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Abstract: An accurate performance prediction model for the solid oxide fuel cell (SOFC) system
not only contributes to the realization of the operating condition but also plays a role in long-term
prediction performance. Accordingly, a research study has been developed to suitably deal with the
time-series model and accurately build the performance prediction model of SOFC system based on
neural network autoregressive with external input (NNARX) method. The architecture regressor
parameters of the NNARX model were efficiently determined using the Taguchi orthogonal array
(OA) method for optimal sets. The identified and evaluated optimal parameter levels were used to
conduct an analysis of variance (ANOVA) to prove correctness. Moreover, a series of statistics criteria
and multi-step prediction were also employed for investigating the uncertainty of the predicted
model and solve the overfitting and under fitting problems; further. These criteria were also used to
determine the performance of the proposed model architecture. The predicted results of the current
study indicated that the developed optimal model level parameters consistently had the least statistics
errors and reduced workload of the trial-and-error processes.

Keywords: SOFC; Taguchi orthogonal array; NNARX model; multi-step prediction

1. Introduction

During the last decades, countries around the world have invested great emphasis and research
attention on production of renewable energy resources because of global warming and economic
efficiency concerns. Among various available renewable power sources, fuel cells are promising
energy resources because they generate electricity without any pollutant emissions. One of the most
in-demand fuel cell types is the solid oxide fuel cell (SOFC), due to its extremely low emissions, high
conversion efficiency and potential long lifetime. Accordingly, SOFC system productions have been
developed for applications in various domains, including the military, residential, industrial and
transportation fields [1–3].

The accurate prediction of the SOFC system performance can assist in better utilization of this
system for commercialization and maintenance of its reliability and durability as a power system.
Moreover, the precise prediction model of the SOFC system developed in advance could assist in
efficient energy distribution among managers. The existing performance prediction models for the
SOFC system are divided into two groups—(1) white-box model and (2) black-box model. White-box
model methods, called model-based approaches, have been used to estimate the prediction model of
SOFC through the mathematical. The mathematical modeling approach consists of an inner system
physical model and an electrochemical equivalent circuit model. More details and complicated models
have been translated by physical and analytical equations from a multi-dimension (MD) [4–14].
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The MD model, called the computational fluid dynamics (CFD) technique, can simulate the inside
airflow concentration and operational condition of the parameters for the SOFC performance before the
production is constructed. Such MD numerical approaches are coupled with complex mathematical
equations following physical, electrochemical and thermal principles for the white-box model methods
of the SOFC system. Whilst high-dimension models could increase the prediction accuracy, nonlinear
complex mathematical equations require much computation and are time consuming.

Meanwhile, the black-box model approaches are based on statistical regression of the experimental
data from measurement of sensors. Black-box model approaches enabled the response relationship
between inputs and outputs without explicit physical mathematic equations. These models were
behavioral models derived through a statistics data-driven approach, which had the advantage of
dynamic prediction model [15–25]. From the available literature of the artificial neural network (ANN)
approaches are a type of the black box models and have become popular and more widely utilized in
the FC system performance prediction.

The statistics data-driven approach proposed the usage of the measurement data to imply inputs
to the outputs, simulate the SOFC system performance and provide a good prediction and accurate
ability during sufficient measurement dates. An SOFC is a coupled nonlinear time -variety with
dynamic physical system; hence, the corresponding performance prediction model of the SOFC system
can be obtained once the experimental data from the sensor measurements are prepared and employed
to train the NN structure. The objective of this study was to present the potential of predicting the
SOFC system performance based on the usage of the neural network autoregressive with external
input (NNARX) model. The proposed model had the ability to train complex nonlinear and time-series
input/output relationships and adapt to the changes in an operating condition, such as that in the
SOFC system.

The advantage of the NNARX model is a more accurate series-parallel identification model method
that measures the output available for use instead of feeding-forward the estimated output [26,27].
The quality of the established NNARX model performance prediction of SOFC system not only depends
on neural network hidden neuron but also ARX model order and time delay structure parameters.
Above all, there is limited theoretical and practical background to support the systematical selection of
the structure parameters during the modeling phase process. The model structure parameters of the
NNARX are usually selected based on previous experience in the trial-and-error processes and the
workload leading to time consumption. In that way, the optimal combination setting of the NNARX
structure parameters is not guaranteed.

In this study, one of the efficient and systematical analyses of NNARX model structure performed
statistical experimental design by using the Taguchi orthogonal array (OA) method for achieving the
goal. Taguchi OA method has ability to determine the effect of the factors on characteristic properties
and the optimal conditions of them. The advantage of the Taguchi method is that uses special design
of OA with only a small number of experiments in order to realize the effect of input variables on the
response characteristics. The important levels of parameter are computed within analysis of variance
(ANOVA). The optimum combination structures of NNARX model are obtained by using signal of
noise (S/N). Therefore, the proposed method of Taguchi OA method for achieving the NNARX model
architecture usefully minimizes time, cost and number of trial experiments, which efficiently reduces
the workload [28–30]. Moreover, the mathematical validation criteria have been investigated and
analyzed to attain the model accuracy. In addition, a multi-step ahead prediction has been adopted to
examine the results of the long-term prediction and generalization problems. The long-term prediction
NNARX model of the SOFC system performance was developed based on the measured operating
parameter data.

The remainder of this paper has been organized as follows—Section 2 presents the data set
collection for this study; Section 3 introduces the systematic modeling techniques, including the
NNARX model and the Taguchi OA array; in addition, the performance of error that includes the
coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean



Processes 2020, 8, 828 3 of 14

absolute percentage error (MAPE) and different steps of the ahead prediction k for the SOFC long-term
model; Section 4 describes the model prediction results and discussion; finally, Section 4 provides the
conclusions and future work.

2. Materials and Methods

2.1. Data Description and Test System

In this work, the commercial Anode-Supported Cell (ASC) SOFC cells within the size of 10× 10 cm2

and a reactive area of 9× 9 cm2 conducted [31]. The main compositions of anode, electrolyte and cathode
are NiO/YSZ, YSZ and LSC within total 550 µm thickness. The cell operating temperature range is from
600 to 700 ◦C. Figure 1 shows the schematic diagram of SOFC unsealed design experimental platform.
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Figure 1. Schematic diagram of the solid oxide fuel cell (SOFC) experimental platform [31].

The long-term test processes was separated into two models by varying gases flow rate—one is
standard operating procedure (SOP) and other reducing flow rate. In the SOP test, the hydrogen and air
fed in anode and cathode with the flow rate of 800 cm3/min and 2000 cm3/min during the temperature
up to 700 ◦C. To realize the effect of less flow rates on the SOFC performance, the flow rates were
reduced and sent as 500 cm3/min of hydrogen into the anode and 1500 cm3/min air into the cathode
and further tested after the basic test period. During the long-term testing period, the polarization
curve measurement and the AC impedance were recorded within a certain interval. The detail analysis
results of experimental had been published in literature [31]. The major fluctuations output voltage
data of SOFC system could present the significant effect during operation and generally utilized to
evaluate the degree of performance since easily measured. The long-term degradation performance
of voltage dataset within reduced flow operating parameters was divided into training phases and
validation phases of NNARX model as shown in (Figure 2) [32].

Processes 2020, 8, x FOR PEER REVIEW 3 of 14 

 

coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean 
absolute percentage error (MAPE) and different steps of the ahead prediction k for the SOFC 
long-term model; Section 4 describes the model prediction results and discussion; finally, Section 4 
provides the conclusions and future work. 

2. Materials and Methods 

2.1. Data Description and Test System 

In this work, the commercial Anode-Supported Cell (ASC) SOFC cells within the size of 10 × 10 
cm2 and a reactive area of 9 × 9 cm2 conducted [31]. The main compositions of anode, electrolyte and 
cathode are NiO/YSZ, YSZ and LSC within total 550 µm thickness. The cell operating temperature 
range is from 600 to 700 °C. Figure 1 shows the schematic diagram of SOFC unsealed design 
experimental platform. 

 
Figure 1. Schematic diagram of the solid oxide fuel cell (SOFC) experimental platform [31]. 

The long-term test processes was separated into two models by varying gases flow rate—one is 
standard operating procedure (SOP) and other reducing flow rate. In the SOP test, the hydrogen and 
air fed in anode and cathode with the flow rate of 800 cm3/min and 2000 cm3/min during the 
temperature up to 700 °C. To realize the effect of less flow rates on the SOFC performance, the flow 
rates were reduced and sent as 500 cm3/min of hydrogen into the anode and 1500 cm3/min air into 
the cathode and further tested after the basic test period. During the long-term testing period, the 
polarization curve measurement and the AC impedance were recorded within a certain interval. The 
detail analysis results of experimental had been published in literature [31]. The major fluctuations 
output voltage data of SOFC system could present the significant effect during operation and 
generally utilized to evaluate the degree of performance since easily measured. The long-term 
degradation performance of voltage dataset within reduced flow operating parameters was divided 
into training phases and validation phases of NNARX model as shown in (Figure 2) [32]. 

 
Figure 2. The voltage data of SOFC for training and validation phase. Figure 2. The voltage data of SOFC for training and validation phase.



Processes 2020, 8, 828 4 of 14

2.2. Applied Methodology

The proposed methodology was applied to construct the identification model for predicting the
SOFC long-term performance based on neural network autoregressive with external input (NNARX)
mode. The NNARX model architecture parameters were used by employing the Taguchi OA method
to achieve minimum time consumption and find the optimal settings efficiently. Moreover, a series of
statistics performance criteria provided a goodness of fit to show the NNARX model structure of the
SOFC system for the correctness of the long-term prediction.

2.2.1. NNARX Model

Similar to a time-varying nonlinear complex SOFC system, the traditional identification method
was not easy to model. The neural network by the recurrent dynamic structure output was dependent
not only on the present input but also on previous input, output and network status. The dynamic
neural network had the advantages of memory and simplicity to effectively train a series of time-varying
systems. One kind of dynamic neural network based on the NNARX was applied herein, which showed
the next dependent output signal values relationship between the previous output signal values with the
previous exogenous independent input signal values as shown in Figure 3.
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The NNARX model was found based on the linear ARX model, which can be expressed in the
following equation form [27]:

ŷpred(t) = g[y(t− 1), · · · , y(t− na), u(t− nk), · · · ,
u(t− nb − nk + 1)] + ẽ,

(1)

where y and u represents the measured output and input, respectively; ŷpred(t) is the estimated
validation prediction performance of the SOFC output; na and nb is output and input model structure
respectively and nk is the time delay; ẽ(t) is the unknown perturbation or noise mapping error.
The tapped delay line code was used to compute the regressor structure parameter of [·]. The neural
network structure of multilayer perceptron was applied to model the NNARX regressor structure
given as follows:

ŷpred(t) = g
[
∅(t)T,ϕ

]
+ ẽ(t), (2)

where ∅(t) and ϕ represent the regression vectors and the adjustable parameters of the NN structure
weights and bias, respectively. The units in the hidden and output layers were used by the hyperbolic
tangent and the linear transfer function (F, f), respectively. The formula computation of the neural
network output value is as follows [26]:

ŷpred(∅(t)T,ϕ) = fi(
∑hn

j=1
Wi, j × F j(

∑nd

i=1
w j,iϕi + w j,0) + Wi,0), (3)
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where hn is the number of hidden units; Wi, j is the weighting between hidden neuron and output layer;
nd is the number of input variables; w j,i denotes the weighting between input and hidden layer. During
the selected NNARX model architecture parameters process, the thresholds and the weights of the
joints between the two layers of the performance index (PI) were evaluated using the normalized sum
square error (NSSE) of the output layer. The PI formula is defined as follows:

PI = (NSSEtr + NSSEts), NSSE = SSE/2N , SSE =
∑n

i=1
(yi − ŷpredi)

2, (4)

where yi and ŷpredi are the measures of the prediction output. The NSSE denotes the training and
testing data. The operation condition of the SOFC data could be recorded within the sensors at the
stack inlet side, including aging time, current density, temperature of the anode and cathode and
flow rate of H2 and air, because these parameters can be controlled based on the required operating
condition. Meanwhile, the NNARX model output was the SOFC voltage (Figure 4).
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The network topic was to minimize the prediction error between the model predictions and
measurements by turning weights and biases. The appropriate model order [na nb nk] and network
structures [hn] played an important role in the identification procedure with the recurrent NNARX
model. The principle of selection within the smallest number of independent parameters explaining
the model well should be followed [33]. The regressor structure values of na, nb and nk, were used to
work over the range of 1 to 5. The three-layer feed-forward neural network structure was employed
to model the structure and the reason for this is to easily estimate any nonlinear function within a
sufficient number of hidden neurons in the previous research [34–36]. No general rules are required for
choosing the appropriate number of hidden neurons before the identification process. The number of
hidden-layer neurons has a significant effect on the prediction results (e.g., few neurons cause model
under fitting, whilst many neurons result in an increase in the training time and model overfitting).
According to previously proposed literatures [37], the number of neurons can determine the level of
questions. An experience formula for the determination of hidden neurons is expressed below:

hn =
√

ni + no + p, (5)

where hn, ni, no and p represent the number of hidden neurons, inputs and outputs, respectively and
p is an integer constant from 1 to 12. A common approach is the trial-and-error approach within
different structure parameters until the model performance was going good. If many topologies must
be considered, the approach was time-consuming and un-affordable. The Taguchi orthogonal (OA)
array was employed in the parameter selection to efficiently save time spent and reduce the number of
experiments conducted.

2.2.2. Taguchi OA Method

The crucial major tasks in the identification procedure of the NNARX model based on the regressor
structure and hidden neurons involved the selection of an appropriate architectural parameter. In this
section, the Taguchi OA method was employed to minimize time consumption and obtain the accurate
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and robust NNARX model structure of the SOFC. The Taguchi method is a statistic methodology widely
used to determine the optimum operating parameter of design factors. It induces an efficient and
systematic design of OAs to consider the entire parameter with a few numbers of experimental runs.
In the OA design, all parameter level combinations occur for an equal number of times. By applying
OAs, the Taguchi approach can be utilized to easily set-up experiments with a very large number
of factors varied on few levels. The Taguchi OA provides the performance measurement criteria
transformed into the signal-to-noise (S/N) ratio for computing the variance of the response at each
setting of the experimental parameter runs. Generally, the OA methods have three types of S/N
ratio—larger-the-better (LB), nominal-the-better (NB) and smaller–the-better (SB). The main propose
of the proposed Taguchi OA based on economically and accurately is to select the NNARX model
structure parameter. On the other word, the aim is to develop model architecture parameters of
NNARX model and yields outstanding performance of the SOFC system. Therefore, the PI according
to Formula (4) belongs to the SB type problem and corresponding objective function to minimal
represented by the formula as follows:

S
N

= −10 log10(
1
n

n∑
i=1

y2
i ), (6)

where yi is the performance response to the ith setting of the model structure parameter combination and
n is the number of samples in a trial. Table 1 shows the NNARX model architecture of the SOFC system
design parameters and their corresponding levels. If all of the possible combination of the design factors
with each have three levels were to be considered, then the number of full factorial design runs 34 = 81
would be created. This is uneconomical, so by applying Taguchi OA method to reduce a large number of
variables with a small number of experiments. In this work, the total degree of freedom (DoF) for the four
design factors is 4 × (3 − 1) = 8, an economical DoE of OA L9(34) is selected based on experimentation
as it has 9 DoF more than selected NNARX design factors [30]. Therefore, a total of nine experimental
runs were performed. The variability was inversely proportional to the S/N ratio, meaning that a greater
S/N value corresponded to a better performance of the NNARX model. The results were obtained by
independently extracting the main effects of these factors and determining the statistically significant
factors. For each combination of OA experiment runs, the values were computed based on training
model identification data set using MATLAB software. The model structure of NNARX parameter was
estimated using the PI criterion.

Table 1. Factors and levels of NNARX model structure parameter.

Symbol Factors Level-1 Level-2 Level-3

A Hidden neural (hn) 5 10 15
B Output order (na) 1 3 5
C Input order (nb) 1 3 5
D Time delay (nk) 1 3 5

2.2.3. Model Validation Criteria Metric Definitions

The performance evaluation criteria of the NNARX model were compared herein using various
statistical methods. The statistic measures considered were R2, RMSE, MAE and MAPE, which are
given as follows:

R2 = 1−

∑n
i=1 (yi − ŷpredi)

2∑n
i=1 ŷpredi

2 (7)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷpredi)
2 (8)
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MAE =
1
n

n∑
i=1

∣∣∣y− ŷpredi

∣∣∣ (9)

MAPE =
1
n

n∑
i=1

∣∣∣∣∣∣ y− ŷpredi

y

∣∣∣∣∣∣× 100%, (10)

where yi is the real measurement value; ŷpredi is the predicted model value by NNARX model; and n
is the number of sample measurement size. R2 value can be conducted to evaluate the accuracy
performance of prediction model. The smaller statistical measurement values of the RMSE, MAE and
MAPE generally had better prediction ability for the corresponding model. Actually, the modeling
test phase should be performed in accordance with the intended use of the model. In order to
verify the ability of NNARX model to evaluate the uncertainty for unseen data and predict intervals
generalization, other validation methods should be considered.

2.2.4. Multi-Step Ahead Prediction

To avoid the NNARX model of the SOFC system from overfitting or under fitting, the important
technique of the k-step ahead prediction was employed for the prediction interval. The multi-step ahead
prediction approach is basically an extension of the one-step ahead validation test. The method can divulge
whether information was captured by the NNARX model. In the NNARX model validation procedure, the
approach was applied to examine the underfitting or overfitting problems described as [38]:

ŷpred(t + k) = ŷpred

(
t +

k
t

, θ̂
)
= ĝ

[
∅̂(t + k), θ̂

]
, (11)

where
∅̂T(t + k) = [ŷpred(t + k) · · · ŷpred(t + k−min(k, n) + 1)y(t) · · ·

y(t−max(n− k, 0))u(t− d + k) · · ·u(t− d−m + k)]
(12)

The two-ahead, third-ahead and four-ahead predictions were employed in the SOFC model herein.

3. Results and Discussion

For developing the long-term prediction performance of the SOFC system using the NNARX
model, the total data sets were separated into two parts as training mode and validation test phases,
respectively (Section 2 and Figure 2). The software used was the MATLAB Identification Toolbox for
predicting the SOFC system performance [39].

3.1. Analysis of the Selected NNARX Model Structure

Four factors were selected according to the model parameter structure of NNARX as shown in
Table 1. Three levels of the L9 OA experiment runs were proposed and the NSSE was computed at
each training and validation step (Figure 5). Meanwhile, the training and the validation NSSEs were
considered as the PI combined within the concept of the SB values (Table 2). In spite of the different
types of performance characteristics, a greater S/N ratio corresponded to a better output performance.
Based on the results obtained, the proposed model structure parameters of experiment run in OA5
(A2B2C3D1) for (A) hidden units (hn = 10, level-2), (B) output order (na = 3, level-2),(C) input order
(nb = 5, level-3) (D) time delay (nk = 1,level-1) provide less PI index and higher SN value than any
other experiment runs in OA matrix.



Processes 2020, 8, 828 8 of 14

Processes 2020, 8, x FOR PEER REVIEW 8 of 14 

 

3.1. Analysis of the Selected NNARX Model Structure 

Four factors were selected according to the model parameter structure of NNARX as shown in 
Table 1. Three levels of the L9 OA experiment runs were proposed and the NSSE was computed at 
each training and validation step (Figure 5). Meanwhile, the training and the validation NSSEs were 
considered as the PI combined within the concept of the SB values (Table 2). In spite of the different 
types of performance characteristics, a greater S/N ratio corresponded to a better output 
performance. Based on the results obtained, the proposed model structure parameters of experiment 
run in OA5 (A2B2C3D1) for (A) hidden units (hn = 10, level-2), (B)output order (na = 3, 
level-2),(C)input order (nb = 5, level-3) (D)time delay (nk = 1,level-1) provide less PI index and higher 
SN value than any other experiment runs in OA matrix.  

 
Figure 5. Performance index (PI) values of Taguchi orthogonal array (OA) matrix in training and 

validation phase. 

Table 2. Results of S/N ratios of normalized sum square error (NSSE) for training and validation. 

Exp. 

number 
A B C D 

NSSE 

training 

NSSE 

validation 
PI  SN 

1 1 1 1 1 4. 53 × 10  4.64× 10  9.16× 10  166.782 

2 1 2 2 2 3.91× 10  4.22× 10  8.13× 10  167.838 

3 1 3 3 3 3.85× 10  4.16× 10  8.02× 10  167.962 

4 2 1 2 3 4.51× 10  4.69× 10  9.20× 10  166.749 

5 2 2 3 1 3.77× 10  4.12× 10  7.89× 10  168.099 

6 2 3 1 2 3.85× 10  4.18× 10  8.03× 10  167.943 

7 3 1 3 2 4.46× 10  4.81× 10  9.26× 10  166.703 

8 3 2 1 3 3.98× 10  4.19× 10  8.17× 10  167.787 

9 3 3 2 1 3.73× 10  4.22× 10  7.95× 10  168.06 

To analyze the design factor effects of NNARX model structure yield output performance for 
SN values, the response table was designed as shown in Table 3. This indicates the optimal level 
values of design model parameters within the highest S/N in bold form. The optimal level value of 
the design factor was the level that provided the highest S/N value in the design interval. Moreover, 
the response table is represented graphically in Figure 6. This indicates that the optimal levels are 
marked within red circles. Based on this, the optimal NNARX model parameter structure levels 
were A2B3C3D1 for (A) hidden units (hn = 10, level-2), (B)output order (na = 5, level-3),(C)input order 

Figure 5. Performance index (PI) values of Taguchi orthogonal array (OA) matrix in training and
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Table 2. Results of S/N ratios of normalized sum square error (NSSE) for training and validation.

Exp.
Number A B C D NSSE

Training
NSSE

Validation PI SN

1 1 1 1 1 4.53 ×10−9 4.64 ×10−9 9.16 ×10−9 166.782
2 1 2 2 2 3.91 ×10−9 4.22 ×10−9 8.13 ×10−9 167.838
3 1 3 3 3 3.85 ×10−9 4.16 ×10−9 8.02 ×10−9 167.962
4 2 1 2 3 4.51 ×10−9 4.69 ×10−9 9.20 ×10−9 166.749
5 2 2 3 1 3.77 ×10−9 4.12 ×10−9 7.89 ×10−9 168.099
6 2 3 1 2 3.85 ×10−9 4.18 ×10−9 8.03 ×10−9 167.943
7 3 1 3 2 4.46 ×10−9 4.81 ×10−9 9.26 ×10−9 166.703
8 3 2 1 3 3.98 ×10−9 4.19 ×10−9 8.17 ×10−9 167.787
9 3 3 2 1 3.73 ×10−9 4.22 ×10−9 7.95 ×10−9 168.06

To analyze the design factor effects of NNARX model structure yield output performance for SN
values, the response table was designed as shown in Table 3. This indicates the optimal level values of
design model parameters within the highest S/N in bold form. The optimal level value of the design
factor was the level that provided the highest S/N value in the design interval. Moreover, the response
table is represented graphically in Figure 6. This indicates that the optimal levels are marked within
red circles. Based on this, the optimal NNARX model parameter structure levels were A2B3C3D1 for
(A) hidden units (hn = 10, level-2), (B) output order (na = 5, level-3), (C) input order (nb = 5, level-3),
(D) time delay (nk = 1, level-1). In other words, the optimum parameter structure selected had 10
hidden units, model output-input order delays both the same in 5 and time-delay in 1 was the optimal
test NNARX model.

Table 3. Response table of design factors for S/N ratios.

Level A(hn) B(na) C(nb) D(nc)

Level-1 167.527 167.745 167.504 167.647
Level-2 167.597 167.908 167.549 167.495
Level-3 167.517 167.988 167.588 167.500

Effect 0.080 0.084 1.24330 0.1525

Rank 4 1 3 2
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To compute the relative magnitude of the effect of design factor and estimate the error variance on
the S/N value of SB in NNARX model structure parameter, the analysis of variance (ANOVA) was
performed. The result of ANOVA used S/N ratios within 95% confidence level as shown in Table 4.
Based on the ANOVA analyses, the factors A and C are pooled into the error term due to the small
values of the sum of squares and it is clear that change the design factor B (na) for model output order
of level contributed to 97.6% of the total variation in the NNARX model of SOFC performance.

Table 4. Results of ANOVA for S/N ratios.

Factor Degrees of Freedom Sun of Square Mean Square Contribution p-Value

A(hn) (2) 0.0013 - - -
B(na) 2 2.8058 1.4029 97.60% 5.353 ×10−5

C(nb) (2) 0.0075 - - -
D(nc) 2 0.0377 0.0188 0.95% 1.30 ×10−1

Error 4 0.0207 0.0052 0.41%

Total 8 2.86416 100%

3.2. Comparison and Prediction Analysis

The expected responses of the optimal design have to be verified to recheck whether the errors
caused by interaction among the design factors within an acceptable tolerance. Confirmation test process
was performed as a necessary and important procedure to verify the experimental results. Based on the
above discussion, the optimum design structure parameters identified was not included in experiment
runs of OA matrix and therefore the confirmation test should be conducted. Applying the A2B3C3D1
combination of NNARX model design parameters of levels, the optimum model structures of SOFC
system was developed. Comparing original OA5 (A2B2C3D1) with optimal set (A2B3C3D1), the NNARX
model was trained and tested within PI index as shown in Figure 7. The results indicated that the optimal
set of A2B3C3D1 provided the less PI values and improved the performance combined in S/N ratio 18.5%
(dB) than OA5.

In order to verify the prediction ability of the developed optimal set NNARX model, statistics
criteria were concerned in the comparison of the prediction performance. Multi-step predictions were
conducted and four corresponding results have been listed in Table 5 and Figure 8. The results indicated
that the values of the RMSE, MAE and MAPE of the analysis optimal set model structure parameters
were all lesser than original best experiment runs combination in OA5 parameters in one-step ahead to
four-step ahead prediction, which further demonstrated the superiority of the proposed method of
NNARX model prediction ability. For example, the RMSE average values of two parameters model
sets prediction was reduced by 1.32%, 2.28%, 3.64% and 6.61% in horizons of one-step ahead, two-step
ahead, three-step ahead and four-step ahead, respectively. With the increase of the prediction horizon,
the prediction errors were also less. Moreover, the higher values coefficient of determination R2 was
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interpreted as the amount of variability in the model. The R2 values of optimal set was higher than
OA5 in horizons of one-step ahead, two-step ahead, three-step ahead and four-step ahead, respectively.

The developed NNARX model based on proposed methods had the best long term prediction
performance than benchmark sets in horizons of one-step, two-step, three-step and four-step prediction.
In Figure 8a–d shows the multi-step prediction results of the developed model of optimal test parameter
structures of A2B3C3D1. As it is obvious in Figure 9, the proposed model could effectively capture the
main trends of voltage change of SOFC system. Figure 10 shows the prediction ability for the optimal
set model for voltage of SOFC system. The model prediction output data was around the 45-degree
line that indicated that the model possessed a goodness of fit. The R values of the optimal set output
with respect to one-step ahead, two-step ahead, three-step ahead and four-step ahead were 0.995, 0.994,
0.993, 0.992, respectively. They had an average regression value of 0.9935 which was close to unity
and provided an accurate fit of all output datasets. Thus, the results concluded that the developed
proposed model based on Taguchi OA method can successfully and effectively reduce workload of the
trial-and-error process. Additionally, the optimal sets parameters model of NNARX model applied
with multi-step prediction approach provided the long-term high performance of SOFC system.
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Figure 7. Performance index (PI) index values comparison of OA5 and optimal set.

Table 5. Comparison results between OA5 and optimal test for multi-step prediction.

k-Step Prediction Performance Criteria OA5 (A2B2C3D1) Optimal Test (A2B3C3D1)

One-step ahead

RMSE 9.08 ×10−5 8.96 ×10−5

MAE 6.673 ×10−5 6.57 ×10−5

MAPE (100%) 2.352 ×10−1 2.297 ×10−1

R2 0.9911 0.9914

Two-step ahead

RMSE 1.01 ×10−4 9.87 ×10−5

MAE 7.437 ×10−5 7.22 ×10−5

MAPE (100%) 2.648 ×10−1 2.599 ×10−1

R2 0.9878 0.9883

Three-step ahead

RMSE 1.10 ×10−4 1.06 ×10−4

MAE 8.108 ×10−5 7.75 ×10−5

MAPE (100%) 2.884 ×10−1 2.813 ×10−1

R2 0.9854 0.9866

Four-step ahead

RMSE 1.21 ×10−4 1.13 ×10−4

MAE 8.871 ×10−5 8.30 ×10−5

MAPE (100%) 2.922 ×10−1 2.848 ×10−1

R2 0.9824 0.9847
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4. Conclusions

In this study, the NNARX structure was successfully proposed and developed to predict the
complex long-term performance of SOFC system. This was performed by realization of the design
problem and selection of a suitable NNARX model structure. Initially, the systematic Taguchi OA
method was used to choose the important level factors and simplify the design problem. ANOVA was
then utilized to compute sensitivity and more precise combination of design level factors. Through a
series of statistical analysis, the final results demonstrated that the optimal test indeed improved the
original design and achieved a better performance. The experimental results are demonstrated in the
rich and detailed validation, including prediction intervals and k-step advance prediction. Moreover,
the proposed methodology was strongly trusted to be successfully applied for the development of a
NNARX model for the long-term prediction of the SOFC system performance within relatively small
and time-effective experiment. Future research works regarding the incorporation of the results of this
study into prognostics and health management is highly encouraged. This can be done in terms of
predictive maintenance extending the lifetime and reducing the cost of SOFC system.
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