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Abstract: Liquid milk protein concentrate with different beneficial values was prepared by membrane
filtration and enzymatic modification of proteins in a sequential way. In the first step, milk protein
concentrate was produced from ultra-heat-treated skimmed milk by removing milk serum as permeate.
A tubular ceramic-made membrane with filtration area 5 × 10−3 m2 and pore size 5 nm, placed
in a cross-flow membrane house, was adopted. Superior operational strategy in filtration process
was herein: trans-membrane pressure 3 bar, retention flow rate 100 L·h−1, and implementation of
a static turbulence promoter within the tubular membrane. Milk with concentrated proteins from
retentate side was treated with the different concentrations of trypsin, ranging from 0.008–0.064 g·L−1

in individual batch-mode operations at temperature 40 ◦C for 10 min. Subsequently, inactivation of
trypsin in reaction was done at a temperature of 70 ◦C for 30 min of incubation. Antioxidant capacity
in enzyme-treated liquid milk protein concentrate was measured with the Ferric reducing ability of
plasma assay. The reduction of angiotensin converting enzyme activity by enzyme-treated liquid milk
protein concentrate was measured with substrate (Abz-FRK(Dnp)-P) and recombinant angiotensin
converting enzyme. The antibacterial activity of enzyme-treated liquid milk protein concentrate
towards Bacillus cereus and Staphylococcus aureus was tested. Antioxidant capacity, anti-angiotensin
converting enzyme activity, and antibacterial activity were increased with the increase of trypsin
concentration in proteolytic reaction. Immune-reactive proteins in enzyme-treated liquid milk
protein concentrate were identified with clinically proved milk positive pooled human serum and
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peroxidase-labelled anti-human Immunoglobulin E. The reduction of allergenicity in milk protein
concentrate was enzyme dose-dependent.

Keywords: liquid milk protein concentrate; antioxidant capacity; angiotensin converting enzyme
inhibitory activity; antibacterial activity; hypoallergenic property

1. Introduction

For years, different types of non-fermented and fermented dairy-based food formulas are received
great attention among different communities. As time progressed, dairy industries tried their best to
improve the quality of dairy-based formulas to fulfill the expectations of consumers [1]. For industrial
production of fermented dairy products, milk with a standardized amount of protein is necessary
to maintain the quality of products [2,3]. Different dairy-based protein concentrates, such as milk
protein concentrate, milk protein isolate, whey protein concentrate, whey protein isolate, micellar
casein concentrate, micellar casein isolate, whey concentrate, and selectively demineralized whey
concentrate are widely used in the food and biopharmaceutical industries [4]. Milk protein concentrate
is well accepted among all communities because it is an abundant source of the various kinds of
proteins, including micellar casein, whey proteins, and glycomacropeptide, and has significantly
lower amounts of lactose and fat compared to whey protein concentrate and whole milk protein
concentrate, respectively [5]. Therefore, it is popularly used to prepare infant formula, protein bar,
yogurt, recombined cheese, cultured product, frozen dessert, weight management products, and sports
formulas [6]. To produce dairy-based protein concentrate, large-scale production plants with different
unit operations are requirement. It may be noted that production of milk varies throughout the year.
During the spring season, milk production is quite high compared to the fall season. To balance
economic competitiveness, small-scale and medium-scale dairy industries avoid expensive processing
steps, such as evaporation and drying to prepare dairy-based protein concentrate in powder form,
and prefer to use liquid milk protein concentrate for manufacturing fresh cultured-food products [7,8].

In the dairy industry, application of membrane technology is noteworthy. Membrane technology
is used for preparing concentrated milk proteins, fractionation of dairy proteins, demineralization of
whey, and removal of microbial count in milk [9–11]. In some cases, ultrafiltration or nanofiltration
operated with diafiltration mode was adopted to achieve high protein concentrate and avoid membrane
fouling [12–14]. Some limitations in this context are reported. The limitations are (a) development of
gel layer (concentration polarization) on the membrane surface and subsequent membrane fouling,
and (b) high energy consumption. During filtration, due to deposition of solute molecules on the
membrane surface, concentration polarization take place on the membrane surface. Because of this,
permeate flux is reduced in drastic way [15–17]. However, increase of trans-membrane pressure (TMP)
or fluid flow through a mechanical pump reduces the development of gel layer on the membrane
surface; there is a debating issue about high energy consumption [18,19]. Therefore, it may feel that an
efficient membrane separation process and its operational strategy are needed to explore to produce
liquid milk protein concentrate.

However, milk has gained a great attention around the globe due to the presence of the different
types of proteins (αS1-casein, αS2-casein, β-casein, κ-casein, γ-casein, immunoglobulin, bovine serum
albumin, lactoferrin, α-lactalbumin, and β-lactoglobulin), lactose, vitamins (vitamin A, vitamin E,
ascorbic acid, riboflavin, vitamin B6, nicotinic acid, pantothenic acid, and thiamin) and minerals
(calcium, magnesium, phosphorus, potassium, selenium, and zinc) [20]. The milk sensitive community
frequently experiences with the symptoms of immunoglobulin-mediated milk protein allergies, in some
cases [21,22]. Due to the presence of Immunoglobulin E- and Immunoglobulin G- binding epitopes,
milk proteins are listed among the “big 8” allergens [23,24]. Milk allergens provoke mild symptoms to
life-threatening biochemical outcomes, including severe enterocolitis atopic eczema and immediate
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immunoglobulin-mediated systematic multisystem reactions [25]. Milk is not recommended in the
diet chart due to the presence of saturated fatty acids—those contribute heart disease [26,27], type 2
diabetes, and Alzheimer’s disease [28,29]. Furthermore, due to the absence of lactase, a hydrolytic
enzyme in brush border of epithelial cells in the small intestine, the milk sensitive community
frequently suffers with symptoms of lactose maldigestion [20,21]. However, concentrations of lactose
and fat in milk protein concentrate are significantly low; in some cases, food formulas fortified with
milk protein concentrate offer immunoglobulin-mediated allergies among people of all ages [30,31].
A plethora of literature about thermal and non-thermal processing technologies have been adopted
to combat milk protein allergens [32,33]. The reduction in protein allergenicity in the molecular
basis is the destruction of structure of epitopes. Applications of high pressure- [34,35], heat- [36–38],
microwave- [39], and membrane bioreactors [40,41] were implemented for the reduction of allergenic
sequences in milk proteins. In some cases, physical- [42–44] and enzymatic- [45–48] modifications of
proteins have been adopted for a similar objective. Furthermore, combined physical and biochemical
technologies have been adopted for the reduction of milk protein allergens [49–56]. In some cases,
new epitopes (neoepitopes) or hidden epitopes may even be produced during cow milk processing
due to denaturation of native allergen (cryptotopes) [57]. Realizing advantages and disadvantages of
mentioned technologies, it may feel that enzymatic hydrolysis of allergenic epitopes in protein sequences
may be an effective attempt to reduce milk protein allergens. Besides the elimination of their allergenic
potentiality, modification of milk proteins through enzymatic routes may alter their functional properties,
because peptides with unique amino acids in C- and N- terminal positions are produced through
enzymatic hydrolysis of peptide bonds in milk proteins. Furthermore, the enzymatic modification
of milk proteins may generate new antigenic substances, which may offer immunomodulation,
and provide extra health benefits [58]. However, lots of information about the reduction of allergenic
epitopes in milk proteins through an enzymatic route are stored in scholarly databases; its production
in industrial scale is limited [59]. The challenging issues in enzyme-mediated process are (a) high cost
of enzymes, and (b) find out suitable operating process parameters in enzyme-mediated processes.
Therefore, it can feel that an investigation is needed to find out the minimum amount of enzymes,
which is responsible for reducing a significant amount (>99.9%) of the allergenic sequence and improve
the functional activities of milk protein concentrate. Trypsin is an endopeptidase generally found in
the pancreas of mammalians, and cleaves at the carboxyl terminal side of arginine and lysine amino
acid residues, except arginyl-proline and lysyl-proline bonds. It is popularly used for preparation of
dairy formulations with lower antigenic activities [60,61]. As the catalytic activity of trypsin is quite
high (relative activity 99%) at pH 7 and may be able to change the biological activity of proteins and
peptides [62–64], it was used in this investigation.

From the above discussion, one can realize that efforts are needed to reduce the limitations of
milk protein concentrate production and dairy product consumption. In this investigation, an attempt
was considered to develop liquid milk protein concentrate from ultra-heat-treated skimmed milk
with antioxidant capacity, angiotensin converting enzyme inhibitory activity, antibacterial activity,
and hypoallergenic property by membrane filtration and enzymatic modification of proteins in a
sequential way. In the present investigation, membrane filtration process was adopted to increase
the protein concentration in milk by reducing the milk serum as permeate and, subsequently, trypsin
was adopted to hydrolyze the concentrated liquid milk proteins, obtained at the retentate side.
Membrane filtration process itself cannot change the structural and biological activities of milk proteins.
Peptides, produced by enzymatic hydrolysis of milk proteins with unique C- and N-terminal amino
acids, peptide length, and amino acid sequence, offer distinguishing biological activities. Furthermore,
allergenic activity of proteins is reduced due to enzymatic cleavage in allergenic epitopes within the
amino acid sequence in protein.
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2. Materials and Methods

2.1. Chemicals and Reagents

Lyophilized trypsin (≥27.78 units per mg of solid at temperature 25 ◦C) from bovine pancreas,
Bradford reagent, bovine serum albumin, casein, α-lactalbumin and β-lactoglobulin from bovine milk,
Abz-FRK(Dnp)-P, peroxidase-labelled anti-human Immunoglobulin E, 2,4,6-Tris(2-pyridyl)-s-triazine
(≥98%), 4-chloronaphtol (≥98%), hydrogen peroxide (≥98%), ethanol (≥99%), and phosphate
buffered saline solution were purchased from the Sigma-Aldrich (Sigma-Aldrich, Schnelldorf,
Germany). Ultrasil P3-11 was purchased from Ecolab-Hygiene Kft (Ecolab-Hygiene Kft, Budapest,
Hungary). Citric acid (99%), hydrochloric acid (≥99%), urea (≥99%), dithiothreitol (DTT) and
sodium hydroxide (≥99%) were purchased from Reanal Kft (Reanal Kft, Budapest, Hungary).
Ferric chloride (≥99%), sodium acetate (anhydrous, ≥99%), sodium chloride (≥99%), zinc chloride
(≥99%), bacteriological agar powder, soybean casein digestive medium and ascorbic acid (99.7%)
were procured from Merck (Merck, Darmstadt, Germany). Sodium-dodecyl sulphate (≥99%),
acrylamide (≥99%), ammonium persulfate (≥99%), bis-acrylamide (≥99%), tetramethylethylenediamine
(≥99%), tris(hydroxymethyl)aminomethane hydrochloride (TRIS HCl), ethyl alcohol (≥99%), glycine
(≥99%), coomassie blue stain R250 (≥99%), acetic acid (≥99%), glycerol (≥99%), isopropanol (≥99%),
2β-mercaptoethanol (≥99%), and bromophenol blue (≥99%) were procured from Bio-Rad (Bio-Rad,
Hercules, USA). High performance liquid chromatography mass spectrometry (HPLC-MS)-grade
acetonitrile, formic acid, and trisodium citrate (≥99%) were purchased from VWR International Ltd.
(VWR International Ltd., Debrecen, Hungary). Recombinant angiotensin converting enzyme was
kindly provided by Division of Clinical Physiology, Institute of Cardiology, University of Debrecen
(University of Debrecen, Debrecen, Hungary). Bacillus cereus and Staphylococcus aureus ATCC 6538 were
collected from the Strain collection unit of Szent István University (Szent István University, Budapest,
Hungary). Milli-Q ultrapure deionized water (18.2 MΩ·cm) was obtained from Milli-Q Synergy/Elix
water purification system (Merck-Millipore, Molsheim, France) and used throughout the experiment.

2.2. Ultra-Heat-Treated Skimmed Cow Milk

Ultra-heat-treated skimmed cow milk was procured from local supermarkets, in and around
Budapest, Hungary. Concentrations of protein, lactose, and fat in milk were in average 31 ± 0.16 g·L−1,
47 ± 0.15 g·L−1 and 1 ± 0.02 g·L−1, respectively. Average pH of milk was 6.8. Milk was stored in a
refrigerator at temperature 10 ◦C.

2.3. Production of Hypoallergenic Liquid Milk Protein Concentrate with Functional Values

An attempt was considered to develop a process to produce allergen-free liquid milk protein
concentrate with functional values, such as antioxidant capacity, angiotensin converting enzyme
inhibitory activity, and antibacterial activity. Combination of different physical- and biochemical-
based technologies were adopted for this purpose (Figure 1).
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Figure 1. Experimental steps for preparing hypoallergenic liquid milk protein concentrate
with functional values (antioxidant capacity, angiotensin converting enzyme inhibitory activity,
and antibacterial activity).

2.3.1. Concentrate Milk Proteins in Ultra-Heat-Treated Skimmed Milk by Membrane Technology

De-watering (remove of milk serum) of ultra-heat-treated skimmed milk was performed by
a tubular nanofiltration membrane with active filtration area 5 × 10−3 m2 and pore size 5 nm
(Pall Corporation, Crailsheim, Germany), placed in a stainless steel-made cross-flow membrane
module (Figure 2). The active layer, support layer, length, inner diameter, and outer diameter of the
membrane were titanium oxide, aluminum oxide, 250 mm, 7 mm, and 10 mm, respectively. In the
membrane module, feed flow rate was controlled by a centrifugal pump (Verder Hungary Kft, Budapest,
Hungary). Flow rate of fluid (milk, water) in the membrane module was also controlled by a rotameter
at a retentate flow channel and a bypass channel at the inlet channel of the membrane module. TMP of
the membrane module was controlled by pressure gauges, fitted at inlet and retentate flow channels of
the membrane module. A mechanical agitator was fitted inside of the storage tank of the membrane
module. Temperature in the storage tank of the membrane module was maintained by a temperature
sensor and automated circulation of warm/cold water within the water jacket.
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A mechanical device, known as static turbulence promoter, made of stainless steel (SS316),
was inserted within the membrane tube. Detailed geometry of the static turbulence promoter is
mentioned in an earlier publication [65]. To investigate the effects of process parameters in filtration
process, different TMPs, such as 2 bar and 3 bar, and retention flow rates (RFRs), such as 100 L·h−1

and 200 L·h−1, were used with or without the static turbulence promoter. Each membrane filtration
experiment started with 1 L of ultra-heat-treated skimmed milk, and volume reduction factor 2
was considered. Membrane filtration process was performed with a batch recirculation mode.
Constant volume of permeate from the membrane was collected at different time fractions and
permeate flux (J) was calculated with the following equation.

J = V/(A × t) (1)

where, J = permeate flux during filtration (L m−2
·h−1), V = volume of permeate (L), A = active

membrane filtration area (m2) and t = filtration time (h) [66].
In the feed tank, after 50% reduction of volume (volume reduction factor 2), reduction of permeate

flux (∆J) was calculated from initial permeate flux with Equation (2).

∆J (%) = (Jinitial − Jfinal) × 100/Jinitial (2)

where, ∆J = reduction of permeate flux (−), Jinitial = initial permeate flux (L m−2
·h−1) and Jfinal = final

permeate flux (L m−2
·h−1) [65].

During filtration, pressures at inlet and retentate flow channels of the membrane module were
recorded. Specific energy consumption (Es) was calculated with Equation (3).

Es = (RFR × ∆p)/(Jinitial × A) (3)

where, Es = specific energy consumption (kWh·m−3), QR = retention flow rate (L·h−1), ∆p = difference
of pressure (Newton·m−2), A = active membrane filtration area (m2) and Jinitial = initial permeate flux
(L m−2

·h−1) [65].
After removing the milk serum, membrane cleaning was performed with 1% ultrasil and 1% citric

acid in a sequential way with intermediate water cleaning. During cleaning with ultrasil and citric
acid, TMP 0.8 bar and RFR 200 L h−1 were used. During cleaning with water, TMP 4 bar and RFR
200 L h−1 were used. Prior to removing the milk serum, membrane compaction was performed with
de-ionized water to achieve the steady state water permeate flux. For that purpose, TMP 4 bar and
RFR 200 L·h−1 were used [67].

2.3.2. Enzymatic Hydrolysis of Concentrated Proteins in Milk

Milk with concentrated proteins was collected from the storage tank of the membrane module.
Prior to enzymatic reaction, milk with concentrated proteins, pH 7 was pre-incubated until the
temperature reached 40 ◦C in a laboratory-scale well-controlled jacketed bioreactor, working volume
0.6 L and aspect ratio H/D* 2:1 (Solida Biotech, München, Germany). After pre-incubation of milk
with concentrated proteins, it was treated with different concentrations of trypsin, such as 0.008 g·L−1,
0.016 g·L−1, 0.032 g·L−1, and 0.064 g·L−1. Individual batch-mode experiments were performed for
protein hydrolysis process. For that purpose, 450 µL, 900 µL, 1.8 mL, and 3.6 mL of trypsin
solution from stock solution (concentration of trypsin 0.009 g·mL−1) were injected through 0.22 µm
of polytetrafluoroethylene (PTFE) syringe filter (VWR International, Pennsylvania, USA) to 500 mL
of milk with concentrated proteins in bioreactor [67]. Enzymatic reaction was performed at a
temperature of 40 ◦C for 10 min [68,69]. During enzymatic reaction, agitation speed in the bioreactor
was maintained, 175 rpm, and the pH of milk in the bioreactor was controlled, 6.8, by automated
addition of 2.0 N of sodium hydroxide or hydrochloric acid [67]. After 10 min of enzymatic reaction,
20 mL of sample was collected by a syringe from the bioreactor and kept in a sample tube. Activity of
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trypsin in enzymatic reaction was stopped by heat treatment. For that purpose, sample tubes were
immediately placed in a water bath at temperature 70 ◦C for 30 min because denaturation temperatures
of bovine α-lactalbumin and β-lactoglobulin are ~75 ◦C [70–72]. Two control samples (without enzyme
treatment) were considered in the experiment: control 1: ultra-heat-treated skimmed milk was heated
at temperature 40 ◦C for 10 min and subsequently placed at temperature 70 ◦C for 30 min; control 2:
milk with concentrated protein was heated at temperature 40 ◦C for 10 min and subsequently placed
at temperature 70 ◦C for 30 min. After inactivation of trypsin, the temperature of samples (reaction
mixture) was reduced to ambient temperature (~25 ◦C) and freshly prepared samples were used for all
kinds of biochemical assay, described in Section 2.4.

2.4. Analytical Method

2.4.1. Understanding of Molecular Weight of Proteins in Concentrated Milk

Molecular weight of proteins in concentrated milk was determined by liquid chromatography-
electrospray ionization time-of-flight mass spectrometry (LC-ESI-TOF-MS) (Agilent Technologies,
Santa Clara, CA, USA). Sample preparation was performed according to the protocol, mentioned by
Rauh et al., 2015 [73]. Briefly, 200 µL of concentrated milk was treated with 20 µL of 0.5 M DTT, 1 mL
of 100 mM trisodium citrate, and 6 M urea at temperature 30 ◦C for 1 h in a thermostat. Subsequently,
a sample was centrifuged at 9500 g for 20 min at temperature 4 ◦C by a laboratory centrifuge (HERMLE
Labortechnik, Wehingen, Germany). Aliquot of the clear phase was collected aseptically and used
for LC-MS analysis. Chromatographic separation was achieved by an XBridge BEH300 C4 column
with particle size: 3.5 µm, and inner diameter x length: 2.1 mm × 150 mm (Waters, Milford, USA),
placed in an Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA). The column
temperature was 30 ◦C during chromatographic separation. The binary mobile phase consisted of
Milli-Q ultrapure deionized water with 0.1% formic acid (eluent A), and acetonitrile (eluent B) was
used for that purpose. The flow rate was set to 0.5 mL·min−1. Gradient separation started at 3% B
and linearly increased to reach 90% in 9 min. The eluent was kept constant at 90% B until 11 min and
then the column was re-equilibrated at the initial conditions for 8 min. A UV signal was recorded at
280 nm using the diode-array detector (DAD) in the LC system and the effluent was connected to
an Agilent 6530 high-resolution, accurate-mass, quadrupole time-of-flight mass spectrometry system
equipped with a dual sprayer electrospray ion source. The mass spectrometry was run with full
scan, MS-only mode (2 GHz, extended dynamic range setup) scanning in the range of 50–3200 m/z
in positive ionization mode. A continuous reference mass correction was applied using purine and
HP-921 (Hexakis(1H,1H,3H-perfluoropropoxy)phosphazene) as reference substances. The ion source
temperature was maintained at 325 ◦C, and capillary and fragmentor voltages were set to −4000 V
and 140 V, respectively. The Mass Hunter (MH) Workstation software package (version B02.01) and
MH BioConfirm (version B 09.00) (Agilent Technologies, Santa Clara, CA, USA) were used for data
acquisition and data evaluation, respectively. For raw mass spectrum deconvolution, the maximum
entropy algorithm was used with automatic mass range detection (for intact protein), and for multiply
charged ions, 500–3000 m/z limited range was considered.

2.4.2. Understanding of Hydrolysis of Liquid Milk Protein Concentrate

Molecular weight of proteins in ultra-heat-treated skimmed milk, milk with concentrated
proteins, and enzyme-treated milks was determined by the sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) method. For this purpose, a vertical electrophoresis system (Bio-Rad Mini
Protean Tetra system) and standard protein marker (precision plus protein standards) from Bio-Rad
(Bio-Rad, Hercules, CA, USA) were used. In the SDS-PAGE method, concentration of stacking gel and
running gel were 6% and 15%, respectively. The Laemmli sample buffer with 2-mercaptoethanol was
used for dilution of samples and 10 µL of appropriate diluted sample was loaded into the respective
wells. 0.2% Coomassie Brillant Blue R250 was used for gel staining. After 30 min of gel staining,
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de-staining of gel was performed with 50% (volume basis) of methanol-water and 10% (volume basis)
of acetic acid. Gel image was captured using a Gel Doc XR+ System (Bio-Rad, Hercules, USA) and
the molecular weight of bands were determined using Quantity One software program (version 4.6)
(Bio-Rad, Hercules, CA, USA) [74].

2.4.3. Immunoblotting of Concentrated Milk Proteins

Proteins from SDS-PAGE gel were transferred onto a 0.45 µm of polyvinylidene difluoride
(PVDF) membrane (Merck-Millipore, Molsheim, France) by a trans blot semi-dry transfer cell (Bio-Rad,
Hercules, CA, USA). It was operated with 0.25 V and 0.08 mA/cm2 for 60 min. Immune-reactive proteins
were identified with clinically proved milk positive pooled human serum and peroxidase-labelled
anti-human Immunoglobulin E. The binding patterns were visualized using a substrate solution
containing 4-chloronaphtol, hydrogen peroxide, and ethanol in phosphate buffered saline solution.
Image analysis of blots was carried out with Gel Doc 2000 system (Bio-Rad, Hercules, CA, USA) [75].

2.4.4. Determination of Antioxidant Capacity

Antioxidant capacity of ultra-heat-treated skimmed milk, milk with concentrated proteins and
enzyme-treated milks was measured using the Ferric reducing ability of plasma method with respect
of ascorbic acid [76]. Appropriate diluted 100 µL of all kinds of milk samples with 2.9 mL of reagent
(20 mM of ferric chloride: 10 mM of 2,4,6-Tris(2-pyridyl)-s-triazine with 40 mM of hydrochloric acid:
300 mM of acetate buffer, pH 3.6 = 1:1:10 (volume basis)) were incubated at temperature ~35 ◦C for
30 min in a water bath. Colorimetric determination was performed in room temperature (~25 ◦C)
with a UV-Vis spectrophotometer (Thermo ScientificTM, Waltham MA, USA). Spectrophotometric
measurement was performed with wavelength 593 nm.

2.4.5. Estimation of Angiotensin-Converting-Enzyme Inhibitory Activity

Enzymatic reaction mixture (final volume 200 µL in each well), consisted of 50 mM of sodium
chloride, 100 mM of TRIS HCl (pH 7), 10 µM of zinc chloride, 15 µM of substrate Abz-FRK(Dnp)-P,
recombinant angiotensin converting enzyme, and milk samples (in a dilution range of 10-fold to 106-fold)
was used in investigation. The amount of the recombinant angiotensin converting enzyme was chosen
to result in about 10-fold activity than that in the human serum (dilution was 200 to 400-fold from
the stock). Reaction was initiated by the addition of substrate. Changes in fluorescent intensities
were recorded in each 2–3 min and then changes were plotted as the function of time. These plots
were fitted by a linear fit, and the slope was used to estimate enzyme activity (slope represents the
change in fluorescent intensity in one minute). Activities in the absence of milk samples (uninhibited
samples) were used as controls. The level of inhibition was calculated as % of uninhibited activity in
each plate. Measurements were performed in a fluorescent plate reader (BMG Labtech, Ortenberg,
Germany) at temperature 37 ◦C in Corning 96 wells black and flat bottom plates (Corning, New York,
USA). Changes in optical density were measured with wavelength 340 nm for at least 90 min with 5 min
intervals [77].

2.4.6. Determination of Protein Concentration

Concentration of protein in ultra-heat-treated skimmed milk, milk with concentrated proteins,
and enzyme-treated milks were determined by the Bradford assay. Appropriate dilution of 100 µL of
all kinds of milk samples with 3 mL of Bradford reagent were incubated at room temperature (~25 ◦C)
for 30 min in a water bath. Colorimetric determination was performed with wavelength 280 nm in a
UV-Vis spectrophotometer (Thermo ScientificTM, Waltham, MA, USA). Assay was performed in room
temperature (~25 ◦C) and bovine serum albumin as a standard was used in assay [78].
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2.4.7. Microbiological Assay

Antibacterial activity of ultra-heat-treated skimmed milk, milk with concentrated proteins,
and enzyme-treated milks against Bacillus cereus and Staphylococcus aureus ATCC 6538 were investigated.
Antibacterial activity was measured by agar well diffusion method. Sterile soybean casein digestive
agar medium was used in the investigation. Freshly prepared (overnight grown culture) each culture
was diluted with maximum recovery diluent (MRD) solution (8.5 g sodium chloride + 1 g peptone in 1 L
of de-ionized water) to reach the bacterial concentration 106 colony-forming units mL−1 in respective
agar plate [79]. Bacterial culture was spread on solidified agar in respective petri plates (pour plated)
and agar wells with diameter 5 mm were filled with 100 µL of control milk and enzyme-treated milk
samples. Petri plates were incubated at temperature 37 ◦C for 48 h in a biological incubator (HACH,
Düsseldorf, Germany) [65,67]. The diameter of zone of inhibitions in microbial plates were measured by
excluding the diameter of wells (5 mm) using a digital Vernier caliper (UEMATSU SHOKAI CO., LTD.,
Sendai, Japan).

2.5. Statistical Analysis

All experiments were performed at three times (technical triplicate). The mean value and standard
deviation were calculated by Microsoft Excel (version 2013) (Microsoft Corporation, Washington, DC,
USA). Subsequently, one-way analysis of variance method followed by the Tukey’s post hoc test were
performed to understand the significant difference (P < 0.05) between different groups. SPSS 15.0
(version 25.0) (IBM, Armonk, NY, USA) was used for statistical analysis.

3. Results and Discussion

3.1. Concentrate Milk Proteins in Skimmed Milk by Membrane Filtration

A ceramic tubular membrane with active filtration area 5 × 10−3 m2 and pore size 5 nm was
used to concentrate milk proteins in ultra-heat-treated skimmed milk by removing milk serum
as a permeate. At room temperature and pH ~7, casein micelle may have a mean radius of
50 nm, whereas, the radius of whey proteins, such as α-lactalbumin, β-lactoglobulin, bovine serum
albumin, and tetrad immunoglobulin are ~1.8 nm, ~1.8 nm, ~4 nm, and ~6 nm, respectively [80].
Typically, ultra-heat-treated milk is prepared with temperature 135–145 ◦C and treatment exposure
time 1–8 s [81]. Due to heat treatment with high temperature, beside the Maillard reaction, sizes
of proteins in milk are changed compared to their conventional sizes. When milk is heated at a
temperature above 80 ◦C, the tertiary structure of whey protein turns to unfold [82]. It has been
reported that at a temperature higher than 80 ◦C, denaturation rate of α-lactalbumin is faster than
β-lactoglobulin’s and denaturation of α-lactalbumin is faster when β-lactoglobulin is present [83,84].
Subsequently, intramolecular highly reactive thiol groups, broken hydrophobic, and disulphide
bonds may bind with covalent and hydrophobic bonds among themselves or with casein molecules,
especially with κ-casein, present in periphery of casein micelle [85–87]. Furthermore, some whey
proteins with sulfur containing thiol group (R-SH) can bind with other proteins by covalent bonds.
Bovine serum albumin and β-lactoglobulin [88,89], and κ-casein and β-lactoglobulin [90–92] may
bind together due to heat treatment. However, α-lactalbumin does not contain -SH group, it may
conjugate with caseins in presence of β-lactoglobulin [93]. In addition, heat treatment may promote the
formation of isopeptide bond between lysine and glutamine (N-ε-(γ-glutamyl)-lysine) or asparagine
(N-ε-(β-aspartyl)-lysine) among different proteins, present in liquid milk protein concentrate [94–96].
Due to faster thermodenaturation of α-lactalbumin in presence of β-lactoglobulin, it may completely
conjugate with casein micelle [80]. Therefore, it might expect that most of whey proteins have chance
to conjugate with casein and the size of casein micelle might increase. On the other hand, due to
intermolecular conjugation of whey proteins, the size of whey proteins might increase. Because of
it, most of the proteins might reject by the nanofiltration membrane and residual (unbounded) whey
proteins and lactose might permeate with milk serum through membrane pores during nanofiltration.



Processes 2020, 8, 871 10 of 25

As nanofiltration is a pressure-driven membrane separation process, a gel layer is developed on the
membrane surface during separation process. A detailed investigation was performed to reduce the
development of gel layer on the membrane surface by changing TMP and RFR. In Table 1, initial
permeate flux and percentage change of permeate flux for different TMPs and RFRs are reported.

Table 1. Difference of pressure, initial permeate flux and percentage change of permeate flux for
different trans-membrane pressures (TMPs) and retention flow rates (RFRs) in absence and presence of
static turbulence promoter. Results are represented by mean value with standard deviation (±values).
In superscript, dissimilar alphabet represents the significant difference between results, evaluated by
the Tukey’s post hoc method.

TMP
(Bar)

RFR
(L·h−1)

Without Static With Static

∆p
(Bar)

Jinitial
(L·h−1·m−2)

∆J (%) ∆p
(Bar)

Jinitial
(L·h−1·m−2)

∆J (%)

2 100 0.1 8.06 ± 1 a 41.69 ± 1.27 a 0.3 15.58 ± 1.1 a 32.33 ± 1.25 a

2 200 0.1 8.2 ± 1.2 a 37.39 ± 2.35 a b 0.7 15.88 ± 1 a 31.70 ± 2.5 a

3 100 0.1 13.45 ± 1.1 b 36.95 ± 1.55 a, b 0.3 34.22 ± 1.08 b 24.01 ± 1.19 b

3 200 0.1 18 ± 3.9 b 33.33±2.79 b 0.7 34.55 ± 1.02 b 23.61 ± 2.31 b

It is observed that permeate flux of serum was increased with the increase of TMP, because TMP
provided driving force on the membrane surface. At higher TMP, the formation of gel layer on membrane
surface was reduced and convective flux of serum increased due to the driving force on the membrane
surface. For a similar reason, the percentage change of permeate flux decreased with the increase of
TMP. As an outcome, concentration of protein in retentate side of the membrane, increased. As an
example, after volume reduction 2, concentrations of protein in storage tank of the membrane module
were 59.2 g·L−1 and 42 g·L−1, when filtration process was performed with TMP 3 bar, RFR 100 L·h−1

and 2 bar, RFR 100 L·h−1, respectively. At constant TMP, permeate flux was increased at higher RFR;
however, results were not statistically significant. The tubular membrane had the lower surface area to
volume ratio and, therefore, high feed flow rate promoted permeation. In cross-flow module, fluid on
the membrane surface flowed with horizontal direction on the membrane surface with higher velocity
and created more turbulence at higher RFR. Due to the sweeping action of fluid on the membrane
surface, the deposition of solute molecules on the membrane surface reduced. Lower deposition of
solute molecules on the membrane surface reduced the formation of concentration polarization and gel
layer resistance, accompanied by the increase rate of permeation. Moreover, it was found that rate of flux
declination was lower when the static turbulence promoter was used in the filtration process. The static
turbulence promoter offered tangential velocity of fluid across the membrane surface, which created
turbulence and vorticity of fluid on the membrane surface. Furthermore, the static turbulence promoter
provided centrifugal force on the fluid, which contributed driving force on the membrane surface.
All these factors reduced the deposition of solute molecules on the membrane surface and membrane
gel layer resistance, which offered higher permeate flux in filtration process. As permeate flux was
significantly higher in the static turbulence promoter-implemented filtration process, specific energy
consumption was studied with different TMPs and RFRs in static turbulence promoter-implemented
filtration process (Figure 3).

At constant TMP, values of specific energy consumption in filtration process were significantly
low at lower RFR. When RFR was 200 L·h−1, permeate flux was not significantly increased compared to
100 L·h−1 because RFR could not provide driving force on the membrane surface. Therefore, permeate
flux was not significantly increased compared to pressure drop at two opposite ends of the membrane.
Filtration process with static turbulence promoter, higher TMP and lower RFR, tangential velocity of
fluid across the membrane surface, driving, and centrifugal force on the fluid were generated. As an
outcome, permeate flux was increased and pressure drop was reduced. Protein concentration in
the retentate side of the membrane is also represented in Figure 3. It is noted that concentration of
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protein in the retentate side was higher with TMP 3 bar compared to TMP 2 bar. Protein concentration
increased due to higher permeation of serum through membrane pores at higher TMP. Concentration of
protein in retentate was not significantly increased at RFR 200 L·hh−1 compared to 100 L·hh−1, because
RFR could not generate the driving force on the membrane surface and osmotic pressure. In Figure 4,
time histories of the permeate flux, without and with the static turbulence promoter, are presented.
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It was noted that when the static turbulence promoter was used in membrane filtration process,
rate of flux declination and filtration time were reduced because the formation of gel layer was reduced
in the presence of static turbulence promoter inside of tubular membrane.

3.2. Molecular Weight of Different Proteins in Concentrated Milk and Their Enzymatic Hydrolysis

Analysis of molecular weight of different proteins in concentrated milk was performed using UV
chromatogram, total ion chromatogram (TIC), and deconvoluted mass spectrum of observed protein
spectra (Figure 5).Processes 2018, 6, x FOR PEER REVIEW  12 of 25 
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Major proteins provided pronounced UV signal at 280 nm. In that UV wavelength, three peaks
at 5.4 min, 5.6 min, and 5.8 min retention times were detected. Corresponding MS (TIC) signals
are fully matched with UV peaks and deconvolution of each chromatographic peak spectrum was
performed. Deconvoluted mass spectrum of proteins appeared in the retention time 5.4 min is
provided in Figure 5(C1). In this figure, it is noted that there are two major deconvoluted masses,
such as 19006 Da and 19038 Da. According to the previously published results, they might represent
κ-casein. Deconvoluted mass spectrum of proteins appeared in retention time 5.6 min is provided
in Figure 5(C2). In this figure, two major deconvoluted masses, such as 23617 Da and 23697 Da
are observed. Comparing with the previously published results, they might represent α-casein [97].
Protein with molecular mass 23617 Da might be dephosphorylated form of α-casein (-80 Da mass
shift from 23697 Da). Different types of caseins have a high degree of phosphorylation, which is
generally affected by high temperature treatment during milk processing [98]. Interestingly, two
protein with molecular mass shift +324 Da were observed in Figure 5(C2). These proteins with
molecular mass 23941 Da and 24022 Da might be the lactosylated form of their original protein.
Lactosylation of protein took place due to heat treatment during ultra-heat-treated milk production
and, subsequently, their storage. The Amadori product ε-lactulosyllysine is produced by free ε-amino
group of lysine in protein chain and milk sugar lactose [99]. It has been reported that protein become
more hydrophilic due to addition of lactose in its structure, which results a shift to lower retention
time [100,101]. Deconvoluted mass spectrum of proteins appeared in retention time 5.8 min is provided
in Figure 5(C3). In this figure, two major deconvoluted masses, such as 18282 Da and 18368 Da, along
with their lactosylated form with molecular mass 18606 Da and 18692 Da are observed. According to
the already published results, the original protein might represent β-lactoglobulin [97]. According to
the electrophoretic pattern, represented in Figure 6, ultra-heat-treated skimmed milk and milk with
concentrated proteins may have had immunoglobulin, lactoferrin, lactoperoxidase, bovine serum
albumin, α-casein, conjugated β-lactoglobulin, and α-lactalbumin or dimer β-lactoglobulin, β-casein,
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γ-casein, κ-casein, β-lactoglobulin, and α-lactalbumin with molecular weight ~150 kDa, ~80 kDa,
~78 kDa, ~66 kDa, ~35 kDa, ~34 kDa, ~25 kDa, ~22 kDa, ~20 kDa, ~18 kDa, and ~14 kDa, respectively.
Some other investigators also published similar results [83,102–104].Processes 2018, 6, x FOR PEER REVIEW  13 of 25 
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ultra-heat-treated skimmed milk, milk with concentrated proteins and milk with concentrated proteins
after enzyme treatment; lane 1: marker protein, lane 2: standard casein, lane 3: standard α-lactalbumin
and β-lactoglobulin, lane 4: ultra-heat-treated skimmed milk, lane 5: concentrated ultra-heat-treated
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concentrated liquid milk protein treated with 0.016 g L−1 of trypsin, lane 8:concentrated liquid milk
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In the PAGE image, hydrophobic protein conjugate with molecular weight ~34 kDa is clearly
visualized. It was reported that due to heat treatment of skimmed milk, sometimes β-lactoglobulin
and α-lactalbumin might participate in intermolecular thiol-disulphide bond interchange to produce
covalently bonded hydrophobic aggregates [105]. Another group of investigators reported that at
temperature more than 90 ◦C, β-lactoglobulin might present with disulphide-bonded dimer with
molecular weight ~34 kDa and monomer [106]. However, some researchers reported about the
formation of dimer α-lactalbumin with molecular weight ~28 kDa [107], but it was not found in our
investigation. From the above discussion, it may say that the molecular weight of casein in concentrated
milk, determined by SDS-PAGE and mass-spectroscopy is not directly comparable. It may explain by
the fact that the electrophoretic mobility of caseins in electrophoresis gel is lower than expected from
their molar mass [108]. It may be justified by the fact that phosphorylation [109] and lactosylation of
caseins [73] change the migration of casein molecules in electrophoresis gel. However, in SDS-PAGE,
several protein aggregates were present, they were absent in mass-spectrum. The possible reason is
that dissociation of protein molecules and disruption of any type of protein aggregate might done by
reducing agents DTT and chaotropic agent urea in sample preparation for mass-spectroscopy [110].

Without any contradiction, it was found that the numbers of peptide bands were increased
due to tryptic digestion of milk proteins (lane 6–9). The hydrolysis of concentrated milk proteins
was dose-dependent because it was noted that band numbers with lower molecular weight were
increased gradually with increase of enzyme concentration in hydrolysis reaction. Immunoglobulin
were hydrolyzed at more than 99% when concentration of trypsin was increased from 0.016 g·L−1 to
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0.032 g·L−1. Lactoferrin, lactoperoxidase, and bovine serum albumin were hydrolyzed at more than
99% due to treatment with 0.008 g·L−1 of trypsin. Furthermore, κ-casein and β-casein were hydrolyzed
at more than 99% when concentration of trypsin was increased from 0.008 g·L−1 to 0.016 g·L−1, whereas
α-casein was retained. α-casein was hydrolyzed at more than 99% with 0.064 g·L−1 of trypsin. This can
be justified by the fact that α-casein might has less chance to participate in enzymatic reaction because
in the interior part of casein micelle, calcium phosphate clusters bind with the phosphoseryl residues
of αs-casein and β-casein, whereas κ-casein was present in the periphery of casein micelle and received
chance to participate in enzymatic reaction [111]. Due to partial hydrolysis of β-casein with 0.008 g·L−1

of trypsin, some peptone and γ-casein with molecular weight ~22 kDa might produce and they were
hydrolyzed when milk with concentrated proteins was treated with 0.032 g·L−1 of trypsin. Dimer
β-lactoglobulin with molecular weight ~32 kDa was hydrolyzed when trypsin was increased from
0.016 g·L−1 to 0.032 g·L−1.

3.3. Antioxidant Capacity

Antioxidant capacity of milk with concentrated proteins was 167.35 ± 9.8 mg equivalent ascorbic
acid L−1 and it was increased after enzyme treatment. In Figure 7, it is noted that change of antioxidant
capacity in enzyme-treated milks was dose-dependent. Similar types of findings were also published
by other researchers [62,63].
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Trypsin is a serine endopeptidase, consisting of three amino acids, such as His 57, Ser 195, and Asp
102 in catalytic triad. In amino acid sequence, trypsin cleaves between the carboxyl group of basic
amino acid lysine or arginine in N terminal position and the amino group of the adjacent amino acid
with hydrophobic side chain in C terminal position. This cleavage does not occur when lysine or
arginine is followed by proline. Adjacent hydrophobic amino acid, such as alanine, isoleucine, leucine,
methionine, phenylalanine, valine, proline, and glycine in peptide chain, derived from milk proteins
by tryptic hydrolysis, offered reducing activity towards ferric ion [64,112,113].

3.4. Angiotensin Converting Enzyme-Inhibitory Activity

Angiotensin converting enzyme inhibitory activity of ultra-heat-treated skimmed milk and milk
with concentrated proteins was negligible. Inhibitions of angiotensin converting enzyme were ~15%
and ~6% for ultra-heat-treated skimmed milk and milk with concentrated proteins, respectively
(Figure 8A). Our finding was similar in accordance with other researchers [114,115].
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It can be justified by the fact that interaction between active side of angiotensin converting
enzyme and native milk proteins might not be facilitated, because steric hindrance might present [116].
Angiotensin converting enzyme in concentrated milk proteins significantly increased after trypsin
treatment. Similar types of findings were reported by other investigators [117,118]. Changes of IC50

value in liquid milk protein concentrate due to enzyme treatment were dose-dependent (Figure 8B).
Because of tryptic hydrolysis of milk proteins, active sides in low molecular weight peptides were
exposed and interaction with angiotensin converting enzyme was facilitated. It was reported that
peptides with hydrophobic amino acids, such as proline, tryptophan, tyrosine, and phenylalanine at
C-terminal position, are able to bind with angiotensin converting enzyme [119,120]. In our investigation,
more than 95% inhibition was not achieved. This can be justified by the fact that angiotensin converting
enzyme inhibitory peptides, produced by tryptic hydrolysis of milk proteins might change the structural
configuration of angiotensin converting enzyme, which might not favorable for interaction between
substrate and angiotensin converting enzyme [121].

3.5. Antibacterial Activity

Antibacterial activity (represented in zone of inhibition) of enzyme-treated liquid milk protein
concentrate towards Bacillus cereus and Staphylococcus aureus was proven. No zone of inhibition was
found when milk with concentrated proteins was tested. In Figure 9, radius of zone of inhibition
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represented the antibacterial activity of milk with concentrated proteins after enzyme treatment
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Zone of inhibition (radius of inhibition zone) was significantly increased when concentration
of trypsin was increased from 0.008 g·L−1 to 0.032 g·L−1 during hydrolysis of liquid milk protein
concentrate. It was found that for Bacillus cereus, values of zone of inhibition (radius of inhibition zone)
were 2.5 ± 0.5 mm and 5.2 ± 0.3 mm, when concentrated milk protein was treated with 0.008 g·L−1 and
0.064 g·L−1 of trypsin, respectively. For Staphylococcus aureus, values of zone of inhibition (radius of
inhibition zone) were 2.3 ± 0.03 mm and 4.5 ± 0.5 mm when concentrated milk protein was treated with
0.008 g·L−1 and 0.064 g·L−1 of trypsin, respectively. Several biochemical mechanisms about antibacterial
activity of enzyme-treated liquid milk protein concentrate were reported. Trypsin cleaves the peptide
bond at the C-terminus of lysin and arginine, when the N terminus is not a proline. Several peptides
with hydrophobic, hydrophilic or amphipathic amino acids, produced due to tryptic hydrolysis of
milk proteins. These peptides may interact with peptidoglycan in bacterial cell membrane, create a
complex with bacterial cell wall components, and, subsequently, create pores in bacterial cell membrane.
These pores might expedite the permeabilization of cellular contents to the abiotic environment and
subsequently, destruction of cell. It has been also reported that interaction between bacterial cell
membrane with antibacterial peptides frequently leads to lipid segregation in the cell membrane.
It leads to delocalization of essential membrane proteins, increase membrane permeability, inhibit cell
division, followed by cellular death [122,123].

3.6. Allergenicity

Immunoblotting, a combination of gel electrophoresis and antigen-antibody reaction was
performed with positive pooled human sera to understand the allergenic potentiality of proteins,
present in liquid milk protein concentrate. It was reported that major cow milk allergens belong to the
casein fraction (αS1-, αS2-, β-, and κ-casein), and whey proteins α-lactalbumin and β-lactoglobulin;
however, lactoferrin, bovine serum albumin and immunoglobulins, which are present with lower
quantities in cow milk, have importance in allergenic reaction [22]. In present investigation, it was
noted that however, immunoglobulin, lactoferrin, lactoperoxidase, bovine serum albumin, and casein
had strong interaction with antibody, monomericβ-lactoglobulin had weak interaction, and monomeric
α-lactalbumin had no detectable interaction (Figure 10).
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Figure 10. Immunoblot of ultra-heat-treated skimmed milk, milk with concentrated proteins and milk
with concentrated proteins after enzyme treatment; lane 1: marker protein, lane 2: standard casein,
lane 3: standard α-lactalbumin and β-lactoglobulin, lane 4: ultra-heat-treated skimmed milk, lane 5:
concentrated ultra-heat-treated skimmed milk, lane 6: concentrated liquid milk protein treated with
0.008 g·L−1 of trypsin, lane 7: concentrated liquid milk protein treated with 0.016 g·L−1 of trypsin, lane
8: concentrated liquid milk protein treated with 0.032 g·L−1 of trypsin, lane 9: concentrated liquid milk
protein treated with 0.064 g·L−1 of trypsin.

This result can be explained by the following justifications. As the experiment was performed
with ultra-heat-treated skimmed milk, due to heat treatment most of α-lactalbumin and β-lactoglobulin
were unfolded, and allergenic epitopes in α-lactalbumin and β-lactoglobulin were destroyed [104,124].
Allergenic epitopes in higher molecular weight proteins, such as bovine serum albumin, lactoperoxidase,
conjugated α-lactalbumin, and β-lactoglobulin or α-casein were not fully affected during heat
treatment because their denaturation temperatures were quite high [104,125]. In an investigation with
20 children (median age 4 months), it was also found that, however, αS1-casein, αS2-casein, β-casein,
κ-casein, bovine serum albumin, Immunoglobulin-G heavy chain, and lactoferrin had allergenic
cross-linking, α-lactalbumin did not have any allergenic activity [126]. However, all proteins in
concentrated milk, except α-lactalbumin, were immunoreactive; they lost allergenic activity due to
enzymatic hydrolysis. Residual immunoreactivity of caseins and dimeric β-lactoglobulin or conjugated
α-lactalbumin-β-lactoglobulin were still present at 0.016 g·L−1 of trypsin treatment. They lost allergenic
potentiality when 0.032 g·L−1 of trypsin was used in enzymatic reaction.

3.7. Superiority of the Process

After skillful experiment to prepare liquid skimmed milk protein concentrate, the superior
operation strategy was trans-membrane pressure 3 bar, retention flow rate 100 L·h−1,
and implementation of a static turbulence promoter within a tubular ceramic membrane with pore size
5 nm and filtration area 5 × 10−3 m2. In the present investigation, a cross-flow membrane module was
adopted and batch-mode filtration was performed with volume reduction factor 2. To prepare milk
protein concentrate, polymeric spiral wound [19,127,128], single flat sheet [13,129,130], and tubular [131]
membranes were used. Furthermore, ceramic tubular membrane was used to prepare milk protein
concentrate by several investigators [132–136]. Single stage membrane filtration [19,127,129,131,136]
and ultrafiltration with diafiltration were used by several investigators to prepare milk protein
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concentrate [137,138]. Both continuous and discontinuous diafiltration were adopted to reduce major
whey proteins, such as α-lactalbumin and β-lactoglobulin from casein fraction by ultrafiltration or
nanofiltration membrane. In continuous diafiltration process, sterilize water was added to the feed tank
to maintain the feed volume, whereas discontinuous diafiltration was introduced in the process when
the feed concentration reached to a certain level to overcome the high viscosity of feed and protect the
membrane by fouling. However, milk protein concentrate was prepared by both polymeric and ceramic
membrane; flux declination is a considerable drawback. To overcome this issue, stepwise increase of
TMP was adopted in sometimes [131,134] and it may feel that in respect of energy consumption, this
approach is not appreciable. In our investigation, due to application of the static turbulence promoter
reduction of permeate flux was remarkably low. The experiment was started with 1 L of milk in the
feed tank and after volume reduction factor 2 without diafiltration, initial permeate flux 34 L·m−2

·h−1

reduced to 26 L·m−2
·h−1, i.e., only 24% reduction in permeate flux. During filtration, consumption of

mechanical energy, contributed by fluid flow rate and TMP was 4.9 kWh m−3. However, in SDS-PAGE
image all proteins in concentrated milk were clearly visualized, but in immunoblot it was found
that monomeric α-lactalbumin and β-lactoglobulin did not offer allergenicity, due to change of their
structural configuration during heat treatment. Hence, diafiltration was not required to fulfil the
objective of present investigation. Filtration process without diafiltration might be reduced the water
consumption and process time. According to our experimental finding, application of 0.032 g·L−1

of trypsin to liquid milk protein concentrate at temperature 40 ◦C for 10 min can delete allergenic
epitopes and increase the antioxidant capacity, anti-angiotensin enzyme activity, and antibacterial
activity compared to native milk protein concentrate. According to the literature review, it may be
considered that it is the first approach in the context of development of dairy-based hypoallergenic
functional food by membrane- and enzyme- based technologies.

4. Conclusions

In the present investigation, liquid milk protein concentrate with antioxidant capacity,
anti-angiotensin activity, antibacterial activity, and allergen-free was produced from ultra-heat-treated
skimmed milk by combination of membrane- and enzyme- based technologies. A ceramic-made tubular
nanofiltration membrane with pore size 5 nm, placed in a cross-flow membrane house, was used for the
production of liquid milk protein concentrate by reducing milk serum as a permeate. As the mean radius
of casein micelle and their conjugated form with whey proteins in ultra-heat-treated skimmed milk
were quite high compared to the pore size of the nanofiltration membrane, they were almost rejected
by the membrane. Membrane filtration process alone cannot change the biological activities of milk
proteins. Biological activities of protein derivatives, i.e., peptides offer antioxidant capacity, angiotensin
converting enzyme inhibitory activity, and antibacterial activity. Therefore, milk with concentrated
proteins from the retentate side of the membrane was treated with the different concentrations of trypsin,
such as 0.008 g·L−1, 0.016 g·L−1, 0.032 g·L−1, and 0.064 g·L−1 in individual batch-mode experiments.
Hydrolysis of milk protein was enzyme dose dependent because trypsin cleaves the peptide bond at
the C-terminus of lysin and arginine in specific way. Antioxidant capacity, angiotensin converting
enzyme inhibitory activity, and antibacterial activity of liquid milk protein concentrate were increased
depending on the enzymatic hydrolysis of milk proteins. Trypsin concentration 0.032 g·L−1 was able to
reduce allergenic epitopes at more than 99.9% in liquid milk protein concentrate.

After summarizing all experimental results, one may believe that the proposed technology may
reduce the limitations of milk protein concentrate production and increase the consumption of dairy
products. To the best of our knowledge, this is the first attempt to produce liquid milk protein
concentrate with antioxidant capacity, angiotensin converting enzyme inhibitory activity, antibacterial
activity, and hypoallergenic property by membrane filtration and enzymatic modification of proteins.
In general, small-scale and medium-scale dairy plants prefer to use liquid milk protein concentrate
for preparing cultured-dairy products instead of using dried milk protein concentrate for economical
issue. Therefore, to implement this process in industrial scale, further systematic investigation with
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techno-economical viewpoint is a prerequisite. However, in the present investigation molecular weight
of peptides derived from concentrated milk proteins were determined by SDS-PAGE; more accurate
results about molecular mass distribution of peptides and their sequences may be determined by a
LC-ESI-Q-TOF-MS-based bottom-up sequencing in future research. In the groundbreaking research
area of food biotechnology, one may expect that the proposed research may receive attention from
academic and industrial sectors.
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