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Abstract: A computational methodology based on inverse modeling and metaheuristics is presented
for determining the best parameters of kinetic models aimed to predict the behavior of biomass
depolymerization processes during size scaling up. The Univariate Marginal Distribution algorithm,
particle swarm optimization, and Interior-Point algorithm were applied to obtain the values of the
kinetic parameters (KM and Vmax) of four mathematical models based on the Michaelis–Menten
equation: (i) Traditional Michaelis–Menten, (ii) non-competitive inhibition, (iii) competitive inhibition,
and (iv) substrate inhibition. The kinetic data were obtained from our own experimentation in
micro-scale. The parameters obtained from an optimized micro-scale experiment were compared
with a bench scale experiment (0.5 L). Regarding the metaheuristic optimizers, it is concluded that
the Interior-Point algorithm is effective in solving inverse modeling problems and has the best
prediction power. According to the results, the Traditional model adequately describes the micro-scale
experiments. It was found that the Traditional model with optimized parameters was able to predict
the behavior of the depolymerization process during size scaling up. The methodology followed in
this study can be adopted as a starting point for the solution of future inverse modeling problems.

Keywords: depolymerization; inverse modeling; kinetic parameters; metaheuristics; Michaelis–Menten

1. Introduction

Vegetal biomass (VB) is an alternative for biofuel production. VB is mainly composed of cellulose,
hemicellulose, and lignin and can be transformed into different products through four fundamental
stages: (i) conditioning, (ii) depolymerization or enzymatic hydrolysis, (iii) fermentation, and (iv)
the downstream process [1,2]. In this context, the depolymerization stage is the most expensive,
and predicting the reaction behavior is essential to achieve a higher reaction yield. One of the most
widely used models to describe the behavior of this phenomenon is the Michaelis–Menten (M–M)
equation. The M–M equation consists of two parameters: the Michaelis constant (KM) and the
maximum reaction velocity (Vmax), which describe the speed of the enzymatic reactions related to the
reaction rate (rs) and the concentration of a substrate (S), as described in Equation (1) [3].

− rs = −
dS
dt

=
Vmax × S
KM + S

(1)
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The determination of these parameters (Vmax and KM) allows one to predict the behavior of
the depolymerization reaction. This equation has been used to follow various enzymatic reactions,
e.g., hydrolysis of proteins, biomass, and even the elimination or interaction of drugs in the human
body [2–4]. A methodology that can be followed to obtain these parameters is inverse modeling (IM)
supported by computational intelligence (CI) methods. On the one hand, IM consists of estimating the
parameters in a mathematical model from measured observations [5]. This type of estimation begins
with comprehensive data at the level of intact systems. It leads to inferences of parameter values at
lower levels of organization—namely, features of individual processes. Thus, it is called “top-down”
or “inverse” [6].

On the other hand, CI can be defined as a set of nature-inspired computational models that
comprehend the subfields of fuzzy logic, artificial neural networks, and evolutionary algorithms.
These models are designed to address real-world problems of prediction, control, classification,
optimization, and other tasks [7]. Optimization methods of CI, also known and hereafter referred
to as metaheuristics, have been successfully applied to identify a vast number of nonlinear dynamic
systems [8] and parameter estimations and facilitate the structure identification of biochemical
systems [6]. To address the IM, not only metaheuristics (such as genetic algorithms, simulated
annealing particle swarm optimization (PSO), or Estimation of Distribution algorithms (EDAs) but
also other algorithms for specific biochemical systems (such as alternating regression, eigenvector
optimization, and dynamic flux estimation) have been applied [6]. Among the available methods,
EDAs and PSO have been recently studied for biochemical parameter estimation and have shown to
be optimal algorithms for some hyper-parameter tuning applications [9,10].

In the biofuel area, depolymerization experiments are developed at the flask level, evaluating
multiple parameters resulting in large assay experiments with intensive requirements. To reduce
these intensive requirements and enable the evaluation of numerous parameters, micro-scale
experiments have been proposed as an alternative tool to optimize some aspects of bioprocesses (e.g.,
biomass depolymerization) [11]. In addition, few reports have been published on an assay of the
depolymerization process at a micro-scale [11–13]. This may be because the methodology has not been
validated as a tool that can predict the behavior of depolymerization at larger scales.

Given the high number of experiments and parameters to evaluate, the implementation of a
numerical analysis is necessary to study and improve the depolymerization process. The main objective
of this research is to obtain the best parameters for kinetic models based on the Michaelis–Menten
equation to identify the model with the highest predictive power at micro-scale data so that it can
be used to predict the depolymerization process during size scaling up. To achieve this objective,
a computational methodology based on IM and metaheuristics was applied to 14 micro-scale (1 mL)
depolymerization experiments previously reported in [12].

The next section describes how the experimental observations were obtained, the formulation of
IM as an optimization problem, the metaheuristics employed for kinetic parameter determination,
and the procedures followed to apply the computational methodology.

2. Materials and Methods

2.1. Experimental Data Collection

The experimental procedures for biomass pretreatment and enzymatic hydrolysis were previously
reported by Molina et al. [12]. Nevertheless, the trajectories of the experimental kinetics were not
reported, and the kinetic parameters were not determined in that study. Briefly, the substrate used was
wheat straw (WS) delignified with the alkaline peroxide method. The enzyme used was Accellerase
1500® gently donated by Genencor® (Danisco, Rochester, NY, USA). The experimental observations
were obtained from micro-scale experiments (1 mL of work volume). These experiments were subject
to an experimental optimization design (Central Composite Design (CCD)) while varying the operating
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parameters (potential of hydrogen (pH), temperature (◦C), and enzyme–substrate ratio (µL/mg)) as
shown in Table 1.

Table 1. Experimental conditions for enzyme depolymerization at micro-scale. pH stands for potential
of hydrogen.

Experiment pH ◦C µL/mg Experiment pH ◦C µL/mg

1 4.3 48 1.4656 8 4.0 55 0.9000
2 4.3 62 0.3343 9 6.0 55 0.9000
3 4.3 62 1.4656 10 5.0 45 0.9000
4 5.7 48 0.3343 11 5.0 65 0.9000
5 5.7 48 1.4656 12 5.0 55 0.1000
6 5.7 62 0.3343 13 5.0 55 1.8000
7 5.7 62 1.4656 14 5.0 55 0.9000

The CCD allowed us to obtain a statistical model that showed the optimal operating parameters
of the depolymerization process. A micro-scale experiment was developed using the optimized
operative parameters, and the trajectory was followed. Finally, a bench scale experiment (0.5 L) was
performed, thereby reproducing the operative parameters obtained in the optimized micro-scale
experiment. The main difference between the micro-scale and the bench scale experiments was the
stirring. The micro-scale experiments used high orbital shaking (700 rpm), while the bench scale
experiment used propeller shaking (150 rpm). At both scales, the orbital and propeller shaking were
high, allowing us to maintain spatial homogeneity, which was previously suggested for the study
of reactors as ideal systems [14]. However, during scaling, homogeneity may be reduced and cause
interference in the mass transfer. The details are described in [12].

2.2. Inverse Modeling

The ability of four mathematical models based on the Michaelis–Menten equation (Equations (2)–(5))
to fit the experimental observations of biomass depolymerization was evaluated. For these models,
the parameters Vmax, KM, I, and K stand for the maximal velocity, substrate concentration (S) at
half-maximal velocity, inhibitor concentration, and characteristic constant, respectively. The K
parameter is an offset that enables the kinetic models to adapt to the initial conditions.

Michaelis–Menten:
− rs = −

dS
dt

=
Vmax × S
KM + S

+ K (2)

Non-Competitive Inhibition:

− rs = −
dS
dt

=
Vmax × S

(KM + S) × (1 + I
KI
)
+ K (3)

Competitive Inhibition:

− rs = −
dS
dt

=
Vmax × S

KM × (1 + I
KI
) + S

+ K (4)

Substrate Inhibition:
− rs = −

dS
dt

=
Vmax × S(

KM + S + S2

KI

) + K (5)

The depolymerization data were calculated indirectly according to the concentration of the
reducing sugar (RS) for each time step using Equation (6):

C0
ws = XwsCws; Cws = C0

ws −
MWcellulose

MWRS
CRS (6)
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where C0
ws is the initial concentration of WS, Xws is the fraction of cellulose + hemicellulose in the

dried substrate (0.825 mg/mg), Cws is the dried WS concentration in the enzymatic hydrolysis media
(10 mg/mL), MW is the molecular weight of the cellulose, Cws is the concentration of the substrate,
and CRS is the concentration of reducing sugars reported as glucose equivalents [12].

In this work, the aim of the inverse modeling is to find the Michaelis–Menten model that best fits

the substrate concentration S = (S1, . . . Sn)
T to the experimental data Cws =

(
C1

ws, . . . , Cn
ws

)T
obtained

from n instants during the depolymerization process. To measure the quality of the fit achieved by

each model, the weighted least square cost function χ2 =
n∑

i=1
wi·

(
Si −Ci

ws

)2
is implemented. The weight

factor is defined by w = (w1, . . . , wn)
T =

(
1/σ2

1, . . . , 1/σ2
n

)T
, where σn is the standard deviation [15].

The four models require a set of parameters (θ ∈ R4) to be specified, such that S(θ) can be obtained by
solving the associated differential equation. Thus, the measure χ2 can be defined to quantify how well
an enzymatic model reproduces Cws for a given θ. Therefore, the aim of the inverse modeling can be
achieved through a parameter identification process formulated as the following optimization problem:

θ∗ = min
θ
χ2(θ); subject to 0 < θi, i = 1, . . . , 4 (7)

where θ∗ = (V∗max, K∗m, I∗, K∗)T is the optimal kinetic parameter vector obtained from the
four-dimensional space of the positive real values excluding the origin. Since it is unknown if two
different sets of parameters θ1 and θ2 could lead to the same measure χ2, we cannot assume a functional
relationship between θ and χ2. Furthermore, the relevant characteristics of this measure, such as
the convexity or roughness of its corresponding response surface, are also unknown. Consequently,
sophisticated optimizers need to be applied to solve Equation (7).

2.3. Metaheuristics

Metaheuristics are approximate optimization techniques that provide acceptable solutions for
solving complex problems [16]. These techniques are frequently used to deal with optimization
problems where the solution cannot be found with exact methods or where the computational time
required to draw the solution is so high that the problem becomes intractable.

For the inverse modeling problem stated in Equation (7), preliminary results were reported with
the Nelder–Mead algorithm in [17]. This study showed that Nelder–Mead is effective at minimizing χ2;
however, the best kinetic parameters found (θ∗) with this method lacked physical meaning. The reason
for this result is that Nelder–Mead is an unconstrained method; therefore, the search for the optimal
set of parameters is prone to reaching infeasible regions.

The problem presented by the Nelder–Mead algorithm can be solved via constrained optimization
methods that retain the candidate solutions inside feasible regions. Three generic constrained
optimization methods were employed: (i) the Univariate Marginal Distribution algorithm (UMDAG

c ,
hereafter referred to as UMDA) [18]; (ii) particle swarm optimization [19]; (iii) the Interior-Point
algorithm [20]. These three methods differ in their exploration of search spaces and are selected to
understand the different aspects of the quality measure χ2. The next lines describe the implementation
of these methods.

UMDA and PSO are metaheuristics from different families. UMDA is an example of the Estimation
of Distribution algorithms. EDAs explore the solution space by iteratively building and sampling
explicit probabilistic models of candidate solutions that guide their search. The generic procedure,
presented in Algorithm 1, is as follows [21]: The method starts by measuring the quality of a set of
random candidate solutions sampled from a uniform distribution. Then, a fraction of the best solutions
is selected to construct an estimate of their probability distribution (the mean and standard deviation
for a normal distribution in the case of the UMDA). By sampling this distribution, new solutions are
generated to update the model. Thus, the estimated probability distribution is improved. A bias to the
best solutions is the fundamental idea behind EDAs; the aim is that after some iterations, the random
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candidate solutions will converge to an optimal solution (assuming that this solution exists and is
unique, i.e., assuming that the solution space is convex). The proof of the convergence of the algorithm
implemented in our work (UMDA), as well as that of other EDAs, is provided in [22]. This process
is repeated until a termination criterion is met (usually, when a maximum number of iterations is
reached). Depending on the specific probabilistic model built, an EDA takes a name. The UMDA

then builds a Gaussian model P from a set of solutions Θ =
{
θ j

}M

j=1
, with the parameters given by

(Equation (8)):

µκ =
1
M

M∑
j=1

θ j,κ; σk =

 1
M− 1

M∑
j=1

(
θ j,κ − µκ

)2


1/2

(8)

where M is the number of solutions considered to compute these parameters, and θ j,κ represents the
κ-th component of a solution θ j, which is a D-dimensional vector in RD. The UMDA was implemented
in this work to observe if the measure χ2 can be regarded as convex. A drawback of the UMDA is that
the algorithm is sensitive to local minima. Thus, if different runs of the UMDA lead to different answers,
the response surface of the quality measure may contain more than one minimum, i.e., the quality
measure may not be convex.

Algorithm 1 General Estimation of Distribution Algorithm

1: Generate an initial population of N candidate solutions: Θ(0) =
{
θ j

}N

j=1
at iteration t = 0, uniformly

2: WHILE (stopping criteria are not met) // N = 100 in this work
3: Compute the quality measure of each candidate solution g

(
θ(t)

)
// χ2 in this work

4: Select a subset of the best solutions, θ(t)M from θ(t) // M = 0.5 N in this work
5: Build a probabilistic model P(t) based on θ(t)M
6: Sample P(t) to generate new solutions θ′(t)

7: Substitute/Incorporate θ′(t) into θ(t)

8: Update t = t + 1
9: END WHILE
10: Output the best solution found, θ∗, as a result

PSO is a member of the bio-inspired metaheuristics family that emulates the collective behavior
of swarms (such as a flock of birds or a school of fish) to explore continuous search spaces looking for
the optimal value. In this simulation, each particle of the swarm corresponds to a candidate solution
(θ). An iterative process like the UMDA is then followed, except for the model-updating mechanism.
For each iteration (t) of the PSO, the particle with the best quality measure (θ∗(t)) is identified. Then,

the rest of the particles (
{
θ j

}N−1

j=1
) update their positions according to the directional vector (θ j − θ

∗(t))

plus a random walk, described as Equation (9) [23]:

vt+1
j = ωvt

j + U(0,φ1) ⊗
(
θb

j − θ j
)
+ U(0,φ2) ⊗

(
θ∗(t) − θ j

)
; θt+1

j = θt
j + θ

t+1
j (9)

where U(0,φ) represents a vector of random numbers, uniformly distributed in [0,φ] and generated
at each iteration for each particle, and the operator ⊗ represents a component-wise multiplication.
The parameters φ1 and φ2 are known as acceleration coefficients. They determine the magnitude of
the random forces in the direction of the best position in the trajectory of a given particle (θb

j ) and the

neighborhood best θ∗(t). The values of φ1 = φ2 = 2.0 are generally adopted. ω is termed the inertia
weight, which can be interpreted as the fluidity of the medium in which a particle moves; this value
is commonly initialized to a high value (e.g., 0.9) and gradually reduced to a low value (e.g., 0.4).
The PSO is considered in this study since it has been proven to solve highly complex optimization
problems. Importantly, it has the advantage of avoiding local minima. Thus, if the quality measure of
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the inverse modeling problems is rough, the PSO can offer better answers than the UMDA. The main
drawback of PSO is its stochastic nature, which means that no convergence warranties can be offered.

Interior-Point algorithms (IPAs) are not metaheuristics in a strict sense but exact methods that
improve the performance of the optimization process in terms of both computational time and the
ability to handle degenerate problems (by employing one of several heuristics) [24]. IPAs emerged
as an extension of the simplex method to solve complex linear programming problems (involving
thousands of constraints and variables). In contrast to the simplex algorithm, where the movement of
candidate solutions (θ) occurs along the boundary of the feasible region, the points generated by IPAs
lie in the interior of the inequality constraints, hence the name “Interior-Point”. IPAs provide a natural
way to incorporate inequality constraints into the objective function and transform a constrained
optimization problem into an unconstrained one. The idea is to add barrier functions to the original
objective function like in the Lagrange multiplier method [25]. A common formulation of the barrier
method is the following:

min
θ,s

f (θ) − µ
m∑

i=1

ln si; subject to h(θ) = 0; g(θ) + s = 0 (10)

where µ > 0 is the barrier parameter, and the slack variable s is assumed to be positive. From among
the several existing Interior-Point algorithms, we implemented the version in [20] (which starts from
Equation (10)) because it includes heuristics in the trust region to 1) avoid approaching the boundary
of the feasible regions too soon and 2) allows the algorithm to treat convex and non-convex problems
uniformly by facilitating the use of second derivative information when the problem is non-convex.
In this work, the Interior-Point algorithm was implemented to evaluate if the measure χ2 could be
treated as a function of the parameter set (θ). Thus, for this method, it is assumed that f (θ) = χ2.
The main drawback of IPAs is that they are sensitive to an initial estimate of the solution required
to perform the optimization process, suggesting that a different initial point can lead to a different
solution [26].

The PSO and the Interior-Point algorithms were adapted to solve the inverse modeling problem
by using the particle swarm and fmincon MATLAB® procedures (with default hyper-parameter
values), respectively. As the UMDA is not a MATLAB procedure available in the optimization toolbox,
it was implemented by following Algorithm 1. The differential equations of the models described in
Equations (2)–(5) were solved using the ODE45 procedure as an implicit step in the quality measure
computations. The initial values of Vmax and KM were calculated by the Eaddie–Hofstee diagram [27].

Although the quality measure χ2 is effective to measure the fit level accuracy of kinetic models to
experimental data, this measure is not informative. To ease the interpretation of the results provided by
the optimization methods, the proportions of the variation between the fitted models and experimental
data were obtained by calculating the determination coefficients

(
R2

)
. The closer to the unit this

coefficient is, the more qualitative the model. A zero value of R2 means that the kinetic model behaves
as a constant function, and a negative value indicates that more variables need to be integrated into the
model to explain the experimental data. As suggested in [28], the performance of predictive models
should be measured by following a multidimensional approach. In this work, the R2 was considered
to evaluate the correspondence between predictions and experimental data, the mean square error
(MSE) was used to evaluate the prediction accuracy, and Akaike’s information criterion (AIC) was
used to quantify the model complexity. These three metrics are described as Equations (11)–(13):

R2 = 1−
SSres

SStot
=

∑
i

(
Ci

ws − Si
)2

∑
i

(
Ci

ws −Cws
)2 (11)
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where i refers to the i-th datum for each experiment. Further, the mean square errors were calculated by:

MSE =
SSres

n
(12)

where n is the number of data in each experiment.
The AIC combines the quality of fit and the parameter number (prm) of models, allowing to

compare models of varying complexity [29]. The AIC is defined by the Equation (13):

AIC = n·ln
(SSres

n

)
+ 2(prm + 1) (13)

2.4. Experimental Methodology

The procedure followed for the evaluation of kinetic models is summarized in Algorithm 2.
Each experimental dataset, with its conditions reported in Table 1, was partitioned to conduct a 4-fold
cross validation scheme. For the sake of a fair comparison between models, each model employed
the same data for training along with the same test data. The final performance was computed as an
average of the four cross-validations, and these results are reported in Table 2. The criterion to select
the best model was Akaike’s information since it achieves a trade-off between model complexity and
data fitting.
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Table 2. Best-fitting models and parameters found by optimizer: Interior-Point Algorithm (IPA), Particle Swarm Optimization (PSO) and Univariate Marginal
Distribution Algorithm (UMDA). Vmax (mg/mL × s), KM (mg/mL), I (mg/mL). MSE: mean square error.

Experiment Optimizer Best-fitting Kinetic Model R2 Train AIC Mean ± Std χ2 Vmax
* Km

* K* I* MSE Train MSE Test

1
IPA Traditional 0.98 ± 0.03 −15.29 ± 11.52 2.77 ± 5.0 1.43 0.58 1.25 0.02 ± 0.03 0.01 ± 0.02
PSO Traditional 0.88 ± 0.10 −2.01 ± 5.80 15.76 ± 3.59 0.83 8.25 0.32 0.19 ± 0.19 1.05 ± 1.38

UMDA Non-Competitive I. 0.81 ± 0.12 2.88 ± 5.11 23.55 ± 14.6 2.19 3.29 0.80 4.33 0.31 ± 0.23 0.76 ± 0.57

2
IPA Traditional 0.86 ± 0.21 −11.08 ± 5.45 12.72 ± 19.33 1.05 8.25 0.44 0.06 ± 0.06 0.08 ± 0.07
PSO Non-Competitive I. 0.82 ± 0.25 −8.92 ± 6.32 31.17 ± 55.71 3.21 8.25 0.73 4.02 0.06 ± 0.05 0.09 ± 0.06

UMDA Non-Competitive I. 0.82 ± 0.14 −6.33 ± 5.81 16.19 ± 19.77 3.47 4.21 1.04 6.66 0.09 ± 0.07 0.1 ± 0.09

3
IPA Traditional 0.90 ± 0.16 −4.63 ± 8.43 6.32 ± 8.78 0.55 8.25 0.17 0.17 ± 0.22 0.39 ± 0.02
PSO Competitive I. 0.90 ± 0.14 −2.51 ± 6.85 7.3 ± 9.95 1.15 7.84 0.15 8.11 0.16 ± 0.15 0.18 ± 0.11

UMDA Substrate I. 0.81 ± 0.10 1.63 ± 4.06 22.12 ± 14.81 4.96 7.74 1.23 0.39 ± 0.17 0.81 ± 0.63

4
IPA Traditional 0.98 ± 0.01 −7.79 ± 3.66 43.98 ± 58.02 0.17 8.25 0.04 0.07 ± 0.05 0.73 ± 1.14
PSO Non-Competitive I. 0.80 ± 0.33 6.67 ± 9.17 144.2 ± 188.17 8.04 0.10 2.62 8.25 0.57 ± 0.87 0.85 ± 1.25

UMDA Substrate I. 0.86 ± 0.07 3.73 ± 3.13 227.62 ± 121.3 4.80 6.40 1.26 0.49 ± 0.21 1.12 ± 0.91

5
IPA Non-Competitive I. 0.87 ± 0.06 3.97 ± 2.1 37.01 ± 65.49 0.38 8.25 0.12 0.001 0.37 ± 0.13 0.65 ± 0.62
PSO Non-Competitive I. 0.84 ± 0.08 5.06 ± 2.55 37.19 ± 65.92 2.16 2.31 0.6 7.97 0.44 ± 0.20 1.03 ± 1.01

UMDA Non-Competitive I. 0.78 ± 0.14 6.48 ± 1.85 38.14 ± 66.29 1.52 5.78 0.34 7.94 0.56 ± 0.16 0.75 ± 0.60

6
IPA Non-Competitive I. 0.72 ± 0.15 −20.73 ± 6.98 12.86 ± 4.66 2.06 8.25 0.99 5.58 0.01 ± 0.01 0.01 ± 0.00
PSO Traditional 0.81 ± 0.09 −20.64 ± 4.58 8.89 ± 3.07 5.37 0.66 4.90 0.01 ± 0.01 0.01 ± 0.01

UMDA Traditional 0.64 ± 0.04 −21.18 ± 1.99 15.48 ± 1.56 6.36 6.35 3.50 0.01 ± 0.00 0.02 ± 0.01

7
IPA Competitive I. 0.76 ± 0.33 −22.2 ± 3.87 47.33 ± 83.02 2.13 1.50 1.44 5.58 0.01 ± 0.00 0.02 ± 0.01
PSO Traditional 0.77 ± 0.16 −22.35 ± 2.68 50.41 ± 78.26 3.81 8.25 1.80 0.01 ± 0.00 0.02 ± 0.02

UMDA Non-Competitive I. 0.82 ± 0.17 −23.27 ± 3.49 48.61 ± 78.27 6.12 5.15 2.06 5.22 0.01 ± 0.00 0.02 ± 0.01

8
IPA Traditional 0.89 ± 0.16 −8.22 ± 6.91 396.46 ± 784.32 0.97 8.25 0.38 0.09 ± 0.11 0.06 ± 0.05
PSO Traditional 0.89 ± 0.14 −7.5 ± 6.02 398.22 ± 782.66 0.88 3.82 0.5 0.10 ± 0.10 0.10 ± 0.07

UMDA Non-Competitive I. 0.75 ± 0.12 1.12 ± 1.54 428.95 ± 764.32 2.57 3.61 1.40 0.97 0.27 ± 0.07 0.38 ± 0.71

9
IPA Traditional 0.87 ± 0.15 −6.75 ± 4.9 237.31 ± 444.35 0.58 8.25 0.22 0.11 ± 0.10 0.25 ± 0.36
PSO Non-Competitive I. 0.86 ± 0.12 −3.38 ± 2.71 243.96 ± 441.48 7.21 0.18 6.86 0.0001 0.14 ± 0.07 0.11 ± 0.12

UMDA Non-Competitive I. 0.8 ± 0.09 −0.3 ± 3.58 259.85 ± 419.39 4.58 4.53 1.30 7.01 0.22 ± 0.10 0.23 ± 0.13

10
IPA Traditional 0.88 ± 0.2 −9.58 ± 6.29 57.97 ± 83.54 0.83 8.25 0.33 0.07 ± 0.09 0.08 ± 0.03
PSO Competitive I. 0.9 ± 0.07 −7.79 ± 6.27 88.4 ± 132.63 1.28 2.47 0.85 0.23 0.07 ± 0.05 0.11 ± 0.08

UMDA Non-Competitive I. 0.86 ± 0.06 −3.85 ± 5.28 91.28 ± 70.49 5.05 4.26 1.39 7.60 0.13 ± 0.09 0.13 ± 0.13

11
IPA Traditional 0.86 ± 0.24 −18.82 ± 7.1 57.15 ± 102.38 3.83 7.26 1.83 0.01 ± 0.00 0.07 ± 0.09
PSO Traditional 0.86 ± 0.23 −16.58 ± 2.91 63.04 ± 103.31 3.92 8.20 1.78 0.01 ± 0.00 0.01 ± 0.00

UMDA Traditional 0.86 ± 0.22 −16.31 ± 2.64 62.35 ± 98.77 5.32 5.06 3.04 0.01 ± 0.00 0.02 ± 0.01

12
IPA Traditional 0.89 ± 0.07 1.44 ± 7.89 28.75 ± 27.83 0.19 8.25 0.05 0.38 ± 0.24 0.73 ± 0.51
PSO Substrate I. 0.87 ± 0.08 2.5 ± 3.77 68.16 ± 41.92 0.53 8.25 0.09 0.43 ± 0.22 1.09 ± 1.02

UMDA Substrate I. 0.76 ± 0.18 5.99 ± 2.27 104.04 ± 69.11 5.15 8.21 1.27 0.76 ± 0.28 0.75 ± 0.29

13
IPA Traditional 0.93 ± 0.07 −3.06 ± 6.19 15.03 ± 23.47 0.55 8.25 0.16 0.20 ± 0.19 0.24 ± 0.15
PSO Competitive I. 0.93 ± 0.1 −1.24 ± 6.89 15.11 ± 25.02 0.42 3.99 0.14 1.91 0.19 ± 0.23 0.14 ± 0.08

UMDA Substrate I. 0.86 ± 0.13 1.02 ± 4.87 29.65 ± 35.81 3.64 7.61 0.84 0.35 ± 0.23 0.73 ± 0.70

14
IPA Traditional 0.95 ± 0.02 −7.72 ± 1.46 164.65 ± 309.48 0.78 8.25 0.24 0.10 ± 0.03 0.15 ± 0.10
PSO Traditional 0.85 ± 0.19 −4.17 ± 4.47 138.93 ± 249.87 1.07 7.15 0.38 0.17 ± 0.09 0.18 ± 0.11

UMDA Non-Competitive I. 0.81 ± 0.23 −0.38 ± 2.95 144.33 ± 247.4 3.94 2.83 1.14 6.80 0.22 ± 0.08 0.26 ± 0.23
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Algorithm 2 Experimental Methodology for Kinetic Model Evaluation

INPUT: A set of experimental data files (D), a set of kinetic models (K), a set of optimizers (O), user-defined search ranges
for parameters Vmax, Km, I, and K. Number of folds for data partition and performance metrics
OUTPUT: Optimal optimizer, kinetic models, kinetic parameters θ∗ = (V∗max, K∗m, I∗, K∗)T, and Performance Indexes on
train (PItrain = R2, MSE, and AIC) and test (PItest = MSE) data.

1: FOR EACH experimental data file d in D: // 14 data files

2: Partition d into F =
{
Train j, Test j

}4

j=1
// 4-fold cross-validation

3: FOR EACH pair of train and test data folds (f_tr, f_te) in F: // f_tr = 75% of experimental data
4: FOR EACH kinetic model mod in K: // Described in Equations (2)–(5)
5: FOR EACH optimizer opt in O: // IPA, PSO and UMDA
6: (θ∗, PItrain)← opt

(
mod, ftr,χ2

)
// Calibrate and evaluate kinetic models

7: PItest ← eval(mod, θ∗, fte) // Compute prediction error (MSE_test)
8: END FOR
9: END FOR
10: Save_file(θ∗, PItrain, PItest, mod, opt, f _tr, f _te) // Store partial results
11: END FOR
12: Compute Average and Standard deviation on PI //Compute Statistics and plots
13:END FOR
14:Output the best optimizer, kinetic model, and corresponding optimal parameters as a result

3. Results

3.1. The Best Kinetic Model

Table 2 shows the best kinetic model found by each optimizer and its corresponding optimal
parameter values θ∗ =

(
V∗max, K∗M, I∗, K∗

)
. It also presents the average and standard deviation of the

quality measures R2, AIC, χ2, and MSE. As can be observed from Table 2, the least complex and
best-fitting kinetic model was the Michaelis–Menten Traditional model for most of the experiments.

For the optimizers, the UMDA presented the worst performance in terms of both error and quality
measures. In addition to its bad performance, the UMDA showed premature convergence on different
runs. The quality measure of the UMDA was insignificantly improved as the number of iterations
and the population size increased. Because of this behavior, we concluded that the UMDA is easily
trapped in local minima; consequently, we hypothesize that the quality measure χ2 is not convex.

Surprisingly, the Interior-Point algorithm dominated in determining the best-fitting model for
most of the experiments. Furthermore, the MSEs in training and testing were similar. However, as can
be observed in the results of Experiments 08 and 11 (Table 2), different parameter sets lead to the
same quality measures. From this result, it can be concluded that χ2 is a non-injective function of θ.
Despite this result, the Interior-Point algorithm was robust enough to carry out the optimization process.
The good results of the PSO in conjunction with the bad performance of the UMDA provide evidence
that the quality measure χ2 is not smooth but presents a certain degree of roughness. Therefore,
optimizers that can avoid local minima like the PSO or the Interior-Point should be preferred.

Experiments 04 and 06 are two representative cases of the numerical results reported in Table 2.
Figure 1 illustrates a scenario where the Nelder–Mead, PSO, and Interior-Point optimizers achieve
similarly high performance, while the UMDA leads to an unsatisfactory fit, and Nelder–Mead leaves
the feasible regions in the parameter search space. Figure 2 depicts one example of the two cases
(Experiments 06 and 07) with the lowest performance. The graphical comparisons for the rest of the
experiments are provided at the Supplementary Materials section.
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the experimental data (𝑅 = 0.98. Mean square error (MSE) = 0.7), while the Univariate Marginal 
Distribution algorithm (UMDA) presents larger errors ( 𝑅 = 0.86 . 𝑀𝑆𝐸 = 0.57 ). The standard 
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Figure 2. Best-fit to experimental data for Experiment No. 6 (pH = 5.7, T = 62 °C, enzyme–substrate 
ratio = 0.3343 𝜇L enzyme/g cellulose). The kinetic parameter found by the four optimizers lead to the 
lowest calibration to experimental data. 

3.2. Computation Time for Kinetic Parameter Optimization 

A comparison of the computation time required for each optimizer to find the best kinetic 
parameters is depicted in Figure 3. Here, the computation time not only depends on the optimizer 
but also on the kinetic model being optimized. For the first three models (Michaelis–Menten, Non-

Figure 1. Best-fit models for data in Experiment No. 4 (pH = 5.7, T = 48 ◦C, enzyme–substrate ratio =

0.3343 µL enzyme/g cellulose). Interior-Point and particle swarm optimization (PSO) accurately fitted
the experimental data (R2 = 0.98. Mean square error (MSE) = 0.7), while the Univariate Marginal
Distribution algorithm (UMDA) presents larger errors (R2 = 0.86. MSE = 0.57). The standard
deviations reported in Table 2 should be carefully interpreted. For instance, the case of PSO with a
mean value of R2 = 0.8 and standard deviation of 0.33 were the result of evaluating the model with
four training data folds, which reached R2 values of 0.95, 0.30, 0.96, and 0.98, respectively.
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Figure 2. Best-fit to experimental data for Experiment No. 6 (pH = 5.7, T = 62 ◦C, enzyme–substrate
ratio = 0.3343 µL enzyme/g cellulose). The kinetic parameter found by the four optimizers lead to the
lowest calibration to experimental data.

3.2. Computation Time for Kinetic Parameter Optimization

A comparison of the computation time required for each optimizer to find the best kinetic
parameters is depicted in Figure 3. Here, the computation time not only depends on the optimizer
but also on the kinetic model being optimized. For the first three models (Michaelis–Menten,
Non-competitive inhibition, and competitive inhibition), the UMDA and PSO required between 10 and
100 times the average amount of time required by the Nelder–Mead and Interior-Point algorithms
to converge to their best solutions. Notably, for the Substrate Inhibition model, the UMDA and
PSO (and sometimes the Nelder–Mead) optimizers presented convergence problems. These three
algorithms required around 100–1000 times the amount of time compared to the time required by
the Interior-Point method to converge. These problems could be due to two reasons: (i) All methods
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except for the Interior-Point are completely stochastic; thus, some of the random candidate solutions
can be stuck in valleys of the response surface, thereby hindering the convergence of the optimizer;
(ii) The Interior-Point was provided with an initial candidate solution that favors its convergence.
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Figure 3. Comparison of the computation time required by each optimizer to find the best kinetic
parameters. According to the difficulty of being optimized, the kinetic models are grouped into two
categories, i.e., the first group with three models: (a) Michaelis–Menten, (b) non-competitive inhibition
and (c) competitive inhibition, and the second group with (d) the Substrate Inhibition model.

The optimizers were run on a computer with an Intel® (Intel Corporation, Santa Clara, CA, USA)
Core™ i7 CPU @ 2.60 GHz processor, 16GB RAM, and a 256 GB hard disk. The total computation
times to calibrate the first three models with the available experimental data were 0.19, 1.05, 13.06,
and 33.37 min for the Nelder–Mead, Interior-Point, PSO, and UMDA algorithms, respectively. For the
Substrate Inhibition model, the total computation time was 0.13, 27.54, 592.41, and 832.15 min for the
Interior-Point, Nelder–Mead, UMDA, and PSO, respectively. In conclusion, the Interior-Point algorithm
is the fastest method among the four optimizers analyzed in this work for kinetic parameter optimization.
Nelder–Mead is also fast, but it is not recommended because it converges to unfeasible regions and
is sensitive (like the UMDA and PSO) to the typical randomized initialization of metaheuristics for
complex models such as Substrate Inhibition.

3.3. Comparison between Micro-Reaction and Bench Scale Reactor

As a final experiment, the values of the kinetic parameters for the optimized experiment in the
micro-reaction were obtained. The values of the parameters Vmax, Km, and K were 1.06 mg/Ml × s,
8.24 mg/mL, and 0.27, respectively. The data were obtained using the IPA method and the traditional
kinetic model according to the conclusions derived from Table 2. Figure 4 depicts the trajectory of the
optimized micro-reactor compared to the three bench scale reactors. According to the results presented
in [12], a micro-scale experiment was developed using the optimal parameters obtained by the central
composite design, and these parameters were also used to test the experiment on a scale of 0.5 L.

Notably, the difference in size between the two reported experiments is 500 times higher.
Furthermore, the reported micro-scale experiments were tested by orbital shaking at a speed of 700 rpm
and a very stable temperature control with variations of ±1 ◦C. The difference with the 0.5 L reactor
was the use of propeller agitation (150 rpm), ensuring that all the reactor contents were well mixed to
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ensure spatial homogeneity. Further studies should be done to ensure spatial homogeneity, but this
goal is beyond the scope of this work.
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Figure 4. Comparison between micro-reaction and bench scale reactor trajectory assayed with the same
operational parameters (pH 4.64; T 52 ◦C; enzyme–substrate ratio = 1.8 mL enzyme/g cellulose).

According to the results, the Traditional model with its optimized parameters was able to predict
the behavior in the micro-reaction, showing R2 = 0.99 and MSE = 0.06. In addition, the same model and
parameters predicted the behavior of the reaction on a bench scale for three different reactors, achieving
performance of (R2 = 0.96; MSE = 0.30), (R2 = 0.93; MSE = 0.54), and

(
R2 = 0.97; MSE = 0.22

)
for

reactors 1, 2, and 3, respectively. Therefore, the behavior of depolymerization on a bench scale can be
predicted with acceptable errors using micro-reaction experiments.

4. Discussion

The results in Table 2 present the best-fit model found by each optimizer. To clarify the differences
between the best-fitted model and the rest of the models, Figure 5 provides a graphical comparison
of the four M–M models calibrated using the four optimization strategies for Experiment No. 13.
Figure 5a–c depict the fit obtained by both IPA and PSO, which reached the same R2 of 0.93, but the
AIC value for the IPA method was lower (−3.06). Consequently, we observed a better fit in Figure 5a
than in Figure 5b. The UMDA optimizer, shown in Figure 5c, presents an R2 of 0.86 and an AIC of 1.02.
UMDA presents a poor fit compared to the three previous methods, but it also adequately recapitulates
the trajectory shown by the experimental data.

The parameters Vmax and KM characterize the enzymatic reactions that are described with the
kinetics of M–M. Vmax depends on the total concentration of the enzyme, but KM does not [14]. KM is
equal to the concentration of the substrate at half Vmax. It can also be associated with the affinity of
the enzyme for the substrate [3]. As reported by Cho et al. [3], a low KM value indicates a sizeable
binding affinity, as the reaction approaches Vmax more rapidly. Furthermore, a high KM indicates
that the enzyme does not bind as efficiently with the substrate, and Vmax will only be reached if the
substrate concentration is high enough to saturate the enzyme [3]. The Vmax and Km parameters were
searched in (0, 8.25) and (0, 8.25), respectively. Parameter I (the inhibitor) was calculated using a range
between 0 and 8.25. This range was employed because it is well known that there is an intermediate
product called cellobiose during the production of glucose that exerts an inhibitory effect over biomass
depolymerization reactions [2]. The maximum amount of glucose that can be ideally produced is
8.25 mg.
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Figure 5. Graphical comparison of the four M–M models calibrated by four optimization strategies:
(a) Interior-Point Algorithm; (b) Particle Swarm Optimization and (c) Univariate Marginal Distribution
Algorithm. Experiment 13 at pH = 5; T = 55 ◦C; enzyme–substrate ratio = 1.8 µL of enzyme/g
of substrate.
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As previously explained, Table 2 shows the results obtained for the parameters Vmax, KM, I, K, χ2,
and R2, as well as the error value. To explain the kinetic parameters (Vmax and KM), Experiment 11 and
12 were used (Figure 6). Experiments 11 and 12 have the same characteristics with the exception of
temperature: Experiment 11 @ pH = 5; T = 65 ◦C; enzyme–substrate ratio = 0.9 µL of enzyme/g of
substrate; Experiment 12 @ pH = 5; T = 45 ◦C; enzyme–substrate ratio = 0.9 µL of enzyme/g of substrate.
The Vmax and KM values for Experiment 11 were 3.83 mg/mL·s and 7.26 mg/mL, indicating that the
Vmax was quickly reached due to the affinity of the enzyme with the substrate, probably associated
with the effect of the temperature. It is well known that a high temperature favors enzymatic reactions.
The results agree with the low KM value obtained, which is associated with a high affinity between the
enzyme and the substrate.
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Figure 6. Comparison of the four M–M models calibrated by Interior-Point strategy; (a) and (b)
Experiment 11 @ pH = 5; T = 65 ◦C; enzyme–substrate ratio = 0.9 µL of enzyme/g of substrate; (c) and
(d) Experiment 12 @ pH = 5; T = 45 ◦C; enzyme–substrate ratio = 0.9 µL of enzyme/g of substrate.

On the other hand, Experiment 12 shows a low Vmax (0.19 mg/mL·s) and a high KM value
(8.25 mg/mL). The high KM value indicates that the enzyme–substrate affinity is low; however, it allows
the experiment to attain a higher depolymerization value. Both experiments show a high inhibitor
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value, indicating that the reaction is being inhibited. This result could be associated with a high
accumulation of cellobiose during the reaction favored by temperature [2]. A graphic compilation of
all the methods obtained is shown in the complementary information.

5. Conclusions

For the metaheuristic optimizers, we conclude that the Interior-Point algorithm is effective for
solving the inverse modeling problem of kinetic parameters for the depolymerization of biomass. If a
priori information, such as the initial candidate solution, is available, the Interior-Point should be the
first option; if not, the PSO may be considered. The default values were shown to be sufficient for
all the optimizers to provide acceptable solutions. However, pure metaheuristic algorithms (like the
UMDA and PSO) might further improve convergence efficiency by tuning their hyper-parameters.

The quality measure employed to evaluate the best-fitting kinetic model is likely non-convex and
rough. Although many other quality measures could be used, the Weighted Least Squares metric χ2

was enough to guide the optimizer exploration and correctly identify the best model for experimental
data, at both the micro and macro scale.

The methodology applied in this study can be adopted as a starting point for solving forthcoming
inverse modeling problems. The use of different metaheuristic and hybrid optimizers can reveal the
nature of the quality measures, thereby easing the implicit optimization problems.

In this study, we found an effective computational procedure to determine a better calibration
for mathematical models of kinetic polymerization process. However, new experiments should be
considered in the future to study micro-reactions, compare these with larger scales and test multiple
operating parameters. In addition, important considerations such as heat and mass transfer should be
studied but are beyond the scope of this investigation.

Finally, according to our observations, the models with the best fit are not necessarily consistent
with a fixed set of kinetic parameters, KM and Vmax. Therefore, to inform the best decision for the process
it is necessary to discern which KM and Vmax values best describe the behavior of the evaluated reaction.
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