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Abstract: The dust-collection system, as the core of a sweeper vehicle, directly inhales dust
particles on the pavement. The influence of variable operational conditions on particle-separation
performance was investigated using computational fluid dynamics (CFD) Euler–Lagrange multiphase
model. The particle-separation performance efficiency and retention time were used to evaluate the
dust-collection efficiency. The uniform design (UD) and multiple regression analysis (MRA) methods
were employed to predict and optimize the effects of reverse-blowing flow rate, pressure drop, and
traveling speed on separation efficiency. The results indicated that the dust-collection performance
initially increased and then decreased with increasing reverse-blowing flow rate. As the pressure
drop increased, there was an increase in total dust-collection efficiency. However, the efficiency
decreased with increasing traveling speed. The regression model showed that the proposed approach
was able to predict the particle collection efficiency accurately. In addition, the optimum operational
conditions were obtained, namely a reverse-blowing flow rate of 2100 m3/h, a traveling speed of
5 km/h, and a pressure drop of 2400 Pa. The maximum particle-separation efficiency was 99.10%,
which showed good agreement with the experimental results.

Keywords: vacuum-blowing cleaning system; CFD; separation efficiency; operational condition;
uniform design

1. Introduction

Particulate pollution is becoming more and more serious with the continuous improvement of the
urbanization process, and mainly originates from road dust resuspension [1,2]. Particulate pollution
poses a great threat to human health, easily causing dizziness and mental and cardio-cerebral vascular
diseases [3]. Moreover, it may also cause lung cancer in people who spend a long time in polluted
environments [4,5]. Many local authorities consequently use sweeper vehicle for pollution prevention,
and the method has proven to be very effective.

The dust collection system is the core of the sweeper vehicle. It directly inhales dust particles on
the pavement and determines the particle collection efficiency. Many methods have been proposed to
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improve the particle collection efficiency. Spatial and chemical patterns of road-deposited sediments
have been evaluated through testing experiments [2], which laid a good foundation for designing
dust-collection systems. Chen et al. [6] found that adding a wing plate improved the particle collection
efficiency in a trial production prototype. This method not only takes a long time, but also does not take
into account the status and trajectories of particle flow. Daichin [7] used particle image velocimetry
(PIV) techniques to observe the variations of flow fields. He reported that the trench height and shape
of the connection chamber had a great influence on working efficiency.

The flow field within a dust-collection system has high turbulence and reverse flow. It is
hard to analyze particle collection performance through experiments alone. Thus, with the rapid
development of computer technology, computational fluid dynamics (CFD) methods are becoming
widely used in studies of the dust-collection systems of sweeper vehicles [8,9]. The flow field
characteristics of the dust-collection system and the filter system were analyzed by Zeng [10] and Xu [11],
respectively. The structures were optimized according to the gas-phase numerical simulation results.
These works proved that the CFD method is useful. However, the practical working process is a
gas–solid two-phase flow [2,12]. Analysis of the gas phase alone, neglecting the influence of solid
particles, cannot determine the flow properties and removal efficiency of particles. Wu et al. [13,14]
numerically analyzed particle trajectories with gas–solid flow and found that the inclination angle of the
rear edge wall and the pressure drop were major influencing factors. The optimal angle and pressure
drop were 135◦ and 2400 Pa, respectively. Liu et al. [15] designed a new type of structure utilizing the
tornado principle based on gas–solid flow. The results showed that the influences of different structure
parameters and extended domains had the corresponding threshold. In our previous published papers,
we designed a vacuum-blowing cleaning system with an L-shape cavity [16,17], utilizing the positive
and negative pressure mixed-delivery theory. The vacuum-blowing cleaning system had lower energy
consumption and a larger working area, compared with traditional vacuum-type systems (Figure 1).

Figure 1. Dust-collection system of sweeper vehicles.

The flow patterns depend on the type of structural change. Therefore, the particle collection
efficiency can be improved if the flow pattern is smooth. Another way to improve particle collection
efficiency is to change the operational conditions. Wu et al. [14] numerically studied particle collection
performance under different operational conditions, such as traveling speed and pressure drop, and
finally proposed a trade-off suggestion. There have been relatively fewer scientific reports and analyses
of vacuum-blowing cleaning systems. According to these investigations, the traditional vacuum-type
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system provides negative pressure only. However, the vacuum-blowing type uses both negative
and positive pressure, so the particle behavior in the mixed-pressure field is more complicated, and
detailed design guidelines for different operational conditions are not available. More importantly, the
interactions of influencing factors should not be neglected. Only by understanding the influence of the
operational conditions can we control particle trajectories.

In this paper, the interplay between operational conditions was investigated, in order to predict
separation efficiency accurately and match operating parameters rapidly. The total dust-collection
efficiency, the grade dust-collection efficiency, and average retention time were subsequently calculated.
At the same time, a mathematical regression model, using total dust-collection efficiency as the
evaluating parameter of the particle-separation performance, was established. Finally, the rationality
of the numerical simulation was verified via experiments.

2. Numerical Models

2.1. CFD Model Construction

A vacuum-blowing cleaning system is composed of the supporting wheel, the hoisting lug, the
front damper, and the dust suction pipeline. A three-dimensional model was built using Creo 3.0,
as shown in Figure 2. The vacuum-blowing cleaning system designed in our previous published
papers [16,17] was used in this study. The structural parameters are summarized in Table 1.
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Figure 2. Vacuum-blowing cleaning system.

Table 1. Physical Model Parameters of Computational Domain.

Parameter Value

length, L (mm) 1400
width, B (mm) 540

thickness, H (mm) 150
front damper angle, α (◦) 105

suction inlet inclination angle, β (◦) 110
suction inlet diameter, D1(mm) 200
reverse-jet diameter, D2 (mm) 200

ground clearance, δ (mm) 10
length of the expansion areas, lea (mm) 180
height of the expansion areas, hea (mm) 150

slant angle of the expansion areas, θea(◦) 55
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2.2. Mathematical Model

The airflow through the vacuum-blowing cleaning system was calculated using governing
equations. Although the airflow was turbulent at high Reynolds numbers, it was not a strong rotational
flow. In view of the incompressible and steady flow, the Reynolds-averaged Navier–Stokes governing
equations can be written as

Continuity :
∂ui
∂xi

= 0 (1)

where ui is the airflow velocity.

Momentum :
∂
∂x j

(ρuiu j) = −
∂P
∂xi

+
∂
∂x j

(
µ
∂ui
∂x j

+ Ti j

)
+ ρgi (2)

where ρ, P, and µ are the fluid density, pressure, and viscosity, respectively. gi is the gravity acceleration.
Ti j = −ρui′u j′ is the Reynolds stress.

The selection of turbulence models for prediction of flow field characteristics depends on the
physical model used. The k–ε model is widely used for dust-collection and sweeper vehicles [8,13,17],
and it can provide accurate predictions for complex flows. The k–ε equation takes the following form.

ρ
dk
dt

=
∂
∂xj

[(
µ+

εm

σk

)
∂k
∂xj

]
+ Gk − ρε (3)

ρ
dε
dt

=
∂
∂xj

[(
µ+

εm

σε

)
∂k
∂xj

]
+ C1ε

ε
k

Gk −C2ερ
ε2

k
(4)

where Gk = −ρui′u j′
∂ui
∂xj , and the constants are σk = 1.0, C1ε = 1.44, C2ε = 1.92, σε = 1.3 [15].

The Euler–Lagrange approach was used to predict the particles’ trajectories within the
vacuum-blowing cleaning system. The airflow and particles were treated as continuous and disposed
phases, respectively. The continuous phases were described with Navier–Stokes governing equations.
A discrete-phase model (DPM) was used to describe the physical properties of the particles because
the volume fraction was less than 10% [18,19]. According to Newton’s Second Law, the equilibrium
equation was expressed as follows.

mp
dup

dt
= FD + Fg + Fs (5)

where mp is the mass of the particle, up is velocity, FD is the cohesive force, Fg is gravity, and Fs is
lifting force.

FD =
18µ

ρpd2
p

CDRe
24

mp(u− up) (6)

Fg = mp(1− ρ/ρg)g (7)

FS =
2Kv1/2ρdi j

ρpdp(dlkdkl)
1/4

(u− up) (8)

where ρp and dp are the density and diameter of the particle, respectively. CD is the drag coefficient. v
is the kinematic viscosity, and di j is the deformation tensor, and the constant is K = 2.594 [20,21].

2.3. Boundary Conditions and Solution Controls

The studied vacuum-blowing cleaning system worked under both positive and negative pressure.
There were four narrow slots between the bottom edge and the ground, which we called “ground
clearance”. The flow rate, velocity, etc. were unknown because they were measured at the interface
between internal and external flow field. To find the fully developed turbulence, expansion areas
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(see Figure 3) were used [8,13,14,16,22]. The slant angle of the expansion areas was 55◦. The length of
the expansion areas was 180 mm. The height of the expansion areas was the same as the thickness of
the vacuum-blowing cleaning system [16,17,22].
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Figure 3. Computational mesh.

Fluent 14.5 was used for the flow field calculation. The suction inlet, reverse-jet, expansion area,
and other boundary conditions were set as the pressure outlet, velocity inlet, pressure inlet, and wall
surface, respectively. The bottom surface of the 3D numerical model was defined as the non-slipping
wall, and the other surfaces were defined as moving walls for simulation of the driving status. It was
assumed that at each wall with the condition “reflect”, only particles with the condition “escape”
would be exported (at the suction inlet), to set the boundary conditions. The finite-volume method
and standard k−ε [8,13,17] turbulence model were applied. In addition, an incompressible steady-state
solution method was selected for calculation. The second-order upwind was used as an interpolation
function, and the pressure–velocity coupling was done using SIMPLE algorithm.

For the simulation of particle dispersion in a gas–particle two-phase flow, a discrete-phase model
(DPM) was used to describe the physical properties of the particles, because the volume fraction was
less than 10% [18,19]. Turbulent dispersion with stochastic tracking was utilized. The discrete random
walk model was also used during simulations. Meanwhile, steady particle tracking was adopted for
particle treatment. The restitution coefficient was the ratio of the relative velocity of two elastic bodies
after rebounding to velocity before impact. There were two restitution coefficients for the walls with
the condition “reflect”, namely the normal and tangential restitution coefficients [23,24]. The restitution
coefficients were utilized for particle–wall interaction in this paper, and the collisions were assumed
to be inelastic. The particles were treated as spherical. The diameter, particle density, restitution
coefficients, etc. were set as the experimental data reported by Wu [13,14]. The vacuum-blowing
cleaning system moved forward when it worked. Therefore, the particles were assumed to be injected
from the bottom surface of the front expansion area. The main simulation parameters are summarized
and listed in Table 2.

Table 2. Simulation Parameters.

Parameter Value Parameter Value

Near-Wall treatment Scalable wall function particle model Rosin–Rammler
TKE prandtl number 1 total flow rate, qm (kg·s−1) 0.5
TDR prandtl number 1.3 gas density, ρg (kg·m−3) 1.225

Energy prandtl number 0.85 particle density, ρp (kg·m−3) 2500
Wall prandtl number 0.85 distribution density, ρd (kg·m−2) 0.15

coefficient, Cmu 0.89 particle mean diameter, dm (µm) 81
coefficient, C1ε 1.46 spread parameter, n 5.95
constant, C2ε 1.89 normal restitution coefficient, e normal 0.95
constant, δε 1.4 tangential restitution coefficient, e tangential 0.85
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2.4. Grid Generation

Each portion was meshed with structured grids using integrated computer engineering and
manufacturing (ICEM) code, after decomposing the complex geometry into several computational
portions (see Figure 3). In view of the high accuracy and efficiency of numerical simulation, the grid
generation was vital.

The y+ value is a non-dimensional distance to the wall for a wall-bounded flow, and it is commonly
used in boundary layer theory and in defining the law of the wall. The y+ value is commonly found
in turbulence problems. The solution of turbulence problems is more dependent on grid generation.
The y+ value can be defined as follows.

y+ =
u∗y
v

(9)

where u∗ is the friction velocity at the nearest wall, y is the distance to the nearest wall, and v is the
local kinematic viscosity.

Several simulations were performed with y+ values of 3, 5, 10, 30, 50, 80, and 100 on the original
machine, in order to verify the grid independence. The influence of y+ on the volume flow (at the
reverse-jet) was employed to ensure the higher precision of the calculation (see Figure 4). The relative
error was lower than 10% when y+ was less than 100, which meant that the grid independence met
the requirements. Maintaining a low relative error was crucial in order to ensure high accuracy.
Therefore, the grid y+ value was set as 3 for the following mesh generation. Finally, the computational
model was meshed with a total of 413,201 cells, and scalable wall functions were used near the wall.Processes 2020, 8, x FOR PEER REVIEW 7 of 19 
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3. Results and Discussion

3.1. Influence of Reverse-Blowing Flow Rate on the Separation Efficiency

The separation efficiency included the total and grade dust-collection efficiency. The total
dust-collection efficiency was the ratio of the amount of trapped dust to the amount of dust entering
the device. It was calculated by monitoring the number of particles. The particles were injected
through the bottom surface of the front expansion area, while the particles escaped through the suction
inlet surface. Therefore, we could find the total dust-collection efficiency according to the particle
number [25]. The grade dust-collection efficiency was the removal efficiency of dust of a certain particle
diameter. It was calculated using the same method as the total dust-collection efficiency.
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The change in the total dust-collection efficiency under different reverse-blowing flow rates is
shown in Figure 5. As the flow rate increased, the total dust-collection efficiency first increased and then
decreased. When the flow rate was less than 2172 m3/h, the total dust-collection efficiency increased
gradually from 69.20% to 97.35%. Subsequently, the total dust-collection efficiency decreased sharply
from 97.35% to 16.31%.
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When the flow rate was low, the particles were easily blown near the suction inlet. Therefore, the
particles could be picked up. For higher flow rates, firstly, the movement of the particles from
reverse-blowing outlet to dust suction port was affected. Secondly, excessive flow rates gave the
particles more kinetic energy, especially for particles with relatively large mass, of which the inertia
could not be ignored. Take the highest and lowest total dust efficiencies, for example. The particle
velocities and trajectories under different reverse-blowing flow rates are shown in Figure 6. We saw
that the inhaled dust would be leaked under higher reverse-blowing flow rates.
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flow rate is 2172 m3/h; (b) reverse-blowing flow rate is 3120 m3/h.

Figure 7 illustrates the grade dust-collection efficiency for different particle sizes.
Under circumstance of different particle diameter for same reverse-blowing flow rate, the grade
dust-collection efficiency decreased, on the whole, with the increase of the particle diameter from 45 µm
to 152 µm. However, under circumstance of different reverse-blowing flow rates for the same particle
diameter, the grade dust-collection efficiency increased with increasing particle diameter from 1227 m3/h
to 2172 m3/h. However, it decreased rapidly after 2172 m3/h. The grade dust-collection efficiency
was determined by the particle size, and differences in dust particle dispersion also contributed to
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the difference. The particles obtained more kinetic energy, especially the larger particles, which could
cause the inhaled particles to overflow from the side walls (see Figure 6b), which reduced the grade
dust-collection efficiency.
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The average residence time is often used to evaluate the dynamic characteristic of particles. It was
defined as how long a particle took to move from the injection surface to the suction inlet surface.
The average residence times of the particle sizes under different reverse-blowing flow rates are shown
in Figure 8. Particles of different sizes had different properties under different flow rates, such as the
ability of diffusion, turbulence, and wind speed; thus, different average residence times were presented.
In the case of the same flow rate, the average residence time was affected slightly by the changing of
particle size. With the change of particle size from 45 to 152 µm, the longest average residence time
and the shortest average residence differed by 0.183 s (i.e., 1902 m3/h). The average residence time was
mainly related to particle size, trajectory, and momentum. The results indicated that the lower the
residence time, the higher the dust-collection efficiency was.
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3.2. Influence of Pressure Drop on the Separation Efficiency

The pressure drop was the pressure difference between the suction inlet surface and expansion-area
inlet surface [13,14]. The simulation was performed under a steady-state pressure drop. The expansion
area was connected to the atmosphere and its pressure value was the standard atmosphere value.
Figure 9 shows the relationship between the pressure drop and the total dust-collection efficiency.
As the pressure drop increased, there was an increase in total dust-collection efficiency. The efficiency
increased from 68.11% to 86.15% when the pressure changed from 1400 to 2000 Pa. When the
pressure drop was finally increased from 2600 to 2900 Pa, the total dust-collection efficiency did not
change significantly.
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The internal airflow velocity was increased with increasing pressure drop without changing the
structure. Therefore, the particles obtained more kinetic energy, and the total dust-collection efficiency
was improved. The high-speed airflow carried the particles to the collectors. The flow rate increased,
which meant that the loss along the path was increased. The loss was only proportional to the internal
flow velocity after fixing the structure of the flow [26]. Therefore, when the pressure drop was greater
than 2600 Pa, a dynamic balance was realized, owing to the internal loss of the path and the increase of
the pressure drop. The loss was approximately equal to the offset. The change of velocity at the intake
surface was not obvious, and the dust removal efficiency remained basically unchanged.

The influence of pressure drop on the grade dust-collection efficiency is shown in Figure 10. For a
given particle pressure drop, the grade efficiency decreased when the particle size increased from 45 µm
to 152 µm (for example, a pressure drop of 2900 Pa corresponded to a 5.4% decrease). Similarly, for the
same particle size, the grade efficiency increased with increasing pressure drop. The most significant
improvement (from 59.11% to 94.61%) occurred for pressure drops ranging from 1400 Pa to 2900 Pa,
and a given particle diameter of 152 µm.

The influence of pressure drop on the average retention time was very similar to that of grade
dust-collection efficiency (see Figure 11). For a given particle pressure drop, the average retention time
increased when the particle size increased from 45 µm to 152 µm (for example, a pressure drop of
1400 Pa corresponded to a 0.751 s increase). Similarly, for the same particle size, the average retention
time decreased with increasing pressure drop. The most significant improvement (from 0.751 s to
0.332 s) occurred for pressure drops ranging from 1400 Pa to 2900 Pa, and a given particle diameter of
152 µm. The smaller diameter particles had good follow ability and were relatively less affected by gas
flow rate. However, larger-diameter particles also required more momentum and airflow lifting force
due to their own inertia. Although a single particle had a small influence on the internal characteristic,
for the amount of the particles, the solid particle phase had an effect on the gas phase.
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3.3. Influence of Traveling Speed on the Separation Efficiency

The influence relationship between the speed and the total dust-collection efficiency is shown in
Figure 12. As the traveling speed increased, there was a decrease in total dust-collection efficiency.
The efficiency decreased from 96.97% to 79.01% when the speed changed from 5 km/h to 14 km/h.
Firstly, the gradually increasing vehicle speed made the relative speed between the reverse-blowing
pickup mouth and the ground particles increase, which made the particles of different sizes on the
ground move towards the suction inlet at a large collision angle. Some particles leaked out of other inlet
surfaces due to their inertia, even after being inhaled (see Figure 13). This phenomenon was consistent
with that reported in Reference [14]. Secondly, the gradually increasing vehicle speed also made the
load ratio of the particles increase, which resulted in the dust suction performance being lower.

Figure 14 illustrates the influence of traveling speed on the grade dust-collection efficiency. For a
given particle traveling speed, the grade dust-collection efficiency decreased when the particle size
increased from 45 µm to 152 µm (for example, a traveling speed of 14 km/h corresponded to a 13.19%
decrease). Similarly, for the same particle size, the grade dust-collection efficiency decreased with
increasing traveling speed. The most significant drop (from 94.32% to 70.51%) occurred for particle
sizes ranging from 5 km/h to 14 km/h, and a given particle diameter of 152 µm. It was observed that a
lower driving speed was beneficial, and that the traveling speed could be appropriately increased if
there were few particles on the ground.
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Figure 15 illustrates the influence of traveling speed on the average retention time. For a given
particle traveling speed, the average retention time increased when the particle size increased from
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45 µm to 152 µm (for example, a traveling speed of 5 km/h corresponded to a 0.189 s increase).
Similarly, for the same particle size, the average retention time increased with increasing traveling
speed. The most significant improvement (from 0.421 s to 0.344 s) occurred for traveling speeds ranging
from 5 km/h to 14 km/h, and a given particle diameter of 152 µm. The increase of the traveling speed
was not conducive to improvement of the efficiency. Therefore, the speed should be selected reasonably.Processes 2020, 8, x FOR PEER REVIEW 13 of 19 
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4. Uniform Design and Statistical Analysis

Experiment Design and Multiple Regression Model Building

Uniform design (UD) and multiple regression analysis (MRA) were used in prediction and
optimization of particle separation under variable operational conditions. The reverse-blowing flow
rate, pressure drop, and traveling speed were evaluated. As shown in Table 3, the criteria of a U12 (43)
uniform design table were applied.

Table 3. Factor Level Table of Operational Parameters and Experimental Results.

NO.
x1

Reverse Blowing Flow
Rate (m3/h)

x2
Traveling Speed

(km/h)

x3
Pressure Drop (Pa)

y
Particle-Separation

Efficiency (%)

1 2570 8 1900 66.03
2 2570 14 2900 80.79
3 3120 14 1900 3.23
4 3120 5 2900 59.23
5 2073 8 2400 94.34
6 1550 11 2900 94.73
7 2073 5 1400 96.74
8 3120 8 1400 2.41
9 1550 5 2400 99.13
10 2570 11 2400 78.78
11 2073 11 1900 83.24
12 1550 14 1400 70.32

During the optimization process, the response variables were fitted by a quadratic model, as
shown in Equation (10).

y = b0 +
n∑

i=1

bixi +
n∑

i=1

biixi
2 +

∑
i< j

bi jxix j (10)
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where y is predicted response value, n is number of factors, xi is influence factor. b0, bii, and bij are
constant term, quadratic, and interaction term coefficients, respectively.

The resulting ternary quadratic regression equation was obtained via stepwise regression method
(Equation (11)), and it described the particle-separation efficiency relative to the reverse-blowing flow
rate, pressure drop, and traveling speed as

y1 = 619.66298− 0.28623x1 + 4.75292x2 − 0.17401x3 + 0.00001x1
2
− 1.50795x2

2

−0.00001x3
2 + 0.00311x1x2 + 0.00007x1x3 + 0.00658x2x3

(11)

After the multiple linear regression equation of the operational parameters was established, the
significance of the equation was determined using an F-test [27,28]. Table 4 shows the variance analysis
of the operational-parameter linear regression equation. F0.05 (9,2) = 19.38 < 269.01, which indicated
that the ternary quadratic regression was significant.

Table 4. Variance Analysis of Linear Regression Equation Composed of Operational Parameters.

Source of Variance Degree of Freedom Quadratic Sum of Deviation Variance F-Value

Regression 9 12,274.63 1363.85 269.01
Partial regression 2 10.14 5.07

Total 11 12,284.77

The significance of each coefficient was determined using a t-test [29–31], and is listed in
Table 5. tbi (i = 1,2,3 . . . .m) is partial regression coefficient. The partial regression coefficient b8

had the most significant impact on the regression equation because of
∣∣∣tb8

∣∣∣ > t0.05(2) (t0.05(2) = 4.303)
only. The negligible regression coefficients were eliminated until both the equation and partial
regression coefficients satisfied the requirements. Furthermore, each regression equation needed to be
re-established after eliminating an independent variable. The regression equation was obtained after
five reconstitutions:

y2 = −87.98913690 + 0.17992545x1 − 0.00004963x1
2
− 0.00099563x1x2 + 0.00000919x1x3 (12)

Table 5. t-Statistics.

tb1 tb2 tb3 tb4 tb5 tb6 tb7 tb8 tb9

2.8036 0.8914 2.5053 0.9289 3.1875 0.3596 1.4883 5.3905 2.9637

The parameter degree of influence was determined via standardization of the regression coefficients
(Table 6). These coefficients were written in descending order of this influence, after absolute values of
the standardized regression coefficients, i.e., x1

2 > x1 > x1 x3 > x1x2. The maximum value was realized
for the following operational-parameter combination: reverse-blowing flow rate x1 = 2075 m3/h,
traveling speed x2 = 5 km/h, and pressure drop x3 = 2403 Pa.

Table 6. Standardization of Regression Analysis Coefficients.

x1 x1
2 x1x2 x1x3

Regression coefficient 0.17992545 −0.00004963 −0.00099563 0.00000919
Standardized result 3.2743 −4.2421 −0.3046 0.5277

5. Verification and Site Test for Total Dust-Collection Efficiency

An additional experiment was necessary because experiments using this combination had not
been included. Considering that the operational parameters were set to round up and down, the 3D
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model was designated as: reverse-blowing flow rate x1 = 2100 m3/h, traveling speed x2 = 5 km/h, and
pressure drop x3 = 2400 Pa. The location distribution of measurement points is shown in Figure 16,
and the measurement points were 20 mm above the ground surface (see Figure 16).Processes 2020, 8, x FOR PEER REVIEW 15 of 19 
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The site test was carried out at a school. A centrifugal blower and axial fan were employed to
produce positive and negative pressure, respectively (Figure 17a). The pressure and flow rate could be
adjusted according to the speed of the motor. The experiment was conducted after the centrifugal
blower and axial fun were operating stably. The Kasda-KV621 hot-wire anemometer (Tianjin Kasda
Instruments Co., Ltd, Tianjin, China) was used to measure the velocity within the vacuum-blowing
cleaning system. A notebook running a Vib‘SYS program was connected to a charge amplifier and
a data-acquisition instrument in order to collect the data. The data-acquisition instrument was a
WS-5921/U60232 (Beijing Wavespectrum Science & Technology Co., Ltd., Beijing, China). The test
system was as shown in Figure 17b.
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Figure 17. Site test for total dust-collection efficiency: (a) site test (b) test system (c) test results
contrast analysis

The test road surface was covered uniformly with dust particles (distribution density: 0.15 kg/m2).
We collected the particles for the experiment from a tertiary highway according to Reference [14].
We could not track the particles to find the trajectory in the mechanical equipment, but we used
a quality dust-weighing method and velocity calibration for test validation. The mass-calculation
method was used. The dust-collection efficiency was determined by calculating the mass of ground
particles before and after dust-collection. Figure 17c shows the contrast analysis of different traveling
speeds and total dust-collection efficiency test results. There existed a good agreement of the CFD
numerical calculation with the experimental data. The simulation data were on the whole higher than
the measured ones. The reason was that the situation in the CFD simulation was ideal without any
leakage, and provided better air-tightness. In addition, there was an error introduced by weighing dust
manually. The average relative error of the total dust-collection efficiency was 6.53%, which satisfied
the value of 10% [14,32–34]. The similarity with the numerical parameter was checked.

The forklift moved at a speed of 5 km/h or 10 km/h. A Kasda-KV621 hot-wire anemometer (Tianjin
Kasda Instruments Co., Ltd., Tianjin, China) was employed. By comparing the experimental and



Processes 2020, 8, 809 15 of 18

simulation data (see Figure 18), it was found that the value of the No. 1 measuring point was higher
than that of No. 2. This is because the No. 1 measuring point was closer to the suction inlet, which
resulted in its higher velocity. The simulation data were a little higher than experimental ones, which
indicated that the results of the CFD simulation analysis were authentic. The main reasons for the
deviation can be summarized as follows. For one thing, the dust particle models were different, so
the particle trajectories were different with localization errors, which led to a statistical error for a
large quantity of particles in the suction inlet. Furthermore, the situation in the CFD simulation was
ideal, without the leakage of air, while the vacuum-blowing cleaning system was bound to be not
air-tight and to have pressure loss occur. These factors may have made the experimental data lower
than simulation data.
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6. Conclusions

The operational parameters of reverse-blowing flow rate, pressure drop, and traveling speed all
influenced the particle-separation performance. The total dust-collection performance first increased
and then decreased with increasing reverse-blowing flow rate. Q = 2172 m3/h was a turning point.
The total dust-collection efficiency increased gradually from 69.20% to 97.35%, and then it decreased
sharply from 97.35% to 16.31%. Furthermore, the dust-collection efficiency increased when the pressure
drop increased. The efficiency increased from 68.11% to 86.15% when the pressure changed from
1400 to 2000 Pa. However, the total dust-collection efficiency did not change significantly when the
pressure drop was finally increased from 2600 to 2900 Pa. In contrast, the total dust-collection efficiency
decreased when the traveling speed increased. The total dust-collection efficiency decreased from
96.97% to 79.01% when the speed changed from 5 km/h to 14 km/h.

UD and MRA methods were adopted to predict and optimize the operational parameters.
As far as particle-separation performance is concerned, the descending order of their influence was
x1

2 > x1 > x1x3 > x1x2. The maximum particle-separation efficiency was 99.10%, and it was realized
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under the following conditions: reverse-blowing flow rate: 2100 m3/h, traveling speed: 5 km/h, and
pressure drop: 2400 Pa. The simulation results, including the velocities in the vacuum-blowing
cleaning system and particle-separation performance, are in good agreement with the experimental
data. The average relative error of the total dust-collection efficiency was 6.53%, which meets the
requirements for a wide range of applications.
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Nomenclature

B width, mm
H thickness, mm
D1 suction inlet diameter, mm
D2 reverse- jet diameter, mm
y+ wall distance
TKE prandtl number 1, constant
TDR prandtl number 1.3, constant
Energy prandtl number 0.85, constant
Wall prandtl number 0.85, constant
Cmu 0.89, constant
C1ε 1.46, constant
C2ε 1.89, constant
qm total flow rate, kg·s−1

dm particle mean diameter, µm
n spread parameter,
xi influence factor
yi predicted response value, %
b0 constant term
bii quadratic term coefficient
bij interaction term coefficient
t average retention time, s
QR reverse blowing flow rate, m3/h
Greek Letters
α front damper angle, ◦

β suction inlet inclination angle, ◦

δ ground clearance, mm
δε 1.4, constant
ρg gas density, kg·m−3

ρp particle density, kg·m−3

ρd particle density, kg·m−3

enormal normal restitution coefficient
etangential tangential restitution coefficient
ηt total dust-collection efficiency, %
ηg grade dust-collection efficiency, %
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