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Abstract: Diagnosis of bearing faults is crucial in various industries. Time series classification (TSC)
assigns each time series to one of a set of pre-defined classes, such as normal and fault, and has been
regarded as an appropriate approach for bearing fault diagnosis. Considering late and inaccurate
fault diagnosis may have a significant impact on maintenance costs, it is important to classify bearing
signals as early and accurately as possible. TSC, however, has a major limitation, which is that a
time series cannot be classified until the entire series is collected, implying that a fault cannot be
diagnosed using TSC in advance. Therefore, it is important to classify a partially collected time series
for early time series classification (ESTC), which is a TSC that considers both accuracy and earliness.
Feature-based TSCs can handle this, but the problem is to determine whether a partially collected
time series is enough for a decision that is still unsolved. Motivated by this, we propose an indicator
of data sufficiency to determine whether a feature-based fault detection classifier can start classifying
partially collected signals in order to diagnose bearing faults as early and accurately as possible.
The indicator is trained based on the cosine similarity between signals that were collected fully and
partially as input to the classifier. In addition, a parameter setting method for efficiently training the
indicator is also proposed. The results of experiments using four benchmark datasets verified that the
proposed indicator increased both accuracy and earliness compared with the previous time series
classification method and general time series classification.

Keywords: early time series classification; data sufficiency; bearing fault diagnosis; feature-based
classification

1. Introduction

Bearings are one of the important components in rotary machines such as motors, wind turbines,
helicopters, automobiles, and gearboxes [1]. The fault diagnosis of bearings is a crucial task because
they are among the most important components of rotation machines; faulty bearings are one of the
main causes of machine failure [2]. Consequently, predictive maintenance methods for bearings have
attracted interest from both academia and industry. Jin et al. [3] developed a health index based on the
bearing vibration signal and designed a method to detect bearing faults by selecting the appropriate
threshold with a Box-Cox transformation. Singleton et al. [4] introduced a data-driven methodology,
which relies on both time and time–frequency domain features to track the evolution of bearing faults.
Kumar et al. [5] developed a health index using singular value decomposition, the average value of
the cumulative feature, and Mahalanobis distance to evaluate and compared the four conditions of
the bearing. Caesarendra and Tjahjowidodo [6] confirmed the change of the low-speed slew bearing
condition from normal to failure using impulse factor, margin factor, approximate entropy, and largest
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Lyapunov exponent (LLE). Li et al. [7] proposed an approach for motor rolling bearing fault diagnosis
using neural networks and time–frequency-domain bearing vibration analysis.

Time series classification (TSC) is a supervised learning task that assigns each time series instance
to a predefined class, such as fault and normal [8]. In other words, TSC aims to train and use the
classifier f to diagnose with time series xi for the bearing i as ŷi = f (xi) where ŷi is predicted fault status
by the time series classifier f . Because each instance may have a different length, feature extraction is
regarded as an essential step for the task when a typical classifier, other than RNN (recurrent neural
network)-based ones such as long short-term memory (LSTM), is employed. Of course, RNN-based
models can classify unequal time series but they may be improper for the early time series classification
(ETSC) task due to their expensive computational costs.

TSC that includes feature extraction is called feature-based TSC and has been frequently used in
various area including biomedical [9,10], manufacturing [11–13], and so forth.

Many studies have been conducted on feature-based TSCs for bearing fault diagnosis based on
vibration signals. For example, Wu et al. [14] extracted features from vibration signals using multiscale
permutation entropy and trained a support vector machine (SVM) for fault diagnosis. Goyal et al. [15]
extracted statistical features, such as mean, standard deviation, root mean square, and skewness
from a vibration signal collected by a noncontact sensor. An accelerometer then selected several
features based on the Mahalanobis distance for training the SVM. They observed that a noncontact
sensor can be applied to identify bearing faults, and that a linear SVM outperformed other SVMs.
Gunerkar et al. [16] employed wavelet transform to extract time domain features from vibration signals
and trained supervised models, including an artificial neural network (ANN) and a k-nearest neighbor
algorithm. From their experiment, they observed that the ANN outperformed other models in terms of
accuracy. In recent years, convolutional neural networks (CNNs) have frequently been applied to solve
bearing fault diagnosis problems, because they have filters to extract features from images. For example,
Zhao et al. [17] proposed a planet-bearing fault classification method based on synchrosqueezing
transform and CNN. In this method, the vibration signal was converted into a time–frequency color
map using a synchrosqueezing transform. Then, the map was input into the CNN with six convolution
layers and four max pooling layers, which assigned the map to one of three predefined classes: inner
race fault, outer race fault, and health.

In time-sensitive applications, such as fault detection, earliness is as important as accuracy because
late fault diagnosis leads to delayed maintenance and can cause the bearing fault to become permanent
despite the accurate diagnosis. Even a few seconds of delay can lead to a critical situation such as
an engineering system breakdown. Earliness is a measure to determine how early a classifier begins
the classification job and is computed by the average ratio of the time until the classifier starts the
classification to the time to collect the full time series.

TSC that considers both accuracy and earliness is called early TSC (ETSC) [18]. A few studies
have proposed ETSC methods. For example, Hatami and Chira [19] developed an ensemble for early
classification consisting of two classifiers with reject option (CWRO), which determines whether it
can classify a (partially) collected instance. A CWRO does not classify an instance if its maximum
posterior probability (i.e., max

k
Pr(y = ck

∣∣∣x)) or maximum decision function value is below a certain

threshold. An instance is classified by the ensemble when every CWRO in the ensemble does not reject
classification. The major limitations of the ensemble are as follows: First, it is difficult to determine the
threshold of the reject option, especially for decision function values that are not probabilities. Second,
the ensemble can reject an instance when it is hard to classify, even though it is fully collected, resulting
in lower earliness. He et al. [20] proposed a shapelet-based early classification method for multivariate
time series. The method extracts a set of shapelet candidates, conducts clustering of the candidates,
and selects a core shapelet from each cluster based on the weighted mean of the accuracy and earliness
for each class. A new time series instance is assigned to a class as long as the number of core shapelets
for the class becomes a threshold or is randomly labeled. This method is very expensive in terms of
computational complexity, and its performance, including accuracy and earliness, is highly dependent



Processes 2020, 8, 790 3 of 13

on the set of shapelet candidates. That is, if the candidate set is inappropriately constructed owing to
missing values and ill-defined parameters, the classification performance may be poor. Xing et al. [21]
proposed a method to extract interpretable features from time series for interpretability of ETSC in
medical and health informatics, industry production management, safety, and security management.
Ghalwash and Obradovic [22] presented multivariate shapelet detection (MSD) that extracts time series
patterns from all dimensions of the time series that distinctly manifest the target class locally, and the
time series were classified by searching for the earliest closest patterns. Mori et al. [23] presented a
method for early classification based on combining a set of probabilistic classifiers together with a
stopping rule (SR), which acts as a trigger to indicate when to output a prediction or when to wait for
more data.

Even though both starting time and processing time impact the earliness, advancing the starting
time is a more reasonable option because processing time is very difficult to be reduced and it is usually
small and almost the same for every time series. In order to advance the starting time, it is important to
decide whether the (partially) collected time series is enough for classification or not. In other words,
decisions on data sufficiency should be made periodically, and one can start classification once data
is decided as enough for classification. However, to the best of our knowledge, there is no previous
research that has addressed the question, “is the time series long enough for classification?” Only a few
studies addressed questions such as “is the financial time series long enough for clustering?” [24] and
“is the time series long enough for identifying the qualitative changes?” [25].

This paper proposes a feature-based early classification method for bearing fault diagnosis with
a data sufficiency indicator. This indicator determines whether a given partially collected signal is
sufficiently long to be classified by a fault diagnosis classifier based on its similarity to a fully collected
signal. If the indicator determines that it is sufficiently long, the classifier begins classifying the signal
without further collection. The indicator does not have any risk of reject classifying an instance, which
is a common problem in previous methods because it is not based on the shapelet or distance but on
statistical features, and it predicts the bearing fault classifier decision rather than the actual status of
the bearing. The remainder of this paper is organized as follows: Section 2 formalizes the early bearing
fault diagnosis problem and develops a solution to the problem. Section 3 proposes a data sufficiency
indicator for a time series classifier and explains how to use and train the proposed indicator in detail.
Section 4 conducts experiments to demonstrate that the proposed indicator can increase both accuracy
and earliness compared with previous methods. Section 5 concludes this paper and suggests future
research directions.

2. Early Bearing Fault Diagnosis

Bearing fault diagnosis using TSC is based on assigning time series from a bearing (e.g., vibration
signal) to one of several pre-defined statuses (e.g., normal, inner race fault, outer race fault, or ball
fault). More formally, let xi =

(
xi,1, xi,2, · · · , xi,Ti

)
or xi, 1:Ti be the time series and yi be the fault status of

bearing i (i = 1, 2, · · · , n), where xi,t is the signal collected at time t for the bearing. Then, the problem
aims to train the classifier f to diagnose the status of bearing i as ŷi = f (xi). However, it is difficult
to develop a classifier with a raw signal (i.e., xi), because the length of each bearing signal can differ
from one another and be too long to train the classifier efficiently, and it even may not have significant
features. For this reason, feature-based TSCs have been employed in many studies [9–13,26–28].
The usual process of developing a feature-based time series classifier is depicted in Figure 1.

A time series classifier with features can be expressed as follows:

ŷi = f (Φ(xi)) = f (ϕ1(xi), ϕ2(xi), · · · ,ϕm(xi)) (1)

where ϕk denotes the feature function k (k = 1, 2, · · · , m). The feature functions used in this study
were adopted from [26] and are listed in Table 1. These features have been frequently used for bearing
diagnosis problems, because they summarize bearing signals very well. For instance, crest factor
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indicates wear or cavitation, and root mean square shows the severity of bearing faults [29]. Readers
can refer to [26,29] for more information on the nature of each feature function.Processes 2020, 8, x FOR PEER REVIEW 4 of 14 
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Table 1. Feature functions used in this study.

Domain Feature Function Formula

Time domain

Mean ϕmean =
∑Ti

t=1 xi,t

Ti

Standard deviation ϕstd =

√∑Ti
t=1(xi,t−ϕmean)

2

Ti

Root mean square ϕrms =

√∑Ti
t=1 x2

i,t
Ti

Peak ϕpeak = max(|xi|)

Shape factor ϕs f =
ϕrms

|ϕmean|

Crest factor ϕc f =
ϕpeak
ϕrms

Impulse factor ϕi f =
ϕpeak

|ϕmean|

Clearance factor ϕc f =
ϕpeak∑Ti

t=1

√
|xi,t|/Ti

Skewness ϕsk =

∑Ti
t=1 x3

i,t/Ti

ϕ3
rms

Kurtosis ϕku =

∑Ti
t=1 x4

i,t/Ti

ϕ4
rms

Frequency domain

Mean frequency ϕm f =
∑l

r=1 sr
r

Center frequency ϕc f =
∑l

r=1 er×sr∑l
r=1 sr

Root mean square frequency ϕrms f =

√∑l
r=1 e2

r×s2
r∑l

r=1 sr

Standard deviation frequency ϕsd f =

√∑l
r=1(er−ϕc f )

2
×sr∑l

r=1 sr

In Table 1, er and sr indicate the frequency and power spectrum, respectively, of the rth spectrum
line resulting from the estimation of the power spectral density of a signal.
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As mentioned before, a bearing fault diagnosis task requires not only accuracy but also earliness.
The accuracy and earliness of a classifier indicate how well it classifies instances and how early it can
start and complete the classification, respectively. In other words, the signal should be classified as
accurately and as early as possible. TSC considering earliness additionally is called early time series
classification (ETSC). In order to classify a time series as soon as possible (i.e., for ETSC), it is important
to start and complete the accurate classification early [8], as illustrated in Figure 2. As seen, ETSC
starts (at τ) and finishes the classification earlier than general time series classification (GTSC) starts
(at T) and finishes. In order to classify a time series as soon as possible (i.e., for ETSC), it is important
to start and complete the accurate classification early [8], as illustrated in Figure 2. As seen, ETSC
starts (at τ) and finishes the classification earlier than GTSC starts (at T) and finishes. In order to start
earlier, a classifier should decide whether a bearing is a fault or not with partially collected time series
xi, 1:τ = (xi,1, xi,2, · · · , xi,τ). A classifier with a shorter classification time should be used to reduce
the processing time. A feature-based classifier requires relatively smaller classification time and the
feature values (e.g., mean, standard deviation, center frequency, etc.) do not change significantly once
a sufficient amount of signal is collected. However, the problem to determine whether the partially
collected time series is enough for decision on the fault still needs to be solved.
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The main problems considered in this study are whether the collected signal is sufficiently long
to be classified by an early classifier, and when the classifier can start the classification. In other
words, the problems are to determine whether f

(
Φ
(
xi, 1:τi

))
= f

(
Φ
(
xi,1, xi,2, · · · , xi,τi

))
and f (Φ(xi)) =

f
(
Φ
(
xi,1, xi,2, · · · , xi,Ti

))
are sufficiently similar that the classifier can begin classification, and to estimate

the minimum time τ̂i such that SIM f
(
xi, 1:τ̂i , xi

)
≥ α, where SIM f (A, B) is the similarity between A and

B as input for f , and α is a threshold.

3. Proposed Indicator

As explained in Section 2, it is important to decide whether the partially collected time series is
enough for a classifier. In this study, we propose an indicator for the decision problem. The indicator is
also a classifier and trained based on a bearing fault dataset, which is also used to train a classifier f ,
and thus it makes a decision quickly and accurately.

This section describes the proposed indicator in detail, focusing on its application to ETSC.
Then, we explain how the indicator determines whether the partially collected signal is sufficiently
long for classification based on the similarity between the partially and fully collected signals. Finally,
we explain how the indicator is trained.
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Let I f be an indicator to determine whether the collected signal xi,1:t is sufficiently long for
classification by f until t for bearing i, expressed as follows:

I f (xi, 1:t) =

{
1, if xi,1:t is sufficiently long for classification by f ,

0, otherwise,
(2)

where “xi,1:t is sufficiently long for classification by f ” implies ŷi = f (xi,1:t) = f (xi,1:T), that is, the
decisions of f for xi,1:t and fully collected signal xi,1:T = xi are the same. Thus, one can start classifying
the signal of bearing i with xi,1:t when I f (xi, 1:t) = 1. Note that the decisions of f for xi,1:t and
fully collected signal xi,1:T = xi being the same does not guarantee a correct classification result
(i.e., yi and f (xi) = f (xi,1:t) may be different). The specific process is presented in Figure 3, where τ0

and τ are the start time and period of the indicator, respectively. That is, I f
(
xi, 1:τ0+z×τ

)
is calculated for

z = 0, 1, 2, · · · until it becomes 1, and the partially collected signal starts to be classified.
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As mentioned above, the indicator I f (xi, 1:t) = 1 when xi,1:t and xi
(
= xi,1:Ti

)
are similar to each

other as input for f . In other words, xi,1:t is considered sufficiently long when the classification results
of xi,1:t and xi,1:Ti by f are similar to each other. The similarity between xi,1:τi and xi as input of f ,
SIM f

(
xi,1:τi , xi

)
is defined as the cosine similarity between two vectors δ(xi) = (δ1(xi), · · · , δC(xi)) and

δ
(
xi, 1:τi

)
=

(
δ1

(
xi, 1:τi

)
, · · · , δC

(
xi, 1:τi

))
as follows:

SIM f
(
xi,1:τi , xi

)
=

∑C
c=1 δc(xi) × δc

(
xi, 1:τi

)
√∑C

c=1 δc(xi)
2
×

√∑C
c=1 δc

(
xi, 1:τi

)2
(3)

where δc(xi) is the decision function value of xi for class c (c ∈ {1, 2, · · · , C}). The reason for using
cosine similarity is that it is proper to express similarity between two vectors not based on their scales
but on their directions [30], and direction is more important to measure the similarity between δ(xi)

and δ
(
xi, 1:τi

)
.

For the decision function δc(xi), one can use the hyperplane, wcxi + bc, for class c if an SVM is
adopted as the classifier. If the classifier is an ANN, then the output node c can play the role of a
decision function, and Pr(y = c) × Pr(xi

∣∣∣y = c) can be used if the naïve Bayes classifier is used. δ(xi)

and δ
(
xi, 1:τi

)
are used instead of the predicted classes f (xi) and f

(
xi, 1:τi

)
to prevent the case where

f (xi) and f
(
xi, 1:τi

)
are coincidentally the same. Cosine similarity is adopted because it is appropriate

to calculate directional similarity, and setting the similarity threshold is easy because its value is in
[–1, 1]. It should be noted that the indicator, which is also regarded as a classifier, does not directly
calculate SIM f

(
xi,1:τi , xi

)
but predicts whether the similarity is greater than a threshold because it is

used at time τi < Ti when xi, τi+1:Ti is unknown.
Figure 4 shows the training process of I f , which consists of four steps. It should be noted that the

classifier f is also trained in parallel in the process.
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As shown in Figure 4, the feature dataset D f =
{
(Φ(xi), yi)

∣∣∣i = 1, 2, · · · , n
}

is generated
by extracting features from the raw dataset D =

{
(xi, yi)

∣∣∣i = 1, 2, · · · , n
}
. The classifier

f is trained with the feature dataset D f . The indicator training dataset DI =

∪
n
i=1

{
(xi,1:τ,ψi,1:τ)

∣∣∣τ = τ0, τ0 + ∆τ, τ0 + 2× ∆τ, · · · , Ti
}
, where ψi,1:τ = 1 if SIM f (xi,1:t, xi) is equal to

or greater than the threshold α; otherwise, ψi,1:τ = 0 and generated using the following algorithm.
In this algorithm, τ0 and ∆τ denote the first time and period, respectively, to check if partially collected
signals are enough for classification by the indicator. α, τ0, and ∆τ are user-defined parameters,
which impact on both training time and processing time of the proposed indicator. Specifically,
the bigger α is, and the smaller τ0 and ∆τ are, the greater the number of iterations to train the indicator
is possible, and, thus, the more accurate the indicator is expected to be.

Algorithm 1. Generation of the indicator training dataset.

Input f , xi, for i = 1, 2, · · · , n, α, τ0, ∆τ

Procedure

Step 1. Initialize i = 1 and DI = ∅
Step 2. Initialize t = τ0

Step 3. Calculate SIM f
(
xi,1:t, xi

)
using Equation (3)

Step 4. ψi,1:τ = 1 if SIM f
(
xi,1:t, xi

)
≥ α, and ψi,1:τ = 0 otherwise

Step 5. DI = DI ∪
{(

xi,1:t,ψi,1:t
)}

Step 6. Increase t by ∆τ

Step 7. If t ≥ Ti or SIM f
(
xi,1:t, xi

)
= 1, increase i by 1 and go back to step 2.

Step 8. If i > n, terminate the algorithm. Otherwise, go back to step 2

Output DI

Finally, the indicator is trained with DI. It should be noted that DI is usually class-imbalanced
(i.e., I f (xi,1:t) = 0 for most i and t); therefore, oversampling or undersampling may be necessary to
solve the problem and train an unbiased indicator.
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Clearly, the parameters τ0 and ∆τ have an impact on the effectiveness and efficiency of the
proposed indicator. There are, however, no ground rules in setting the parameters. When training
the indicator, there is no information about τ0 and ∆τ. In this case, a tenth of the sampling
frequency may be a good choice. When using the indicator, we can consider the first time of xi,
τ0,i as “sufficiently long for classification by f ” (i.e., the smallest t satisfying I f (xi,1:t) = 1 in Step 3 of

Algorithm 1). We suggest that τ0 be set as min
{
τ0,1, τ0,2, · · · , τ0,n

}
because the indicator can find τ0,i with

the highest efficiency when τ0 = min
{
τ0,1, τ0,2, · · · , τ0,n

}
. It should be noted that one cannot guarantee

min
{
τ0,1, τ0,2, · · · , τ0,n

}
< τ0,n′ for every n′ > n (i.e., the instance that is not in the training dataset),

and min
{
τ0,1, τ0,2, · · · , τ0,n

}
− τ0,n′ is the loss of decision time when min

{
τ0,1, τ0,2, · · · , τ0,n

}
> τ0,n′ .

Similarly, we suggest that ∆τ be set as min
{
τ0,i1 − τ0,i2

∣∣∣τ0,i1 ≥ τ0,i2

}
.

4. Experiment

4.1. Objective and Process

The objective of the experiment is to verify whether the proposed indicator is better than CWRO
in increasing earliness without loss of accuracy. The specific processes using a dataset are as follows:

Step 1. The dataset is randomly split into a training and test dataset for objective evaluation of the
proposed indicator. Specifically, the set of indices I = {1, 2, · · · , n} of time series instances is
randomly separated to ITrain and ITest with a ratio of 7:3. That is, 70% of samples is randomly
selected whose indices are in ITrain and is used to train the model, and the remaining 30% of
samples in ITest is to test it.

Step 2. A classifier and an indicator are trained using the training dataset
{
(xi, yi)

∣∣∣i ∈ ITrain
}
, as depicted

in Figure 4. We selected ANN and SVM as a classifier, because they have been most frequently
used as a feature-based time series classifiers in previous research, e.g., in [14–17]. Each classifier
is trained by means of all features presented in Table 1, as was done in [26].

Step 3. The trained classifier is tested using the test dataset,
{
(xi, yi)

∣∣∣i ∈ ITest
}
, in terms of the micro

f1-score. It is employed as an accuracy measure because it is a proper measure of multiclass
classification, which may have a class imbalance problem. The micro f1-score, which is the
harmonic mean of micro precision and recall, is calculated as follows:

micro F1 = 2×
micro precision×micro recall
micro precision + micro recall

(4)

where micro precision and recall are calculated as follows:

micro precision =

∑C
c=1 TPc∑C

c=1 TPc + FPc
(5)

micro recall =

∑C
c=1 TPc∑C

c=1 TPc + FNc
(6)

where TPc, FPc, and FNc indicate true positive, false positive, and false negative, respectively,
when class c is regarded as positive.

Step 4. The accuracy and earliness of the classifier trained with the proposed indicator are

calculated using
{(

xi, 1:τi , yi
)∣∣∣∣i ∈ ITest

}
, where τi indicates the minimum value among t ∈

{τ0 + z× τ|z = 1, 2, · · · } satisfying I f (xi,1:t) = 1 (i.e., SIM(xi,1:t, xi) ≥ α). Earliness is calculated
as follows:

earliness =

∑
i∈ITest

(
1− τi

Ti

)
|Itest|

(7)
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where τi’ denotes the classification start time for time series instance i’. For accurate and efficient
decision for the indicator, our computational experience shows that α should be equal to or
bigger than 0.9. τ0 and ∆τ can be determined as proposed in the final paragraph of Section 3.

Step 5. The accuracy and earliness of the classifier trained with the CWRO approach are calculated

using
{(

xi, 1:υi , yi
)∣∣∣∣i ∈ ITest

}
, where υi indicates the maximum value among t ∈ {τ0 + z× τ}

satisfying the standard deviation of δ(xi) ≥ ε.
Step 6. Accuracy and earliness obtained from Steps 4 and 5 are compared.

4.2. Datasets

We collected four benchmark datasets of bearing vibration from an accelerometer from the existing
literature. The dataset information is presented in Table 2 and refers to [31,32] for detail setting to collect
the datasets. Note that because the sampling durations of the datasets are 10 or 40 s, one may think
that ETSC is not necessary. However, the signal is continuously collected when bearing fault detection
is applied in the real world; thus, the real sampling duration could be in hours, days, and even weeks.

Table 2. Experimental dataset information.

Dataset Data Type Sampling
Frequency (Hz)

Sampling
Duration (s)

Class Variable
Distribution Reference

Dataset #1 Vibration 200,000 10
Healthy: 12

Inner race fault: 12
Outer race fault: 12

[31]Dataset #2 Vibration 200,000 10

Healthy: 12
Inner race fault: 12
Outer race fault: 12

Ball fault: 12

Dataset #3 Rotational
speed 200,000 10

Healthy: 12
Inner race fault: 12
Outer race fault: 12

Ball fault: 12

Dataset #4 Vibration 12,000 40

Healthy: 5
Inner race fault: 16
Outer race fault: 16

Ball fault: 16

[32]

4.3. Results

Table 3 compares GTSC, CWRO, and the proposed model (a classifier with the proposed indicator)
in terms of accuracy and earliness. As explained in Section 4.1, accuracy and earliness were measured
using (4) and (7), respectively. In Table 3, each line denotes the accuracy and earliness of a classifier
(SVM or ANN) for the dataset (#1–#4) when a preprocessing model for ETSC (GTSC, CWRO, or the
proposed model) and its parameter (none for GTSC, ε for CWRO, and α for the proposed model) is
applied. Numbers in boldface represent the best among the results of the given dataset and classifier.

Since GTSC does not consider earliness and uses the entire signal, earliness is zero. For dataset #1,
the earliness of CWRO is zero except for the case where the classifier is SVM and ε is 0.5, implying
that there is no clear difference between partially collected time series under normal and fault status,
and thus CWRO is not appropriate for this kind of dataset. However, the proposed model shows
not only high earliness but also higher accuracy than that of GTSC. For dataset #2–#4, CWRO shows
non-zero earliness but small earliness and low accuracy. From the results, we observe the following:
First, a general time series classifier does not always yield the best classification performance in terms
of accuracy. This implies that using the fully collected time series does not guarantee higher accuracy;
instead, dimension reduction techniques, including early classification, may increase accuracy. Second,
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the proposed model outperforms CWRO and general time series classifiers in terms of both accuracy
and earliness for all cases. In addition, the range of ε is [0,∞), but the range of α is [−1, 1], implying
that it is easier for the user to set the value of α than that of ε. Third, the accuracy and earliness highly
depend on the dataset and classifier used. It is obvious that classification performance depends on
a classifier and dataset for every classification problem, and the proposed indicator depends on the
used classifier.

Table 3. Performance analysis result.

Dataset Classifier Model Parameter Accuracy Earliness

Dataset #1

SVM

GTSC None 0.6667 0.0000

CWRO

ε = 0.5 0.6667 0.9950
ε = 1.0 0.6667 0.0000
ε = 1.5 0.6667 0.0000
ε = 2.0 0.6667 0.0000

Proposed
model

α = 0.90 0.6667 0.9950
α = 0.95 0.7778 0.9750
α = 0.99 0.8889 0.9050

ANN

GTSC None 0.6667 0.0000

CWRO

ε = 0.5 0.6667 0.0000
ε = 1.0 0.6667 0.0000
ε = 1.5 0.6667 0.0000
ε = 2.0 0.6667 0.0000

Proposed
model

α = 0.90 0.7778 0.9750
α = 0.95 0.7778 0.9750
α = 0.99 0.7778 0.9750

Dataset #2

SVM

GTSC None 0.5786 0.0000

CWRO

ε = 0.5 0.3333 0.9950
ε = 1.0 0.3333 0.9950
ε = 1.5 0.3333 0.9000
ε = 2.0 0.3333 0.9000

Proposed
model

α = 0.90 0.5786 0.9950
α = 0.95 0.5786 0.9850
α = 0.99 0.5786 0.9000

ANN

GTSC None 0.5786 0.0000

CWRO

ε = 0.5 0.3333 0.9000
ε = 1.0 0.3333 0.9000
ε = 1.5 0.3333 0.9000
ε = 2.0 0.3333 0.9000

Proposed
model

α = 0.90 0.5786 0.9950
α = 0.95 0.5786 0.9850
α = 0.99 0.5786 0.9000
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Table 3. Cont.

Dataset Classifier Model Parameter Accuracy Earliness

Dataset #3

SVM

GTSC None 0.2500 0.0000

CWRO

ε = 0.5 0.1333 0.9950
ε = 1.0 0.1333 0.9950
ε = 1.5 0.1333 0.9000
ε = 2.0 0.1333 0.9000

Proposed
model

α = 0.90 0.2500 0.9950
α = 0.95 0.2500 0.9950
α = 0.99 0.2500 0.9000

ANN

GTSC None 0.2500 0.0000

CWRO

ε = 0.5 0.1333 0.9000
ε = 1.0 0.1333 0.9000
ε = 1.5 0.1333 0.9000
ε = 2.0 0.1333 0.9000

Proposed
model

α = 0.90 0.2500 0.9000
α = 0.95 0.2500 0.9000
α = 0.99 0.2500 0.9000

Dataset #4

SVM

GTSC None 0.5294 0.0000

CWRO

ε = 0.5 0.7059 0.9792
ε = 1.0 0.7059 0.9792
ε = 1.5 0.4705 0.7015
ε = 2.0 0.4705 0.7015

Proposed
model

α = 0.90 0.7692 0.9413
α = 0.95 0.7692 0.9413
α = 0.99 0.7892 0.8544

ANN

GTSC None 0.8235 0.0000

CWRO

ε = 0.5 0.5294 0.7000
ε = 1.0 0.5294 0.7000
ε = 1.5 0.5294 0.7000
ε = 2.0 0.5294 0.7000

Proposed
model

α = 0.90 0.6956 0.8544
α = 0.95 0.5714 0.8131
α = 0.99 0.5294 0.7000

5. Conclusions

Bearing fault detection is one of the most important tasks in the manufacturing industry, which is
often accomplished by TSC. Most previous studies focused on accuracy but failed to consider earliness.
In time-sensitive applications such as bearing fault detection, earliness is a very important measure for
a time series classifier because it is highly related to cost and safety. Although a few ETSC methods
have been proposed, they are unsuitable for applications in fault detection problems because of reasons
such as the difficulty of parameter setting, improper features for fault detection, and low accuracy.

In this paper, we proposed an early bearing fault diagnosis method based on a data sufficiency
indicator. The indicator determines whether a signal collected within a specific period is sufficiently
long to be classified by the fault diagnosis classifier. The experiment with benchmark datasets confirmed
that the proposed method outperforms previous methods in terms of accuracy and earliness. Although
this study focused on bearing fault diagnosis, the proposed indicator can also be applied to any type of
ETSC problem.

There are two future research directions based on the limitations of the present study. First,
we employed feature functions from previous studies. Although these are frequently used in research,
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it remains uncertain whether they are effective for ETSC. Therefore, it is necessary to develop feature
functions for early bearing fault diagnosis. Second, the proposed indicator was specially designed for
the given classifier. In other words, the indicator is highly dependent on the classifier for bearing fault
diagnosis, implying that it may not show good performance when another classifier is used. Therefore,
the second research direction is to develop a robust indicator that is almost independent of a specific
classifier and shows good results regardless of the classifier used. Third, we will modify and apply
the proposed indicator for ETSC in a different area whose sampling rate is much longer than seconds.
Fourth, selecting the τ0 and τ1 impact on the processing time of the proposed indicator, and thus we
will develop a method to select the best values of them for each time series to reduce the processing
time in future research. Finally, we will develop a hybrid model of the proposed model and CWRO for
more efficient and effective ESTC.
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