + H2O→ CO + H2 (6)

The reaction rate is expressed as follows:

R j,r = ApηrY jP
krD0,r

D0,r + kr

where Ap and ηr indicate the particle surface area (m2) and effectiveness factor, respectively; Yj is the
mass fraction of species j; and P represents the partial pressure (Pa).

3. Geometry and Operating Conditions

A test TGR-OBF of 120 m3 was built based on a TBF of 120 m3 at Laiwu Steel Company in Shandong
Province, China. To further understand the operation of pulverized coal injection in TGR-OBF, the
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coal combustion characteristics in TGR-OBF was investigated. The main operating parameters of the
TGR-OBF and TBF are summarized in Tables 1 and 2. The properties of pulverized coal used in this
model are shown in Table 3 [23].

Table 1. Main blast parameters of TBF.

Blast Volume (Nm3/t) Blast Temperature (K) Volume (m3) Coal Ratio (kg/t)

1129 1473 120 150

Table 2. Main blast parameters of TGR-OBF.

Oxygen Recycling Top Gas

Volume Nm3/t Content % Volume Nm3/t Temperature K CO % H2 % CO2 % N2 % H2O %

366 70 280 1173 52.58 10.81 4.5 31.49 0.62

Table 3. Properties of coal [23].

Proximate Analysis (wt %) Ultimate Analysis Size Distribution

Moisture 1 C 88.78 90 µm: 5%
Volatiles 20.02 H 4.54 63 µm: 25%

Ash 8.32 O 4.68 45 µm: 55%
Fixed carbon 70.66 N 2 20 µm: 15%

The geometric details of the models are shown in Figure 2. The models simulated the
lance–blowpipe–tuyere–raceway of blast furnaces. The coal particles mainly flowed along the
horizontal direction in the raceway region. The coal burnout at the end of the raceway represented that
of the entire raceway region. Therefore, the investigations were mainly focused on coal combustion
along the horizontal direction. The 120 m3 TBF was dissected in 2007. The dissection results showed
the raceway depth to be about 700 mm. Therefore, the raceway was designed as a tube of 700 mm
length with a divergence angle of 3◦ in accordance with others [27].

Figure 2. Geometric details of the models.
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4. Results and Discussion

4.1. Model Validation

The coal combustion in blast furnaces or other facilities has been investigated by many scholars
using CFD [17,28–32]. The reliability of CFD has been fully proven. Moreover, investigations on coal
combustion in TBF has been carried out using CFD before investigating that in TGR-OBF [21–23].
The effect of the oxygen content in hot blast on coal combustion was investigated in our earlier work [24],
and the results and phenomena were the same or similar to that of other scholars [27]. Furthermore, the
cooling effect of room-temperature oxygen on coal combustion was illustrated in our earlier study [25],
which was also in good agreement with the study by Chen [17]. These comparisons fully prove that
the model is reliable. Therefore, it is completely acceptable to investigate coal combustion in TGR-OBF
using this model.

4.2. Effect of Oxygen Temperature at the Same Velocity

First, the effect of oxygen temperature at the same velocity on coal combustion was investigated
using the numerical model.

Figure 3a shows the effect of oxygen temperature on the final coal burnout at the raceway
outlet. In general, the effect of oxygen temperature was very obvious. The coal burnout at 300 K
was only 21.64%. When the oxygen temperature increased to 400 K, the coal burnout increased
to 75.86%. The burnout at 500 K was 81.98%, which was the maximum. As oxygen temperature
continued to increase, the coal burnout slightly decreased. The coal particles were in direct contact
with the oxygen stream after leaving the coal lance. The cooling effect of room-temperature oxygen
delayed the coal combustion process. The cold oxygen volume decreased with the increase in oxygen
temperature. The adverse effect of cold oxygen was weakened, and the char had more time to react with
oxygen. Figure 3b shows the changes in pure oxygen volume with oxygen temperature. The complete
combustion of 150 kg/t·HM pulverized coal required 143.97 Nm3 O2. However, the pure oxygen
volume at 300 K was 256.2 Nm3/t·HM, which could fully meet coal combustion. The excess cold oxygen
would be harmful for coal combustion. The pure oxygen volume at 400 and 600 K could both meet full
combustion of 150 kg/t·HM pulverized coal. The pure oxygen volume at 600 K was 128.1 Nm3/t·HM.
This would not theoretically meet full combustion of 150 kg/t·HM pulverized coal. Furthermore, some
oxygen would be used for recycling gas combustion. Therefore, the coal burnout slightly decreased.
It can be concluded that properly decreasing the oxygen volume in direct contact with coal particles is
very useful for coal combustion.

Figure 3. Effect of oxygen temperature: (a) coal burnout; (b) pure oxygen amount, Nm3/t·HM.

The coal burnout at different positions was investigated, as shown in Figure 4a. The coal
combustion process was enhanced with increase in oxygen temperature. When the oxygen temperature
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was 300 K, the coal particles only began to release volatiles at a distance of about 0.6 m. With the
increase in oxygen temperature, the coal combustion process was enhanced. In particular, the coal
particles already started to release volatiles at a distance of 0.4 m at 600 K oxygen temperature. If the
devolatilization process was to be extended, the char combustion process would be shortened. Finally,
the coal particles would leave the raceway region without full combustion. Significant devolatilization
starts at about 600 K [28,33]. Figure 4b shows that the coal particles were rapidly heated with the increase
in oxygen temperature. This was the main reason for the rapid combustion of coal particles with the
increase in oxygen temperature. With the increase in oxygen temperature, the cold oxygen volume
decreased, and the coal particles could get more heat. The heat was mainly from the recycling gas
combustion in the initial combustion process, so the CO reaction rate of different oxygen temperatures
was investigated, as shown in Figure 4c. With the increase in oxygen temperature, the CO reaction rate
slightly increased before a distance of 0.4 m and rapidly increased after 0.4 m. In the raceway region,
the mixing rate of oxygen and recycling gas was the limiting factor of CO reaction. The increase in
temperature was useful for the mixing of oxygen and recycling gas.

Figure 4. Effect of oxygen temperature: (a) coal burnout at different positions; (b) coal particle
temperature at different positions; (c) CO reaction rate.

To better understand coal combustion characteristics under different oxygen temperatures, the
mass ratio (m/m0) of volatile matter was investigated, as shown in Figure 5. The mass ratio was defined
as the ratio of char (or volatiles) mass in coal particles to that in raw coal particles. The devolatilization
process was enhanced with the increase in oxygen temperature. This was in accordance with the
change in coal particle temperature and burnout. Many of the coal particles still could not completely
release volatiles at the raceway outlet when the oxygen temperature was 300 K. This was the main
reason for a lower burnout under 300 K oxygen temperature. With the increase in oxygen temperature,
more coal particles completely released volatiles. In particular, all the volatiles were released under
500 and 600 K oxygen temperature at the raceway outlet. Furthermore, the general devolatilization
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rate increased with the increase in oxygen temperature. This was because the cold oxygen volume
decreased, and the coal particles could obtain more heat. Furthermore, the recycling gas combustion
reaction was intensified, and more heat was released. Promoting recycling gas combustion in the initial
coal combustion stage is therefore key to increasing coal burnout.

Figure 5. Effect of oxygen temperature on mass ratio (m/m0) of volatile matter.

The volatile and char mass fraction were 22.08% and 77.92%, respectively, in combustibles. In other
words, the volatiles only contributed a little and the char contributed a lot to the coal burnout. Therefore,
to further reveal the effect of oxygen temperature on coal combustion characteristics, the change of
char m/m0 was analyzed, as shown in Figure 6. The char combustion process was enhanced with
increase in oxygen temperature. When oxygen temperature was 300 K, most of the char could not
finish combustion at the raceway outlet. More char reacted with oxygen with the increase in oxygen
temperature. Furthermore, the char reaction rate significantly increased with the increase in oxygen
temperature. This was mainly due to two reasons. On the one hand, the char combustion distance was
extended. On the other hand, the coal particles got more heat with the increase in oxygen temperature.
Moreover, the char combustion rate slowed at the end of the coal plume with the increase in oxygen
temperature. This was mainly due to the lack of oxygen at the end of the raceway region.

Figure 6. Effect of oxygen temperature on m/m0 of char.
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The oxygen distribution at different oxygen temperatures along Z = 0 plane was investigated,
as shown in Figure 7. When the oxygen temperature was 300 K, a significant amount of oxygen was
found at the raceway outlet. This further explains why most coal particles left the raceway region
without full combustion. Less and less oxygen was found at the raceway outlet with the increase in
oxygen temperature. When the oxygen temperature was 500 and 600 K, there was no oxygen at the
raceway outlet. Oxygen therefore disappeared with the increase in oxygen temperature. This was
closely related with char combustion. The coal combustion process was enhanced with the increase
in oxygen temperature. Furthermore, the oxygen volume decreased with the increase in oxygen
temperature. This further explains why the coal burnout increased slowly and the char combustion
rate decreased at the end of the raceway region when the oxygen temperature was 500 and 600 K.
When the oxygen temperature was 500 and 600 K, the oxygen concentration was the main factor
affecting further coal combustion. The coal burnout would further increase by increasing oxygen
concentration in the downstream of the coal plume. This is an important method for intensifying coal
combustion in TGR-OBF.

Figure 7. Effect of oxygen temperature on oxygen distributions along Z = 0 plane.

The gas temperature is closely related to reactions and reflects the relationship between reactions
and heat transport. Therefore, the average gas temperature along the horizontal direction at different
oxygen temperatures was investigated, as shown in Figure 8. In general, the average gas temperature
in the first part of the raceway region increased with the increase in oxygen temperature. This was
because the cold oxygen amount decreased as the oxygen temperature increased. The recycling gas
and char combustion rate rapidly increased, and more heat was released. However, at the end of the
raceway region, the average gas temperature at 400 K oxygen temperature was higher than that at other
oxygen temperatures. Furthermore, the average gas temperature at 500 K oxygen temperature was
higher than that at 300 and 600 K. The average gas temperature at 600 K oxygen temperature was higher
than that at 300 K. The reasons for this can be explained as follows. As shown in Figures 4c and 6,
the recycling gas and char combustion rate at 400 K oxygen temperature was higher than that of other
temperatures at the end of the raceway. The means that more heat was released. Figure 7 shows the
oxygen was completely consumed at the end of the raceway when the oxygen temperature was 500
and 600 K. This meant no more heat would be released. Furthermore, the endothermic reaction of char
with CO2 and H2O would go on. Therefore, the gas temperature at 500 and 600 K oxygen temperature
declined at the raceway outlet.
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Figure 8. Effect of oxygen temperature on average gas temperature along the centerline.

4.3. Effect of Oxygen Temperature at the Same Mass Flow

To further understand the effect of oxygen stream, the effect of oxygen temperature at the same
mass flow on coal combustion was investigated. Figure 9 shows the effect of oxygen temperature on
the final coal burnout. In general, the coal burnout increased with the increase in oxygen temperature.
However, the change was not very obvious. When the oxygen temperature increased to 400 K, the coal
burnout increased to 26.99%, an increase of only 5.35%. When the oxygen temperature increased to
500 K, the coal burnout was 42.89%, an increase of 21.25% compared to that at 300 K. When the oxygen
temperature was 600 K, the coal burnout was further increased. This was because more heat was
brought in with the increase in oxygen temperature. Furthermore, the higher temperature promoted
the combustion reaction of recycling gas, and more heat was released. However, the mass flow of cold
oxygen remained the same, and the cooling effect of oxygen stream was still obvious.

Figure 9. Effect of oxygen temperature on the final coal burnout.

Figure 10a shows the coal burnout at different distances from the lace tip under different oxygen
temperatures. The coal particles released volatiles at almost the same distance from the lace tip
under different oxygen temperatures. Furthermore, the coal burnout at different oxygen temperatures
all maintained rapid growth, and the increasing rate became higher with the increase in oxygen
temperature. The reasons causing this phenomenon can be explained as follows. The cooling effect
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of the oxygen stream on devolatilization was still obvious. The recycling gas combustion reaction
strengthened with the increase in oxygen temperature, and more heat was released. This made up
for the hysteresis of the coal combustion process, but the effect was not very obvious. To further
explore the reasons, the CO combustion rate along the centerline direction was investigated, as shown
in Figure 10b. In the initial stage, the CO reaction rate increased significantly with the increase in
oxygen temperature, and much heat was released. This was because the velocity of the oxygen stream
increased significantly with the increase in oxygen temperature, and the mixing of oxygen and recycling
gas increased. However, the coal particles got less heat. On the one hand, more cold oxygen shared
more heat. On the other hand, the oxygen stream velocity increased with the increase in oxygen
temperature. This was unfavorable for heat transfer to coal particles. In general, decreasing the cold
oxygen amount in direct contact with coal particles and enhancing recycling gas combustion is the
most effective method to increase coal burnout of TGR-OBF.

Figure 10. Effect of oxygen temperature on (a) coal burnout at different positions; (b) CO combustion
rate at different positions.

5. Conclusions

To further understand the effect of oxygen stream and intensify coal combustion in TGR-OBF,
a three-dimensional model was developed to simulate the lance–blowpipe–tuyere–raceway of an
TGR-OBF. The effect of oxygen temperature on coal combustion was investigated. The main conclusions
are as follows.

(1) The cooling effect of room-temperature oxygen is the main reason causing a lower burnout in
TGR-OBF. The coal burnout can be increased significantly by decreasing the cold oxygen volume
in direct contact with coal particles. When the oxygen temperature increased from 300 to 500 K at
the same velocity, the coal burnout was increased by 60.34%.

(2) The initial heat for coal combustion is from recycling gas combustion. The coal combustion
process will be enhanced by improving recycling gas combustion. Increasing the mixing of
recycling gas and oxygen will significantly promote the combustion reaction. This is an important
method to increase coal burnout of TGR-OBF.

(3) When the oxygen temperature was 500 K at the same velocity, the coal combustion was weakened
due to the lack of oxygen at the end of the raceway region. Increasing the oxygen content at the
end of the raceway region is also an effective way to further increase coal burnout.

(4) Increasing oxygen temperature is very helpful for coal combustion. The preheating method of
oxygen stream will be a very important research direction in future works. Furthermore, the way
of injecting the oxygen stream also has a different effect on coal combustion. This is also the focus
of future investigation.
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