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Abstract: Diabetic nephropathy (DN) is a recent rising concern amongst diabetics and diabetologist.
Characterized by abnormal renal function and ending in total loss of kidney function, this is becoming
a lurking danger for the ever increasing population of diabetics. This review touches upon the
intensity of this complication and briefly reviews the role of bioinformatics in the area of diabetes.
The advances made in the area of DN using proteomic approaches are presented. Compared to the
enumerable inputs observed through the use of bioinformatics resources in the area of proteomics
and even diabetes, the existing scenario of skeletal application of bioinformatics advances to DN is
highlighted and the reasons behind this discussed. As this review highlights, almost none of the
well-established tools that have brought breakthroughs in proteomic research have been applied
into DN. Laborious, voluminous, cost expensive and time-consuming methodologies and advances
in diagnostics and biomarker discovery promised through beckoning bioinformatics mechanistic
approaches to improvise DN research and achieve breakthroughs. This review is expected to sensitize
the researchers to fill in this gap, exploiting the available inputs from bioinformatics resources.
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1. Introduction

Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is a marked rise in the
urinary albumin excretion (UAE) rate leading to aberrant kidney function. This results in variations
in plasma creatinine, glomerular filtration rate (GFR) and creatinine levels [1]. While there are other
macrovascular and microvascular complications resulting from diabetes, DN is the most predominant
microvascular complication [2]. Complications arising due to diabetes involve pathologic changes
affecting blood vessels, nerves, skin and the eye. Macrovascular complications profoundly influence
the blood vessels in brain, heart and extremities and microvascular complications of diabetes involve
retinopathy and nephropathy (Figure 1). Approximately 30% of patients with either of type 1 or
type 2 diabetes are reported to end up with nephropathy [3]. DN is one of the major consequences
of type 1 and type 2 diabetes, which culminates in end-stage renal disease. Hyperglycemia is the
driving force behind diabetic nephropathy, operating through production of free radicals that trigger
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oxidative stress. Oxidative stress significantly contributes towards accelerating the severity of DN
(mechanisms undisclosed). Thus, DN has impacted public health and social economy significantly and
has become a well-known cause of concern amidst diabetics [4].
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Proteomics is a field that promises to enable the fundamental understanding in various biological
processes. Although proteomics began with establishing the identity and estimating the expression
levels of proteins, analytical instrumentation, automation of large-scale analytical tools and emergence
of bioinformatics tools has broadened the scope and vision. This has enabled researchers to analyze
biologically relevant proteins, PTMs, interactions, foldings, etc. To start with, we begin with complex
protein mixtures consisting of proteins of different molecular mass, solubilities and modifications.
These are then separated into rather less complex mixtures. Generally, the separation is carried out by
either two-dimensional gel electrophoresis (2-DE) or various chromatography-based approaches and
peptides analyzed by MALDI-TOF-MS or ESI-MS. The data generated by MS are identified based on
available databases using various bioinformatics tools. This is how the identity of a protein is established
from the original complex protein mixture. Kumar et al. (2017) extensively reviewed the available
proteomic tool options for clinical analytes [5]. These tools include: two-dimensional gel electrophoresis
(2-DE), two-dimensional differential gel electrophoresis (2D-DIGE), mass spectrometry (MS) including
MALDI- and ESI-based ionization techniques, liquid chromatography and multi-dimensional
separation technology, surface-enhanced laser desorption/ionization (SELDI), proteins and antibody
microarrays, isotope-coded affinity tags (ICAT), isobaric tag for relative and absolute quantitation
(iTRAQ), stable isotope labeling with amino acids in cell culture (SILAC), affinity tagging and mass
spectroscopy and proteogenomics [5].

Protein analysis/proteomics permits for the rapid assessment of the proteins expressed in biological
samples. Biological samples are systematically analyzed for identifying, quantifying and differentiating
various proteins that hold significance in pathology. Biofluid proteomics has led to the identification
of disease biomarkers [6] for non-invasive renal disease diagnosis [7,8]. The routine tests for urine
proteins can only estimate proteinuria or a single protein at a time, whereas proteomic technologies
allow simultaneous examine multiple urinary and plasma proteins in a single run [9]. High resolution
followed by instrumentation sensitivity and throughput capabilities are the prerequisites of any
ideal analytical technique in the field of proteomic investigations. Although various other advanced
proteomic analytical techniques have evolved with the rise of quantitative and shotgun proteomics,
2-DE is still the most predominantly used technique with respect to diabetic nephropathy. This is
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followed by capillary electrophoresis coupled with mass spectrometry (CE-MS). In the case of diabetic
nephropathy, 2-DE is the most commonly used. 2-DE separates proteins based on differential pH in the
first dimension and it separates based on variations in molecular masses in the second dimension [10],
allowing the characterization of the renal proteome, renal cortex [11,12], glomerular cells [13] and
tubular epithelial cells [14,15]. Significant understanding has evolved through the use of proteomic tools
and resources. Kim et al. [16] studied the serum proteomes of type 2 diabetic patients with end stage
renal disease (ESRD) and normal patients. In 2012, Zürbig et al. [17] analyzed urine samples from type
1 and 2 diabetic patients to assess peptides in urine samples for signs of DN. Papale et al. [18] identified
urinary protein biomarkers using surface enhanced laser desorption/ionization (SELDI)-time of flight
(TOF)/mass spectrometry (MS). A few other reports have successfully classified the variation between
DN [19–23] and other chronic kidney diseases [24]. Early detection of changes in the urinary proteome
of diabetics can help stop progressive renal function loss. Owing to its direct clinical implications,
urinary proteomics is considered as a valuable tool for premature detection of patients having kidney-
and heart-related complications well ahead of actual manifestation of renal dysfunction [21].

Bioinformatics is the synergistic application of computer science and information technology
(IT) to biology and medicine. Its rich reservoir of inputs arises from its algorithms, artificial
intelligence databases, soft computing, data mining, image processing, modeling and simulation
systems. Bioinformatics laid the groundwork in proteomics via the genome sequencing projects and
microarray-based [25] and phenotypic profiles at the cell level as well as in organisms as such [26].
It focuses on gene expression [27]. While biological data rest on experimental methods and analytical
instrumentation for data collection and analysis, bioinformatic tools enable achieving ambitious goals
easily. Computational methods work beside analytical methods for acquisition of large quantities of
data in order to arrive at useful scientific conclusions (Figure 2). Biological databases help scientists to
elucidate biological phenomena based on the structure and functionality of biomolecules and their
interaction. This leads to a proper understanding of diseases and reinforces the fight against diseases.
Modeling and Simulation assists in understanding the interaction of individual systems and the system
on the whole. Thus, computer modeling and simulation methodologies play a pivotal role in alignment
of sequences, gene identification, drug design and discovery and elucidation of protein structures for
medical applications [28]. A drug development process can take 10–15 years [29], and is expensive
as well. A recent Forbes analysis estimated the cost at $5 billion [30,31]. The final cost of any drug is
arrived at taking into account the total costs from discovery to approval and the cost of absorbing all
the clinical trial failures [32]. In this regard, bioinformatics tools certainly enhance the efficiency of
target discovery and validation processes, reducing time and being cost-effective.

Processes 2020, 8, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. Schematic showing the general proteomic work flow and Bioinformatics work flow. 

2. A Snapshot of Bioinformatic Tools Used for Diabetes Mellitus 

Diabetes mellitus is characterized by aberrant glucose metabolism resulting in high blood 
glucose level in blood and eventually in urine too. This condition of high glucose level in the body is 
medically defined as hyperglycemia. This can happen due to insulin secretion deficiency, insulin 
resistance or both. Symptoms of diabetes include palpitations, polyuria, weight loss, headache, 
polydipsia, tachycardia, blurred vision and polyphagia [33]. Diabetes mellitus is a significant health 
disorder and the World Health Organization (WHO) states “diabetes is a world-wide epidemic” [34]. 
Thus, the resources devoted to screening of diabetes as well as primary prevention have gained 
paramount importance.  

The use of bioinformatics tools in diabetes research has aided in biomarker identification studies. 
The use of bioinformatics resources enables the prediction of functional regions of the 
protein/domains, structures and phylogenetic/evolutionary relationships of the sequences examined. 
It further leads to scripting of algorithms and statistics that solve biological issues. Bioinformatics is 
thus an interdisciplinary field of exploiting areas of biology, computer science, chemistry, math and 
engineering for analyzing and interpreting various aspects of life science [35,36]. The information acts 
as a guideline for the practical scientific work, saving time and giving an access to various tools 
available online for free. Currently, major trends in proteomics-based bioinformatics research 
include: ligand-based drug design for modulating metabolic pathways and for elucidating the 
structure of protein and molecular docking studies that play a vital role in drug discovery [37] and 
omics approaches such as bulk transcriptomics, epigenetics, single cell transcriptomics, 
metagenomics and epigenetics. Table 1 give a snap shot of the various bioinformatics tools that have 
been thus far applied to diabetes research.

Figure 2. Schematic showing the general proteomic work flow and Bioinformatics work flow.



Processes 2020, 8, 808 4 of 17

This current review presents the raising concern around DN. A brief snapshot highlighting
the tools that are being applied for diabetes-based research is presented. Proteomic advancements
made in the area of DN are discussed. While bioinformatics has been used successfully in various
fields of proteomics, and in diabetes related research, this review highlights the gap in bioinformatics
applications in the area of DN. This review is expected to persuade and draw the attention of
scientists working in this area to adopt bioinformatics-based approaches for unraveling mysteries
surrounding DN.

2. A Snapshot of Bioinformatic Tools Used for Diabetes Mellitus

Diabetes mellitus is characterized by aberrant glucose metabolism resulting in high blood glucose
level in blood and eventually in urine too. This condition of high glucose level in the body is medically
defined as hyperglycemia. This can happen due to insulin secretion deficiency, insulin resistance or both.
Symptoms of diabetes include palpitations, polyuria, weight loss, headache, polydipsia, tachycardia,
blurred vision and polyphagia [33]. Diabetes mellitus is a significant health disorder and the World
Health Organization (WHO) states “diabetes is a world-wide epidemic” [34]. Thus, the resources
devoted to screening of diabetes as well as primary prevention have gained paramount importance.

The use of bioinformatics tools in diabetes research has aided in biomarker identification studies.
The use of bioinformatics resources enables the prediction of functional regions of the protein/domains,
structures and phylogenetic/evolutionary relationships of the sequences examined. It further leads
to scripting of algorithms and statistics that solve biological issues. Bioinformatics is thus an
interdisciplinary field of exploiting areas of biology, computer science, chemistry, math and engineering
for analyzing and interpreting various aspects of life science [35,36]. The information acts as a guideline
for the practical scientific work, saving time and giving an access to various tools available online for
free. Currently, major trends in proteomics-based bioinformatics research include: ligand-based drug
design for modulating metabolic pathways and for elucidating the structure of protein and molecular
docking studies that play a vital role in drug discovery [37] and omics approaches such as bulk
transcriptomics, epigenetics, single cell transcriptomics, metagenomics and epigenetics. Table 1 give a
snap shot of the various bioinformatics tools that have been thus far applied to diabetes research.

Various Human protein–protein interaction (PPI) databases are also reported. Human Annotated
and Predicted Protein Interaction (HAPPI) database helps explore PPI data needed for network
biology studies. This information has been used for understanding biological processes such as those
involved in insulin signaling in type 2 diabetes [65]. The University of California Santa Cruz (UCSC)
Genome Browser is a well-known web-based tool for dynamic display of any required genome portion.
Using this option, users can upload their own datasets (in any format) as custom annotation tracks [66].
One can visualize, browse and display information from type 2 diabetes for genomic information.
Recently, large-scale meta-analyses of GWAS (Genome Wide Association Studies) has improved the
existing understanding on genetic factors behind type 2 diabetes. These studies have identified
that type 2 diabetes holds risk genes located in localized parts of the genome (i.e., chromosome 20).
This knowledge has evolved from using the type 2 diabetes genetic network [67]. Gene annotation
information can be obtained from the VEGA (Vertebrate Genome Annotation) database. Genetic data
are also available on type 2 diabetes from gene bank databases [68].
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Table 1. Snapshot of Bioinformatic tools used for Diabetes mellitus.

Sl. No Function Bioinformatic Tool Location References

1 Proteomics Identification database PRIDE https://www.ebi.ac.uk/pride/ Perez-Riverol et al., 2019 [38]

2 Medical Calculators, Clinical Resources for diabetic data diabetic-database https://globalrph.com/
medcalcs/diabetic-database/

[39]

3 Protein sequence Database UniProt www.uniprot.org Chen, C. et al., 2017 [40]

4 Genetic sequence database GenBank https://www.ncbi.nlm.nih.gov/
genbank/

Benson, D.A. et al., 2013 [41]

5 Proteomic fragments analysis MASCOT https://www.sanger.ac.uk/
science/tools Brosch, M. et al., 2009 [42]

6 Human Metabolome Database hmdb https://hmdb.ca/ Wishart, D.S. et al., 2018 [43]

7 Structural, functional annotation of proteins Gene3D http://gene3d.biochem.ucl.ac.
uk/Gene3D/

Yeats et al., 2006 [44]

8 miRNA, mRNA, protein, phosphoproteins and metabolite
expression data sets KUPKB http://www.kupkb.org/ Klein et al., 2012 [45]

9 Protein Motif fingerprinting PRINTS database http://www.bioinf.manchester.
ac.uk/dbbrowser/PRINTS/

Attwood et al., 2003 [46]

10 Gene expression GEO dataset https:
//www.ncbi.nlm.nih.gov/geo/

Zhao et al., 2013 [47]

11 Knowledge portal for type 2 diabetics Type 2 Diabetes http://www.
type2diabetesgenetics.org/

Jeyaraman, M.M. et al., 2020 [48]

12 Resources for genomic and epigenetic studies of type 2 diabetes
and associated issues Diabetes Epigenome Atlas https:

//www.diabetesepigenome.org/
Khetan et al., 2018 [49]

13 Database for diabetes based diagnostic methods pima
https:

//www.kaggle.com/uciml/pima-
indians-diabetes-database

Barale, M. and Shirke, D.T., 2016 [50]

14 National Diabetes Information NIDDK http:
//diabetes.niddk.nih.gov/about/ Whetzel et al., 2015 [51]
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Table 1. Cont.

Sl. No Function Bioinformatic Tool Location References

15 Protein identification using peptide information from MS/MS ProteinProphetTM http://proteinprophet.
sourceforge.net/

Nesvizhskii, A.I. et al., Anal Chem. 2003
[52]

16 2D Gel Database SWISS-2DPAGE http://world-2dpage.expasy.
org/swiss-2dpage/

Hoogland, C. et al., 2014 [53]

17 Protein 3D structure database PDB www.rcsb.org wwPDB Consortium, 2019 [54]

18 Protein–Protein interaction networks STRING http://string-db.org Szklarczyk, D. et al., 2015 [55]

19 For structural and functional Annotation SUPFAM Database http://supfam.org Wilson, D. et al., 2009 [56]

20 Repository for chemical substances and their biological activities PUBCHEM https:
//pubchem.ncbi.nlm.nih.gov Kim, S. et al., 2016 [57]

21 For Visualizing and interpreting metabolomic data Cytoscape MetScape 3.1 http:
//metscape.med.umich.edu/

Karnovsky, A. et al. 2012 [58]

22 Literature search based on disease related terms mapped to
PubChem compounds for annotating compound networks MetDisease http://metdisease.ncibi.org/ Duren, W. et al.,2014 [59]

23 Metabolic Pathway Database KEGG https://www.kegg.jp/ Kanehisa, M. et al., 2016 [60]

24 Gene ontology PANTHER http://www.pantherdb.org/ Thomas, P.D. et al., 2013 [61]

25 Gene Set Enrichment Analysis GSEA http://www.webgestalt.org/ Wang, J. et al., 2017 [62]

26 Database for Single Polymorphic data dbSNP http:
//www.ncbi.nlm.nih.gov/SNP Smigielski, M. et al., 2000 [63]

27 Database for target genes of potential miRNAs mirnet https://www.mirnet.ca/ Fan, Y. et al., 2018 [64]
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Other bioinformatics-based studies have reported the identification of biomarkers that influence
vascular calcification processes as a basis of diagnosis and treatment of type 2 diabetes in its subclinical
stages. The LC MSMS extracted and identified proteins were analyzed through gene ontology and
compared with other specific proteins using DisGeNET database. Cytoscape software analyzed the
network of biological functions of the proteins. These bioinformatics tools revealed the involvement
of ideal biomarkers of vascular calcification in patients with type 2 diabetes. Other researchers have
used other bioinformatics tools for the identification of biomarkers that aid in therapeutic targeting in
case of early diabetes [69] or premature-onset of type 2 diabetes using the DIRECT (Diabetes Research
on Patient Stratification) Consortium. The DIRECT Consortium under the Innovative Medicines
Initiative (IMI) combines the European Union (EU), European academic institutions and pharmaceutical
companies and aims at identifying biomarkers that will aid in diabetes related drug development,
as well as helping in developing a stratified approach for treatment of type 2 diabetes.

3. Proteomic Advances Made in the Area of Diabetic Nephropathy

Lee and Choi [70] reported that their PubMed search using the keywords “proteomics” or
“proteomic” or “proteome” with “diabetic nephropathy” hit 86 articles published between 2002 and
2010. Van et al. [4] hit 155 search results as of 2017. We also performed a PubMed search and the results
as of 2020 show 222 articles including reviews. This number underscores the impact of proteomics in
DN, as observed by the consistent need driven enthusiasm in research published in this area.

DKD is also described as a glomerular related pathology, since injury to the glomerulus
precedes and outweighs progressive injury to the tubulo-interstitium [71–73]. Stages involved
in DN have been clearly demarcated. Uncomplicated diabetes is the preliminary stage of DN/DKD,
wherein modifications in hyperfiltration and hypertrophy act as indicators [74]. Between 20% and
30% of patients with diabetes proceed to the next stage, which is incipient diabetic nephropathy [1–3],
where there is persistent microalbuminuria, with progressive decline in GFR [6]. The onset of proteinuria
marks the manifestation of late-stage diabetic kidney disease. Satirapoj and Adler (2014) [75]. in their
extensive review on diabetic nephropathy. addressed the risk factors, clinical stages, pathogenesis,
renal pathology, diagnostic criteria and available therapeutic interventions with respect to DN. It is well
known that multiple factors are involved in DN and the molecular mechanisms are poorly understood.

Microalbuminuria is currently the most trustworthy diabetic nephropathy predictor [1–3],
although there are other arguments refuting the credibility of using this as the sole marker.
Proteomic methods allow rapid understanding of a proteome (meaning the complete set of proteins
expressed within urine, plasma or serum samples) [6]. This paves way for effective non-invasive
diagnosis of renal diseases [7]. The proteomic tools that help analyze such protein traces in urine
and kidney, aid in early and premature diagnosis. Mass spectrometry has enabled the identification
of thousands of proteins and peptides and urinary markers in one go. Urinary proteomics and
renal proteomics have had important clinical implications in DN, given that urine can be collected
noninvasively and easily and is output from kidneys [75]. Urinary biomarker discovery improves
disease diagnosis, prognosis and treatment [21]. Serum can also be used for proteomic analysis, but,
since the urinary proteins are more stable and it is easier to handle urine than blood, urine is a more
advantageous option [18,23]. Analytical techniques need to possess high resolution, high sensitivity
and high throughput abilities for identifying novel DN biomarkers. Proteomics-focused understanding
of DN requires information on expression of individual proteins, their function and modifications
in their functions as a consequence of diabetes. On the other hand, individual proteins or pathways
altered by diabetes are also of interest [76].

Non-invasive diagnostics for diabetic nephropathy gains eminence from the aspect that they could
aid in prognosis prior to progression of the disease. At present, the most sensitive and non-invasive
indicator of the progression of diabetic nephropathy is microalbuminuria. Senatorski et al. [77] reported
that TGF-beta 1 and IL-6 levels in urine are effective prognostic factors for identifying the onset of
DN during the course of diabetes mellitus. An ideal renal biomarker should be easy to measure
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and noninvasive. Accuracy, reproducibility, sensitivity, specificity and cost effectiveness, leading to
accurate prediction, prognosis and progression of disease, are trademarks of an efficient renal marker.
Proteomic approaches have discovered biomarkers, such as collagen fragments [18,78], β2 MG [15],
proinflammatory cytokines [79] and retinol-binding protein (RBP) [80]. Such proteomic biomarkers can
help differentiate between DN affected patients and DN-free diabetics. Proteomic investigations in the
area of DN have made consistent and considerable breakthrough in the area of biomarker discovery.

Kim et al. [16] reported changes in 26 proteins specific to type 2 diabetics and Zürbig et al. [17]
reported peptides in urine samples for signs of DN, employing a CKD biomarker classifier from a
longitudinal cohort of diabetics. The application of this classifier enabled early detection. This was
much ahead of the routine urinary diagnosis. Collagen fragments could help in early diagnosis
(3–5 years) before macroalbuminuria set in. Papale et al. [20] evaluated proteomic profiles of urine
generated by SELDI-TOF MS and could reliably identify biopsy-proven DN and establish lineages with
renal injury. Using the model, normoalbuminuria patients, microalbuminuria patients and those with
DN were classified in diabetic and non-diabetic patients. Ubiquitin and β2 MG are the predominant
biomarkers evolved using the classification model. Overgaard et al. [22] analyzed plasma type 1 diabetic
patients and have differentiated various stages of kidney disease and classified them accordingly.
Using SELDI-TOF-MS analysis, four peaks of transthyretin, apolipoprotein A1, apolipoprotein C1 and
cystatin C were identified. Rossing et al. [18] also identified biomarkers to differentiate and identify
diabetic patients with and without DN [18,19,77]. Recently, Roscioni et al. [21] developed a urinary
proteomic risk score-based prediction system that could evidence the progression of microalbuminuria
in type 2 diabetic patients. Good et al. [81] reported on a classifier that was specifically indicative of
CKD. Few other reports confirm that proteome analysis of urine could distinguish between DN and
CKD patients [18,19,24]. These reports show that proteomic approaches have a lot to offer towards
early novel and noninvasive predictors during DN diagnosis. Speculating on the limitations of DN
proteomic studies, small sample size and reproducibility, as well as need for extensive data collection
and analysis and time and energy and cost effectiveness may be worth mentioning.

4. Future Perspective: Bioinformatics Applications into DN

With a large amount of proteomic inputs in DN, we delve into how far bioinformatic resources
have been invested into harnessing molecular data towards computational rationalization of DN
proteomic data. With the inputs of bioinformatics resources being enormous in proteomics research
and given the fact that DN has also extensive proteomic aspects to it, this review starts off on a high note
that we will be consolidating on voluminous advances and reporting tools that have been used in DN.
It was interesting to observe that, while bioinformatics aspects have been applied to diabetes-based
research, our search could only arrive at a handful of publications in this area (Table 2), with scant
reports of few databases alone being used for DN investigations. Recently, with the development of
high-throughput technologies, it is expected that much of these deliverables would be harnessed and
applied. The few scattered reports on bioinformatics applications in DN research are presented in
this section.

Single nucleus RNA sequencing technology is able to bring about changes in gene expression
in early DN patients, enhance urinary potassium secretion and decrease calcium and magnesium
reabsorption. These changes identify biomarkers leading to early detection and treatment [3]. To identify
the factors influencing diabetic nephropathy (DN), Fan et al. [82] reported RNA sequencing of renal
biopsy samples of patients with early and advanced DN and normal kidney tissue from nephrectomy
samples. RNA-seq of 28 DN and 9 control samples was conducted, where the total RNA was extracted
and evaluated by an Agilent 2100 Bioanalyzer. cDNA libraries were constructed and sequenced
using a HiSeq 4000 system. The good quality reads were identified based on human reference
databases employing the use of STAR alignment algorithm [83]. After filtering and normalization,
differential analysis by limma test [84] identified significantly dysregulated genes. The output
was analyzed using Gene Ontology (GO) function [85] and various pathways such as Ingenuity
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Pathway Analysis, Reactome, Kyoto Encyclopedia of Genes and Genomes, Naba, BioCarta, Panther,
Pathway Interaction Database and WikiPathways. As for deconvolution analysis, CIBERSORT [86] was
used and single-cell data belonging to human kidney were extracted from the Gene Expression Omnibus
(GEO) database (GSE109564) and SEURAT identified 16 cell types [87]. The results obtained employing
bioinformatic resources show significant increase in fibroblasts, monocytes and myofibroblasts in
DN-advanced kidneys.

The candidate gene approach was employed to search for genes that are involved in the
susceptibility of DN, before the development of genome-wide association studies. Recently, Van et al. [4]
investigated the implications of differentially excreted urinary proteins in DN based published,
relevant data. Candidate markers in DN patients and controls were extracted from 31 published
studies. All candidates were weighted equally for network analyses. To conduct the localization
analysis, the screened candidates were mapped onto specific nephron segments based on their renal
expression (in normal tissues) using the existing literature on Human Protein Atlas. For the functional
analysis, biological processes Biological Networks Gene Ontology [88] implicated in the progression of
DKD were used. Enrichment Map plug-ins of Cytoscape software helped in mapping the proteins
associated with each stage of DN [89]. PPI networks equipped for the retrieval of interacting genes
were constructed [90]. Using the bioinformatics tools, the authors successfully and comprehensively
identified crucial biological processes in DKD and proteins associated with a particular stage of disease.
Despite genome-wide association on unique and common genetic variants from exome sequencing,
the genetics behind DN are poorly understood [91–93], although proteome- and transcriptome-based
studies have been utilized for diabetes-based biomarker identification [94]. It is emphasized that
DN would benefit from these studies as well. Figure 3 displays the room for development and
improvisation of bioinformatics options into DN research. Next generation bioinformatics resources
such as those listed below are those that we propose for use in DN-related research to achieve
expected breakthroughs.
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Table 2. Bioinformatic inputs into the area of Diabetic Nephropathy.

Software Function/Application Bioinformatics Resources Reference

Investigating implications of proteins in urine samples
from DN patients

using protein–protein interactions (PPI) network
analysis-STRINGv10. Van et al., 2017 [4]; Szklarczyk, D. et al., [55]

Biomarkers for DN PPI for determining interactions within proteins
involved in progression of diabetes

Abedi and Gheisari, 2015 [95]; Saito et al., 2016 [96];
Varemo et al., 2015 [93]

DN urinary biomarkers in the various nephrons were
elucidated and mapping of protein biomarkers in
nephron segments

Human Protein Atlas https://www.proteinatlas.org/
determined differences in protein expressions in renal
tissues vs. normal tissues

Uhlen et al., 2010 [97]; Van et al. 2017 [4]

Identify DN in Type 2 diabetic patients decision tree-based prediction tool to identify DN in
patients with type 2 diabetes Huang et al., 2015 [98]

DN prediction applied machine learning for early prediction of DN via
risk factor analysis Cho et al., 2008 [99]

DN related Factors
random forest learning algorithm (Breiman, 2001) for
understanding factors behind diabetic peripheral
neuropathy (DPN).

DuBrava et al. 2017 [100]; Chadinee et al., 2018 [37]

RNA sequencing of biopsy kidney samples from early
DN and advanced DN patients and that from normal
kidney tissue

Gene ontology http://geneontology.org/
CIBERSORT https://cibersortx.stanford.edu/
Gene expression Omnibus
https://www.ncbi.nlm.nih.gov/geo/
SEURAT https://satijalab.org/seurat/

The Gene Ontology, 2017 [85]; Newman, A.M. et al.,
2015 [86]; Zhao, M. et al., 2017 [47]; Clough, E. and
Barrett, T. 2016 [87]

Identification of enriched biological processes, 76
differentially expressed proteins in diabetes affected
kidneys identified

Cytoscape using plug ins
Biological Networks Gene Ontology
Enrichment Map

Maere et al., 2005 [88]; Merico et al., 2010 [89]; Van et al.,
2017 [4]
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resources, categories and areas where bioinformatics resources will come handy are listed.

These resources include: BWA (Burrows–Wheeler Aligner) aligns genomic regions; PICARD
is used to manipulate the high-throughput sequence (HTS) data and sam/bam/vcf file processing;
GATK (Genome Analysis Toolkit) is for variant analysis of HTS data; dbSNP (Database of single
nucleotide polymorphism) is a repository for nucleotide variations; MACS2 (Model-based Analysis
of ChIP-seq) is for identifying significantly enriched genomic regions in ChIP/DNase-seq data;
HoMER (Hypergeometric Optimization of Motif EnRichment) predicts the known/de-novo motifs for
NGS sequence analysis; SICER (spatial clustering approach for the identification of ChIP-enriched
regions) calls the broad peaks from chipseq data and identifies the enriched and differentially
binding region; Cell ranger is a software used for primary analysis of the chromium 10× single
cell data; DeSeq2 (differential gene expression analysis of RNA-seq data) finds the significantly
differentially expressed genes between disease and control sample; MAST (Motif Alignment &
Search Tool) is used to annotate the matched motif; Seurat/Scanpy is a single cell RNA seq
downstream analysis pipeline; GenBank is a DNA sequence database; proteomic tools such as PRIDE
(PRoteomics IDEntifications database and core tools) analyze and visualize the MS based proteomics
data; MASCOT (predicting protein sequences from mass spectral data) is an integrated tool for Peptide
mass fingerprint, sequence query; MS/MS Ion Search uses uninterpreted MS/MS data from one or more
peptides; Sys-BodyFluid is a database for human body fluid proteome research generally used for body
fluid related proteomic study; Human urinary proteomic fingerprint database (UPdb); Urinary Exosome
Protein Database is used for primary data derived from MALDI-, MELDI-, SELDI-, CE-, LC- and other
TOF-MS analyses in urinary research; Human Kidney and Urine Proteome Project (HKUPP) is used
for proteomic analysis of urine samples and human kidney tissues; The Kidney & Urinary Pathway
Knowledge Base (KUPKB) contains multi-omics data such as mRNA, miRNA, metabolites and proteins;
STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) predicts interaction network
for protein–protein functional enrichment analysis; PUBCHEM is a molecular chemical information
database used to retrieve the drug/compound structure; AutoDock (Automated Docking Tool) is for
molecular docking; and Chimera is an interactive visualization and analysis tool for three-dimensional
molecular structures and related data. All these resources are well established in urinary-, kidney-
and diabetes-related proteomics and metabolomics; DN would no doubt benefit from these assets.
When bioinformatics tools could lead to unequivocal progress in DN biomarker studies leading to
early diagnostics and for DN drug discovery based on the receptor protein, it is rather strange that
given all these assets that still bioinformatics is kept at bay.
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Although massive strides are being made in the area of DN, several notable limitations remain.
There is a need to identify more potential drug targets using computer-aided drug designing/virtual
screening. More novel biomarkers improve the therapeutic efficacy. Since there are no DN-based
databases/repositories available, the information is scattered everywhere. Epigenetic mechanisms are
assumed to play a role in the regulatory element mechanism of DN. This area of study works hand in
hand with bioinformatics resources. Epigenetic regulations such as DNA methylation, noncoding RNAs
and histone modifications, have a profound influence on DKD. Using quantitative proteomics
(2DE, pSILAC, SILAC, iTRAQ, 2D-DIGE and iCAT), it is possible to find the microRNA-based targets
and their protein products, which are the key facts for identifying potential targets. These bioinformatics
options contribute to developing novel therapies for DN and understanding the DN driven genetic and
epigenetic changes. Epigenetic changes being reversible can be used successfully for DN therapeutics.
Very few studies have reported on gene expression profiling of genome wide association studies such
as transcriptome analysis, epigenetic profiling, single cell RNA sequence analysis and metagenomics
studies leading to identifying disease targets. The integration of bioinformatics with proteomics has led
to revolutionizing breakthroughs in various fields. Such a benefit has been reaped in diabetes research.
While this is the case, there is no doubt that diabetic nephrology will also take advantage of this
technique. There is no realistic answer as to why almost nothing has been applied from bioinformatics
to DN research, but this could be as simple as a gap in the collaboration of researchers from diverse
fields, such as bioinformatics and proteomics as well as by nephrologists and diabetologist. This review
sees a need for such an exploration and combinatorial approach in this area.

5. Conclusions

The rising concern regarding diabetic nephropathy is addressed and the breakthroughs achieved
through bioinformatic inputs in the area of diabetes research are presented. The voluminous
proteomics-based progress made in the area of DN is presented. Except for a handful of databases and
tools that this review assembles, almost no technology transfer has been achieved from bioinformatics
information and resources to DN research. This review highlights this void and aims are initiating
some thought and attention in this direction. The lack of bioinformatics applications into DN research
is emphasized and further integration of bioinformatics resources is presented as the future of
DN research.
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