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Abstract: Since setup operations have significant impacts on production environments, the capacitated
lot-sizing problem considering arbitrary length of setup times helps to develop flexible and efficient
production plans. This study discusses a capacitated lot-sizing problem with sequence-dependent
setup, setup carryover and setup crossover. A new mixed integer programming formulation is
proposed. The formulation is based on three building blocks: the facility location extended formulation;
the setup variables with indices for the starting and the completion time periods; and exponential
number of generalized subtour elimination constraints (GSECs). A separation routine is adopted
to generate the violated GSECs. Computational experiments show that the proposed formulation
outperforms models from the literature.

Keywords: capacitated lot-sizing; sequence-dependent setup; setup carryover; setup crossover;
branch-and-cut algorithm

1. Introduction

1.1. Background

Master production plans of a main production process of a supply chain provide all the participants
with the visibility regarding the operation. Production planning is referred to as “lot-sizing” in a
discrete production environment [1]. The capacitated lot-sizing problem (CLSP) has been considered
in various industries to generate production plans reflecting production restriction [1,2].

Generally, lot-sizing problem assumes that planning horizon is finite and can be divided into
multiple time periods, which are terms as “time buckets”. The time buckets are classified into small-
and big-time buckets, when the comparison of the relative length of the time period is made with
respect to the relative length of the production lot [3]. Models considering small-time buckets allow at
most one or two products to be produced in a period and models considering big-time buckets allow
more than two products to be produced in a period [1].

Setup operations prepare processing units (e.g., materials and machines) to manufacture
production lots. In process industries, the setup time required for replacing production models
accounts for a large proportion of capacity utilization. Moreover, variations in the setup time may be
highly depending on the product models and their operating sequence. The setup time between similar
products is relatively short, allowing engineers to setup multiple times in a day or a shift. However,
setup operations requiring more than one day or several days may be necessary between products
when the processing material or equipment needs to be changed. For solving the big-time bucket CLSP
model, several modeling techniques have been developed to reflect these characteristics of setup time.
Sequence dependent setup time model is used to reflect setup time that depends on product order.
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Several studies [4,5] have introduced CLSP models, in which the setup state can be preserved
across several periods and have used various terms such as “linked lot sizes” and “setup carryover”.
In this paper, the concept is called as setup carryover. The setup carryover allows a setup state to be
maintained from one period to the following one—namely, a setup carryover model enables a product
to be produced in the following buckets without additional setup time. In this concept, production
planers in process industries often prefer to produce only a single product without model change
during several days or shifts.

In some manufacturing environments, the setup started in period t can be split between the
periods t and t + 1 [6,7]. In this paper, the concept is called as “setup-splitting”.

In most continuous manufacturing industries such as process industries, due to the presence
of long setup times, manufacturers allow the setup to be carried across more than one period [1],
the concept is called as “setup crossover”. Setup crossover enables the incomplete setup operation to
cross over the boundaries of time periods. In the case that setup times are longer than a period length,
the setup operation may be performed in more than two periods. However, if all the setup times are
less than a period, the setup crossover is exactly same as the setup-splitting.

1.2. Literature Review

There are several studies published on big-bucket CLSP with setup times. However, studies on
CLSPs with setup carryover are limited. Sox and Gao [4] presented two formulations for the CLSP with
setup carryover. Suerie and Stadtler [5] presented a formulation for the CLSP with setup carryover and
their computational tests have shown that their formulation is better than the formulation provided
by [4]. Further, Menezes et al. [6] proposed CLSPs with setup-splitting considering sequence-dependent
and non-triangular setups. In the formulation, the classical subtour elimination constraints, known
as the Miller–Tucker–Zemlin (MTZ) constraints, introduced by Dantzig et al. [8] are used. Kopanos
et al. [9] introduced a CLSPs with setup carryover and setup-splitting problem with items classified
into product families. They considered sequence-dependent setups between products in different
families and sequence-independent setups between products in the same family. Mohan et al. [10]
extended the formulation of Suerie [5] to address setup-splitting. Camargo et al. [11] presented
three formulations for the two-stage lot-sizing and scheduling problem. With computational tests,
they showed that the formulation with setup-splitting is the most flexible to incorporate setup-related
features. Ramya et al. [7] proposed a formulation for the CLSP with setup carryover and setup-splitting
and no backorders or lost sales. Fiorotto et al. [12] compared two formulations proposed by Mohan [10]
and by Menezes [6] and proposed symmetry braking constraints. With computational experiments,
they showed that the proposed constraints are effective for the formulation proposed by Mohan.

Sung and Maravelias [13], Belo-Filho et al. [14] considered the CLSPs with setup carryover
and setup crossover with the setup operations can be split into more than two periods. Sung and
Maravelias [13] proposed a big-bucket formulation. Belo-Filho et al. [14] proposed two formulations
for the case with backlog. One of the formulations involves a time index disaggregation, defining the
setup variables with indices for the starting and the completion time periods of the setup operation.

For the case of sequence dependent setup, two groups of studies have been published. First group
of studies consider the problems where at most one lot could be generated per a product for each time
bucket. The other group of studies allow multiple lots per a product for each time bucket. The former
problems usually consider triangular setup times and costs, while the latter problems usually consider
non-triangular setup times or minimum lot sizes. Almada-Lobo et al. [15] presented two models for the
CLSP with sequence-dependent and triangular setup times and costs using the MTZ subtour prohibition
constraints. Clark et al. [16] formulated a sequencing and lot-sizing model with non-triangular setup
times based on the asymmetric traveling salesman problem. Ramya et al. [1] presented two models
based on MTZ subtour prohibition constraints for the CLSP with sequence-dependent setup times
and setup cost and with setup carryover and setup crossover. In the model, no idle times are allowed
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during setup operation and production of a product. In the models of [1,15,16] at most one lot per
product can be produced in a time period.

Menezes et al. [6] allowed production of multiple lots per period. Clark et al. [17] presented a
stronger formulation than Menezes et al. [6] for modeling the production of multiple many a product
per period by using a polynomial number of multicommodity-flow-type constraints [18]. Mahdieh
et al. [19] presented formulations based on Clark’s formulation for lot-sizing and scheduling with
minimum lot-size, non-triangular sequence-dependent setup times and costs with setup carryover
and setup-splitting.

1.3. Contribution and Organization

In this paper, a CLSP with sequence-dependent and triangular setup times and with setup
carryover and setup crossover is considered. For the problem, a new mathematical formulation is
proposed. The formulation is based on the facility location extended formulation [2]. Moreover,
it uses the setup variables with indices for the starting and the completion time periods as Belo-Filho’s
formulation [14] and exponential number of generalized subtour elimination constraints (GSECs) to
prevent subtours in a time bucket.

The mixed integer programming (MIP) formulations are usually compared in terms tightness or
compactness [20]. The tightness of an MIP formulation is defined as the difference between the optimal
values for the continuous relaxation and the original MIP problem. Tightening an MIP formulation,
usually by adding cutting planes or valid inequalities, can reduce the search space that the solver needs
to explore [21]. Meanwhile, the compactness refers to the quantity of data that must be processed
when solving the problem [20]. Because there are many relaxations that must be solved when solving
an MIP problem, the compactness of such a problem always refers to the size of these relaxations.
A more compact formulation can speed up the search for the optimal solutions. The tightness and
the compactness of the formulation are shown by comparison with one of Mahdieh’s formulation
(deferred to as MLOV-SM) [19] and one of Ramya’s formulation (deferred to as MM2) [1].

The remainder of the paper is organized as follows. In Section 2, a formal description of the
problem is given. In Section 3, the formulation for the problem is presented. The formulation has
exponential numbers of the GSECs. The separation algorithms for the GSECs are explained in Section 4.
In addition to comparison with other models, computational experiments and their results are reported
in Section 5. Finally, Section 6 concludes this study and suggests some directions for further research.

During the computational experiments, the author found that the setup-splitting is not
implemented properly in MLOV-SM. The modified and fixed version of MLOV-SM is reported
in Appendix A.

2. Problem Statement

In the following, a formal description of the problem is presented with assumptions for clarifying
and simplifying the mathematical model.

A planning horizon consists of finite number of time buckets. For each bucket, an index ranging
from 1 to n is assigned; that is, the number of buckets is denoted by n. For each bucket t = 1, · · · , n,
a positive amount of capacity denoted by Ct is assigned. In the problem, the production lot sizes and
schedules for a set of items, denoted by I, are planned. For each item i in I and bucket t, a non-negative
demand quantity denoted by di

t is given. The demand could be satisfied through production before
the due date with inventory holding cost hi

t for each bucket or after the due date with backlogging
cost bi

t. Production of one unit of items i in bucket t consumes a positive amount of capacity denoted
by pi

t, namely the process time per unit. All the demands must be met until the end of the planning
horizon. Let Ti denote the set of buckets where a positive amount of demands is defined for item i.
Considering sequence-dependent setup time and cost, production sequences were decided for each
bucket. Production change from item i to j requires setup time τi j and causes cost ci j. If capacity allows,
multiple setup could occur in a bucket. With long setup time or inadequate capacities, setup operation
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could be performed during consecutive multiple buckets. Production of the last lot could resume in
the following bucket without any burden of setup operations. The initial and final setup states are not
given. The objective is to minimize the overall cost, which includes backlogging, inventory holding
and setup costs.

Under the above descriptions, we can introduce the following two assumptions without loss
of generality.

Assumption 1. No idle time is allowed during setup operations.

Bucket-independent setup times and costs were considered, therefore, any idle during setup
operations could be moved to the buckets before setup started or after setup finished without increasing
the cost. Therefore, the Assumption 1 is acceptable.

Assumption 2. In a bucket, at most one lot can be generated for an item.

In [14], the setup variables with indices for the starting and completion time periods of the setup
operation were introduced to solve CLSP with setup carryover and setup crossover. According to
Assumption 1, for each type of setup (for each item in [14]) with setup time τ, a setup variable can be
defined for each ordered bucket pair (s, t) satisfying the following constraint:

1 ≤ s ≤ t ≤ n and
t−1∑

u=s+1

Cu < τ ≤
t∑

u=s
Cu (1)

Proposition 1. The number of ordered bucket pairs satisfying constraints (1) are limited by 2n− 1. (Proof:
refer to [14]).

For a sequence-dependent setup operation from item i to j, we can consider the setup variable
indexed by bucket pairs in the following set:

Ti j
≡

{
(s, t)

∣∣∣∣∣1 ≤ s ≤ t ≤ n,
∑t−1

u=s+1
Cu < τi j ≤

∑t

u=s
Cu

}
(2)

3. Formulation

The problem formulation is based on three building blocks: the facility location extended
formulation [2]; the setup variables with indices for the starting and the completion time buckets [14];
and exponential number of generalized subtour elimination constraints (GSECs) [18].

The following two variables come from the facility location extended formulation: setup state
variable, yi

t, for item i and bucket t; and production portion variable, xi
tu, for item i and bucket t and bucket

u ∈ Ti (having positive demand di
u). yi

t has value one if setup states for item i in bucket t is on and item
i can be produced and 0 otherwise. Moreover, xi

tu denotes the proportion of the demand di
u produced

in bucket t. For example, in the case
(
di

2, di
3

)
= (50, 100),

(
yi

1, yi
2, yi

3, xi
12, xi

13, xi
23

)
= (1, 1, 0, 1, 0.5, 0.5)

means that total demand of di
2 and half of demand di

3 are produced in bucket 1 and the remaining half
of demand di

3 is produced in bucket 2.
In the formulation, model change or setup operation is indicated by the following setup-indicating

variable: ei j
st, for a pair of items i , j ∈ I and an ordered pair of buckets (s, t) ∈ Ti j. The variable has

a value of one if setup operation from item i to j starts in bucket s and finishes in bucket t and the
value is zero otherwise. If s < t, ei j

st indicates setup crossover. When s + 1 < t, ei j
st indicates setup

crossover longer than two buckets. By Proposition 1, the number of the variables (ei j
st) is bounded by

(2n− 1) × |I| × (|I| − 1). Ri
t denotes the remaining setup times for item i at the beginning of bucket t in

the case of setup crossover. In the formulation, a setup carryover indicating variable, zi
t, is used for each

item i and bucket t = 1, · · · , n + 1. zi
t is has value of one if the setup state for item i is maintained at the
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boundary between bucket t − 1 and t and zero otherwise. As mentioned in the problem statement,
the initial and finial setup states are not given. Hence, zi

1’s decide initial setup state and zi
n+1’s decide

final setup state.
Lot sequencing with GSECs needs exponential number of constraints, but do not need any

additional variables. The process of deriving the constrains is introduced at the end of this section.
Table 1 presents the parameters and the variables used in the formulation.

Table 1. Notation.

Types Notation Meaning

Set

I Set of items, index i, j, k
T Set of buckets, {1, 2, · · · , n}
Ti Set of buckets where a positive amount of demands is defined for item i

Ti j
Set of ordered pair of buckets where the first means the starting bucket of
the setup operation from i to j and the second means the ending bucket of
the setup

Parameters

n Number of buckets, index s, t, u
Ct Capacity of bucket t = 1, · · · , n
di

t Demand of item i in bucket t
pi

t Process time per unit of item i in bucket t
hi

t Inventory holding cost of item i in bucket t
bi

t Backlogging cost of item i in bucket t
τi j Setup time from item i to j
ci j Setup cost from item i to j

Variables

xi
tu

Proportion of the demand for item i in bucket u produced in bucket t, for
i ∈ I, u ∈ Ti

yi
t

Variable indicating setup state: 1 if setup states for item i in bucket t is on and
item i can be produced, and 0 otherwise.

zi
t

Variable indicating setup carryover: 1 if the setup state is for item i at the
beginning of bucket t, and 0 otherwise

ei j
st

Variable indicating setup change: 1 if setup operation from item i to item j
starts in bucket s and finishes in bucket t, and 0 otherwise, for i , j ∈ I, ∈

Ri
t

Remaining setup times for item i at the beginning of bucket t in the case of
setup crossover

Lt Idle time in bucket t

The formulation M1 is as follows:

Min
∑
i∈I

∑
t∈Ti

 t−1∑
s=1

t−1∑
u=s

hi
udi

tx
i
st +

n∑
s=t+1

s−1∑
u=t

bi
udi

tx
i
st

+ ∑
i, j∈I|i, j

∑
(s,t)∈Ti j

ci je
i j
st (3)

Subject to
n∑

s=1

xi
st = 1, for all i ∈ I, t ∈ Ti (4)

xi
st ≤ yi

s, for all i ∈ I, t ∈ Ti, s = 1, · · · , n (5)∑
u∈Ti

pi
td

i
uxi

tu ≤ Ct · yi
t, for all i ∈ I, t = 1, · · · , n (6)

∑
i, j∈I|i, j

∑
(t,u)∈Ti j

τi je
i j
tu +

∑
i∈I

∑
u∈Ti

pi
td

i
uxi

tu +
∑
i∈I

Ri
t + Lt = Ct +

∑
i∈I

Ri
t+1, for all t = 1, · · · , n (7)
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∑
i∈I

zi
t +

∑
i, j∈I|i, j

∑
(s,u)∈Ti j |s<t,u≥t

ei j
su ≤ 1, for all t = 1, · · · , n + 1 (8)

z j
t +

∑
i∈I|i, j

∑
(s,t)∈Ti j

ei j
st = y j

t , for all j ∈ I, t = 1, · · · , n (9)

zi
t+1 +

∑
j∈I|i, j

∑
(t,u)∈Ti j

ei j
tu = yi

t, for all i ∈ I, t = 1, · · · , n (10)

R j
t ≤

∑
i∈I|i, j

∑
(s,u)∈Ti j |s<t,t≤u

τi jei j
su , for all j ∈ I, t = 2, · · · , n (11)

∑
i, j∈I|i, j

∑
(t,t)∈Ti j

τi jei j
tt +

∑
i∈I

∑
u∈Ti

pi
td

i
uxi

tu + Lt

≤ Ct ·

1−
∑

i, j∈I|i, j

∑
(s,u)∈Ti j |s<t,t<u

ei j
su

, for all t = 2, · · · , n− 1
(12)

∑
i, j∈S|(t,t)∈Ti j

ei j
tt ≤

∑
i∈S\{k}

yi
t, for all S ⊂ I, k ∈ S, t = 1, · · · , n (13)

ei j
st ∈ {0, 1} for all i , j ∈ I, (s, t) ∈ Ti j (14)

zi
t ∈ {0, 1} for all i ∈ I, t = 1, · · · , n + 1 (15)

xi
st ≥ 0 for all i ∈ I, t ∈ Ti, s ∈ T (16)

yi
t ∈ {0, 1} for all i ∈ I, t ∈ T (17)

Lt ≥ 0 for all t ∈ T (18)

Ri
t ≥ 0 for all i ∈ I, t = 2, · · · , n, Ri

1 = Ri
n+1 = 0 for all i ∈ I. (19)

Here, the objective function (3) minimizes the total cost including backlogging, inventory
holding and setup cost. Constraints (4) ensure that each demand is met within the planning horizon.
Constraints (5) and (6) ensure that production occurs only in the bucket where a lot is generated.
Constraints (7) ensure that capacity consumption during production and setup change plus the idle
time equal to the capacity of each bucket, considering the remaining setup times during setup crossover.
Constraints (8) ensure that setup state is dedicated to at most one item at the beginning of a bucket.
Constraints (9) ensure that a lot comprising one item is generated in a bucket when the setup of the
item is carried over or a setup operation to the item ends in the bucket. Constraints (10) ensure that one
lot is followed by a setup carryover operation to the next bucket or a setup change operation to another
item. Constraints (11) ensure that remaining setup times are allowed only during setup crossover.
From Assumption 1, idle time is not allowed during setup operation, this is reflected in constraints
(12). First two terms of the left-hand side are added to lift the constraint. Constraints (13) prevent the
subtours in each bucket. Constraints (14)–(19) describe the domains of the variables. From Assumption
2, the number of lots is limited to one for each item and bucket and this is reflected in constraints
(17). In the formulation, (2n− 1) × |I|2 + 2 × |I| binary integer variables, and n × (

∑
i∈I |Ti|+ |I|+ 1)

fractional variables are defined. Moreover, total number of constraints except constraints (13) is
(n + 1) ×

∑
i∈I |Ti|+ 4n× |I|+ (n− 1) × |I|+ 3n− 1.

In the remainder of this section, the process of deriving the constrains (13) is introduced.
Constraints (9), (10) and the variables in the constraints can be converted into a network as Figure 1;
here, the constraints and variables are converted to nodes and arcs, respectively. Without constraints (13),
a sequence-dependent setup usually causes subtours, indicated by the circle with arcs yi

t, ei j
tt, y j

t , and e ji
tt

in the figure. To discard such a solution, subtour elimination constraints are used.
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a subtour.

There are many studies on subtour elimination [18]. To obtain the required results, let us consider
a converted network G̃t(Vt, At) for each bucket t, as depicted in Figure 2. We generated the network
using the following procedure:

1. contracting of the arcs relating to y’s and merging the end nodes into one, denoted by yi
t;

2. merging the tail nodes of arcs crossing the border between bucket t − 1 and t into one node,
denoted by “source”;

3. and merging the head nodes of arcs crossing the border between bucket t and t + 1 into one node,
denoted by “sink”.

Processes 2020, 8, x 8 of 19 

 

 
Figure 2. Illustration of the converted network ( , ) for bucket t. Variables corresponding to 
thick arcs have values of one and the others have values of zero. Circular setup change between ( , ) 
generates a subtour. 

Balas [22] introduced the prize-collecting traveling salesman problem to derive a model for 
scheduling the daily operation of a steel rolling mill. For the problem, Balas proposed the following 
generalized subtour elimination constraint: 

( , )∈ ( ) ≥ ( , )∈ ( )     for all ∈ , ⊂ \{ , }, (22) 

where = 1 if setup changes from item  to , 0 otherwise; ( ) is the set of outgoing arcs 
from . Constraints (22) ensure that the number of selected outgoing arcs from S is at least equal to 
the number of selected arcs going out from any node  in . Consequently, subtours can be 
prevented. 

Tacaari [18] rewrote constraints (22) as follows: 

( , )∈ ( ) ≤ ( , )∈ ( )∈ \{ }     for all ∈ , ⊂ \{ , }, (23) 

where ( ) is the set of arcs between two nodes in . In ( , ), S ⊂ , ∈  and ( ) ⊂, ≠ ∈ |( , ) ∈ ; therefore, by replacing the ∑( , )∈ ( )  with  (this relation comes from 
constraints (10)), we can rewrite constraint (23) to fit into our formulation as follows: 

∈ |( , )∈ ≤ ∈ \{ } , for all ⊂ , ∈  (24) 

Through generating constraints (24) for each bucket , we can derive constraints (13), the 
subtour elimination constraint. 

4. Branch-and-Cut Algorithm 

There are exponential numbers of subsets ⊂ ; therefore, there are exponential numbers of 
constraints (13) in the formulation. To solve a formulation with exponential number of constraints, 
we usually use the branch-and-cut algorithm. In the algorithm, most of the constraints are outside of 
the running formulation and constraints violated by the current solution of linear programming (LP) 
relaxation are identified dynamically and added into the running formulation. Therefore, we can 
control the size of the running formulation. The procedure of identifying the violated constraints is 
referred to as separation (details regarding separation and branch-and-cut algorithm are available in 
[21]). 

4.1. Separation 

Figure 2. Illustration of the converted network G̃t(Vt, At) for bucket t. Variables corresponding to
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Therefore, we obtained the followings:

Vt ≡
{
yi

t, i ∈ I
}
∪ {source, sink} (20)

At ≡
{
zi

t, i ∈ I
}
∪

{
zi

t+1, i ∈ I
}
∪

{
ei j

tt, i , j ∈ I, (t, t) ∈ Ti j
}
∪

{
ei j

st, i , j ∈ I, (s, t) ∈ Ti j
∣∣∣∣s < t

}
∪

{
ei j

tu, i , j ∈ I, (t, u) ∈ Ti j
∣∣∣∣t < u

}
∪

{
ei j

su, i , j ∈ I, (s, u) ∈ Ti j
∣∣∣∣s < t < u

} (21)

Balas [22] introduced the prize-collecting traveling salesman problem to derive a model for
scheduling the daily operation of a steel rolling mill. For the problem, Balas proposed the following
generalized subtour elimination constraint:∑

(i, j)∈δ+(S)

ei j
≥

∑
(k, j)∈δ+(k)

ekj for all k ∈ S, S ⊂ V\{source, sink}, (22)

where ei j = 1 if setup changes from item i to j, 0 otherwise; δ+(S) is the set of outgoing arcs from S.
Constraints (22) ensure that the number of selected outgoing arcs from S is at least equal to the number
of selected arcs going out from any node k in S. Consequently, subtours can be prevented.

Tacaari [18] rewrote constraints (22) as follows:∑
(i, j)∈A(S)

ei j
≤

∑
i∈S\{k}

∑
(i, j)∈δ+(i)

ei j for all k ∈ S, S ⊂ V\{source, sink}, (23)

where A(S) is the set of arcs between two nodes in S. In G̃t(Vt, At), S ⊂
{
yi

t, i ∈ I
}

and A(S) ⊂{
ei j

tt, i , j ∈ I
∣∣∣∣(t, t) ∈ Ti j

}
; therefore, by replacing the

∑
(i, j)∈δ+(i) ei j with yi

t (this relation comes from
constraints (10)), we can rewrite constraint (23) to fit into our formulation as follows:∑

i, j∈S|(t,t)∈Ti j

ei j
tt ≤

∑
i∈S\{k}

yi
t, for all S ⊂ I, k ∈ S (24)

Through generating constraints (24) for each bucket t, we can derive constraints (13), the subtour
elimination constraint.

4. Branch-and-Cut Algorithm

There are exponential numbers of subsets S ⊂ I; therefore, there are exponential numbers of
constraints (13) in the formulation. To solve a formulation with exponential number of constraints,
we usually use the branch-and-cut algorithm. In the algorithm, most of the constraints are outside
of the running formulation and constraints violated by the current solution of linear programming
(LP) relaxation are identified dynamically and added into the running formulation. Therefore, we can
control the size of the running formulation. The procedure of identifying the violated constraints is
referred to as separation (details regarding separation and branch-and-cut algorithm are available
in [21]).

4.1. Separation

After obtaining an optimal solution to the LP relaxation (let ei j
st, yi

t denote the values of the

variables ei j
st, yi

t, respectively, in the optimal solution) of the current running formulation, for each
bucket t = 1, · · · , n, we use two separation routines to find the violated subtour elimination constraints.
One routine is based on the minimum cut, and the other is based on the strongly connected components.
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In the routine based on the minimum cut, we generate a network Gt
(
Vt, At

)
, illustrated in Figure 3,

where Vt ≡
{
yi

t, i ∈ I
∣∣∣∣yi

t > 0
}
∪ {sink} and At ≡ A1

t ∪A2
t . Here, A1

t , A2
t are defined as follows:

A1
t ≡

{
ei j

tt, i , j ∈ I
∣∣∣∣(t, t) ∈ Ti j, ei j

tt > 0
}
, (25)

A2
t ≡

{(
yi

t, sink
)∣∣∣∣i ∈ I, yi

t > 0
}
. (26)

For each arc ei j
tt ∈ A1

t , we assign capacity ei j
tt and for each arc

(
yi

t, sink
)
∈ A2

t , we assign capacity

yi
t −

∑
∀ j|ei j

tt∈A
1
t

ei j
tt.
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(
Vt, At

)
for bucket t for the use of cut-based separation.

For each vertex yi
t ∈ Vt\{sink}, the minimum cut between yi

t and sink yields a node partition(
S, Vt\S

)
, where yi

t ∈ S and sink ∈ Vt\S. If the total capacity of the arcs from S to Vt\S is less than yi
t,

the constraint (24) with k = yi
t is violated by the current solution. Thus, we add the constraint into the

running formulation. For each time bucket t = 1, · · · , n, we determine the minimum cut
∣∣∣Vt

∣∣∣− 1 times.

The time complexity of finding a minimum cut (or maxflow) is O
(∣∣∣Vt

∣∣∣2 √∣∣∣At
∣∣∣) by using Goldberg and

Tarjan algorithm [23]. Therefore, the overall time complexity is O
(∣∣∣Vt

∣∣∣3 √∣∣∣At
∣∣∣). This routine needs a

considerably long computational time but always succeeds in finding the violated constraint.
In the separation routine based on the strongly connected components, we generate a network

Ĝt
(
V̂t, Ât

)
, where V̂t ≡

{
yi

t, i ∈ I
∣∣∣∣yi

t > 0
}

and Ât ≡
{
ei j

tt, i , j ∈ I
∣∣∣∣(t, t) ∈ Ti j, ei j

tt > 0
}
. In the network,

we could find some strongly connected components with more than two vertices. In each component
S, we select the vertex yi

t ∈ S with the largest value yi
t; then, for S and k = yi

t, we check if constraint (22)
is violated by the current solution. If the constraint is variolated, we add it into current running
formulation. The strongly connected components are found in a O

(∣∣∣V̂t
∣∣∣+ ∣∣∣Ât

∣∣∣) operations by Tarjan’s

algorithm [24], and O
(∣∣∣V̂t

∣∣∣+ ∣∣∣Ât
∣∣∣) operations are needed to check the violation. Therefore, the overall

time complexity is O
(∣∣∣Ât

∣∣∣). This routine is significantly fast. However, it successfully determines the
violated constraint only in the case of integer solution. More information about the separation routine
based on the strongly connected components is available in [25].

4.2. Implementation

The formulation and the branch-and-cut procedure are implemented using the Gurobi LP/MIP
solver 9.0.2 with Python 3.7. The separation routines are executed by the embedded callback
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function. To find the minimum cut (or maxflow) and the strongly connected components, the efficient
implementations in the Python library, Python-igraph 0.8.2, were used.

The following separation scenario was used in the computational experiments:

• For integral solutions, the separation routine based on the strongly connected components
generates the violated inequalities for each time bucket;

• For fractional solution founded in i-th branch-and-bound nodes;

n If i ≤ 1000, the separation routine based on the strongly connected components generates
the violated inequalities for each time bucket. In the absence of a violated inequality,
the separation routine based on the minimum cut is performed for each time bucket.

n If 1000 < i ≤ 10, 000, the separation routine based on the strongly connected components
generates the violated inequalities for each time bucket.

• If i > 10, 000, no separation routine is performed.

5. Computational Experiments

This section describes three sets of computational experiments. The first is for comparison with
MLOV-SM in [19], the CLSP with sequence dependent setup, setup carryover and “setup-splitting”.
The second is for the analysis of performance of M1 with test instances having long setup times.
The third is for comparison with MM2 in [1], the CLSP with sequence dependent setup, setup carryover
and “setup crossover”.

Experiments were conducted on a Windows 2010 PC with 16 GB main memory, which was
equipped with an Intel(R) Core(TM) i5-9500 @ 3.00 GHz CPU. Default parameter settings for Gurobi
LP/MIP optimizer are used, except 600 s of time limit.

5.1. Test Instances

For the first and second tests, three groups of artificial test instances (“T”, “L”, “LA”) were
generated. The instances in “T” have short setup times and were designed to be used in the first test.
The instances in “L”, “LA” have long setup times and were designed to be used in the second test.
They have the following features:

• Problem dimension: the problem dimension is set by (m, n), where m is the number of items and
n is the number of time buckets. Therefore, each item is indexed as i = 1, · · · , m. The following six
problem dimensions were used: (10,10), (10,20), (10,30), (15,10), (15,20), (15,30).

• Setup time: for i, j = 1, · · · , m

n For group “T”,

u τi j = 240
m ×

∣∣∣i− j
∣∣∣+ 30−m, For m = 10, the minimum and maximum values of τi j

are 44 and 236, respectively. For m = 15, the minimum and maximum values of τi j

are 31 and 239.

n For group “L”,

u τi j =

24×
∣∣∣i− j

∣∣∣+ 210 if
⌈

i
5

⌉
=

⌈ j
5

⌉
24×

∣∣∣i− j
∣∣∣+ 10 otherwise.

, For m = 10, the minimum and maximum

values of τi j are 34 and 426, respectively. Furthermore, items are divided into
three groups: {1, 2, 3, 4}; {5, 6, 7, 8, 9}; and {10}, and most inter-group model changes
have a longer setup change times than a bucket capacity of 240. For m = 15,
the minimum and maximum values of τi j are 34 and 546, respectively. Moreover,
items are divided by four groups: {1, 2, 3, 4}; {5, 6, 7, 8, 9}; {10, 11, 12, 13, 14}; and {15},
and most inter-group model changes have setup change times longer than 240.
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n For group “LA”,

u τi j =

24×
∣∣∣i− j

∣∣∣+ 490 if
⌈

i
5

⌉
=

⌈ j
5

⌉
24×

∣∣∣i− j
∣∣∣+ 10 otherwise.

For m = 10, the minimum and maximum

values of τi j are 34 and 706, respectively. Moreover, items are divided into three
groups: {1, 2, 3, 4}; {5, 6, 7, 8, 9}; and {10}, and an inter-group model change has setup
change time longer than the sum of the capacity of two buckets, 480. For m = 15,
the minimum and maximum values of τi j are 34 and 826, respectively. Moreover,
items are divided into 4 groups: {1, 2, 3, 4}; {5, 6, 7, 8, 9}; {10, 11, 12, 13, 14}; and {15},
and an inter-group model changes has setup change time longer than 480.

• Process time per unit:

u pi
t = 1, for all i = 1, · · · , m, t = 1, · · · , n.

• Capacity:

n Ct =

240, for t = 1, · · · , n− 1,

2400, for t = n.
Enough capacity was given to the last bucket to prevent

loss of sales.

• Costs:

n hi
t = 3, for all i = 1, · · · , m, t = 1, · · · , n.

n bi
t =

30, for all i = 1, · · · , m, t = 1, · · · , n− 2,

300, for all i = 1, · · · , m, t ∈ {n− 1, n}.
Large backorder cost was given to bucket

n− 1 to minimize production in the last bucket.

n ci j =
⌈
τi j

10

⌉
, for i, j = 1, · · · , m.

• Demand: for problem dimension (m, n) For each group and problem dimension, initial demand
set, named as (1), was generated manually according to the following criteria:

n
∑
i∈I

∣∣∣Ti
∣∣∣ = 2n

n

∣∣∣Ti
∣∣∣ ≥ 2n

m , for i ∈ I
n All production can be finished before the last bucket.

To increase the reliability of the experiments, for each initial demand set, the due dates were
randomly perturbed to generate four additional demand sets, named as (2), (3), (4), (5). The demands
of an item having the same due date are merged into one.

For the last test, a test instance introduced in [1] was used. All the above test instances are available
on [26].

5.2. First Test: Comparison with the Setup-Splitting Model (MLOV-SM)

As mentioned earlier, MLOV-SM is the model for the CLSP with sequence dependent setup, setup
carryover and “setup-splitting”. In addition, it considers situations in which multiple lots can be
generated for an item within a time bucket. For direct comparison with our model (M1), MLOV-SM
was modified and represented in Appendix A. The modified features are as follows:

• Setup operation from i to i is not allowed;
• At most one lot can be generated for an item within a time bucket;
• The initial setup state is not given but determined by solving the model.
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M1 has (2n− 1) ×m2 + 2m binary integer variables and n×
(∑

i∈I
|Ti|+ m + 1

)
fractional variables,

whereas MLOV-SM has nm3 + 2nm2 + 2nm binary variables and 3nm + 2n real variables, much more
than M1. Because the setup time of the data instance in the group “T” is less than the capacities of
the buckets, we can directly compare the lower bounds of the two formulation. We compare the two
formulations with respect to the size, tightness of the LP relaxation bound and solution quality. Table 2
shows the tightness of the LP relaxation bound of the formulations. The column headers of the table
are given as follows:

• n: number of buckets;
• m: number of items;
• LB0: the objective value of LP relaxation without any additional cuts except GSECs;
• LB: the objective value of LP relaxation with cuts generated by Gurobi;
• BEST OBJ: the best integer solution value found within the time limit. Bold means optimal;
• Gap0: relative gap between LB0 and the best integer solution value (BEST OBJ) at the end.

GAP0 = 100×
BEST OBJ − LB0

BEST OBJ

• GAP0 improved: the difference in Gap0 between MLOV-SM and M1.

Table 2. The objective values of linear programming (LP)-relaxation of analysis of performance of (M1)
and setup-splitting model (MLOV-SM).

m n Set
MLOV-SM M1 GAP0

Improved
BEST
OBJLB0 LB GAP0 LB0 LB GAP0

10 10 (1) 14 4285 100% 3612 4828 81% 19% 19,431
10 10 (2) 49 3529 100% 1655 3479 91% 9% 17,970
10 10 (3) 25 3852 100% 2390 3431 82% 18% 13,144
10 10 (4) 968 10,697 96% 9041 10,722 62% 33% 24,102
10 10 (5) 876 3699 89% 3174 3532 61% 28% 8146

10 20 (1) 406 4094 96% 2493 3898 77% 19% 11,070
10 20 (2) 557 14,482 98% 13,397 5939 60% 38% 33,840
10 20 (3) 1255 5359 90% 4555 5265 63% 27% 12,259
10 20 (4) 1630 6737 88% 5830 6789 57% 31% 13,463
10 20 (5) 933 4787 94% 4197 4775 73% 21% 15,343

10 30 (1) 2606 8134 84% 7387 8501 55% 29% 16,510
10 30 (2) 1102 5701 93% 4704 5904 69% 23% 15,388
10 30 (3) 4174 23,466 93% 20,615 26,529 64% 29% 57,589
10 30 (4) 12,678 47,233 88% 45,948 53,933 56% 32% 104,245
10 30 (5) 1040 7430 93% 6153 7318 61% 32% 15,975

15 10 (1) 23 3431 100% 1628 3054 89% 11% 15,053
15 10 (2) 139 5862 99% 4047 7767 76% 23% 17,099
15 10 (3) 27 1882 100% 1144 1870 87% 13% 8647
15 10 (4) 1157 3944 84% 3736 3993 49% 35% 7305
15 10 (5) 88 7749 100% 6350 7543 68% 31% 20,002

15 20 (1) 334 3630 97% 2715 3895 80% 18% 13,321
15 20 (2) 107 2663 99% 1716 2797 88% 11% 14,863
15 20 (3) 314 5697 99% 3415 6521 88% 11% 28,001
15 20 (4) 552 8882 98% 6761 9215 71% 27% 23,141
15 20 (5) 4384 26,926 92% 24,373 31,467 58% 35% 57,563

15 30 (1) 957 6001 94% 5173 6660 67% 27% 15,492
15 30 (2) 1384 7599 93% 6331 8478 66% 27% 18,469
15 30 (3) 1276 6561 92% 4505 7070 72% 20% 16,245
15 30 (4) 520 9044 98% 5531 10,631 75% 22% 22,412
15 30 (5) 938 5531 93% 4212 5865 68% 25% 13,060
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In Table 2, we can find that M1 give much tight lower bound for the test instances.
Tables 3 and 4 represent the size and the test result of the formulations. The column headers of

table are given as follows:

• #Vars: number of variables;
• #Cons: number of constraints (no subtour elimination constraints are counted here);
• #BVars: number of binary variables;
• GAP: relative gap between the best lower bound (ZLB) and the best integer solution value (ZI) at

the end;

Gap = 100×
ZI −ZLB

ZI

• #B node: number of nodes visited in the branch-and-bound tree;
• Runtime: total running time;
• GSECs: number of generated subtour elimination constraints.

Tables 3 and 4 show that M1 has much compact sizes of LP relaxation and gives much better
solutions then MLOV-SM.

Table 3. Test results of MLOV-SM for instance group T.

m n Set #Vars #Cons #BVars Gap #B Node Runtime

10 10 (1) 12,530 13,631 12,210 0% 11,544 54
10 10 (2) 12,530 13,631 12,210 0% 36,390 255
10 10 (3) 12,530 13,631 12,210 0% 26,189 154
10 10 (4) 12,530 13,631 12,210 0% 10,295 100
10 10 (5) 12,530 13,631 12,210 0% 5541 52

10 20 (1) 25,050 27,261 24,410 23% 31,564 600
10 20 (2) 25,050 27,261 24,410 0% 26,580 399
10 20 (3) 25,050 27,261 24,410 27% 25,209 600
10 20 (4) 25,050 27,261 24,410 31% 16,111 600
10 20 (5) 25,050 27,261 24,410 42% 11,777 600

10 30 (1) 37,570 40,891 36,610 27% 14,949 600
10 30 (2) 37,570 40,891 36,610 43% 13,386 600
10 30 (3) 37,570 40,891 36,610 42% 6217 600
10 30 (4) 37,570 40,891 36,610 29% 10,364 600
10 30 (5) 37,570 40,891 36,610 41% 11,469 600

15 10 (1) 39,035 41,431 38,565 38% 6169 600
15 10 (2) 39,035 41,431 38,565 12% 7393 600
15 10 (3) 39,035 41,431 38,565 29% 6431 600
15 10 (4) 39,035 41,431 38,565 18% 10,003 600
15 10 (5) 39,035 41,431 38,565 27% 6125 600

15 20 (1) 78,055 82,861 77,115 76% 2429 600
15 20 (2) 78,055 82,861 77,115 83% 1996 600
15 20 (3) 78,055 82,861 77,115 81% 1508 600
15 20 (4) 78,055 82,861 77,115 33% 4051 600
15 20 (5) 78,055 82,861 77,115 50% 1814 600

15 30 (1) 117,075 124,291 115,665 51% 2801 600
15 30 (2) 117,075 124,291 115,665 76% 1778 600
15 30 (3) 117,075 124,291 115,665 64% 2267 600
15 30 (4) 117,075 124,291 115,665 55% 1752 600
15 30 (5) 117,075 124,291 115,665 63% 2194 600
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Table 4. Test results of M1 for instance group T.

m n Set #Vars #Cons #BVars Gap #B Node Runtime GSECs

10 10 (1) 2370 639 2070 0% 2282 5 807
10 10 (2) 2350 617 2070 0% 10,117 26 1675
10 10 (3) 2360 628 2070 0% 22,125 36 2007
10 10 (4) 2360 628 2070 0% 8217 22 1468
10 10 (5) 2350 617 2070 0% 7327 20 1731

10 20 (1) 5240 1647 4270 0% 58,813 155 2323
10 20 (2) 5240 1647 4270 0% 8761 48 4003
10 20 (3) 5200 1605 4270 12% 213,454 600 4400
10 20 (4) 5280 1689 4270 29% 70,078 600 5317
10 20 (5) 5260 1668 4270 18% 132,385 600 3867

10 30 (1) 8440 2984 6470 17% 66,859 600 5603
10 30 (2) 8530 3077 6470 30% 58,134 600 6837
10 30 (3) 8500 3046 6470 14% 102,790 600 9691
10 30 (4) 8470 3015 6470 7% 123,380 600 5100
10 30 (5) 8530 3077 6470 28% 62,783 600 8550

15 10 (1) 4875 834 4530 0% 45,097 235 4429
15 10 (2) 4875 834 4530 0% 7003 46 2876
15 10 (3) 4875 834 4530 0% 28,266 93 3358
15 10 (4) 4875 834 4530 0% 38,934 145 3944
15 10 (5) 4875 834 4530 0% 21,151 92 3326

15 20 (1) 10,435 2084 9330 57% 29,770 600 9788
15 20 (2) 10,395 2042 9330 65% 30,017 600 9787
15 20 (3) 10,395 2042 9330 40% 20,828 600 9864
15 20 (4) 10,375 2021 9330 0% 46,690 305 8245
15 20 (5) 10,395 2042 9330 13% 75,191 600 6768

15 30 (1) 16,305 3641 14,130 36% 29,308 600 18,372
15 30 (2) 16,275 3610 14,130 30% 25,511 600 11,348
15 30 (3) 16,365 3703 14,130 35% 24,841 600 17,170
15 30 (4) 16,335 3672 14,130 15% 26,177 600 11,645
15 30 (5) 16,275 3610 14,130 36% 42,640 600 16,000

5.3. Second Test: For the Instance of Long Setup Times (L, LA)

The second test is to see if M1 is stable in solving problems with long setup time. Tables 5 and 6
show test results for L and LA, respectively. The gap value ‘-’ in Table 5 indicates that no feasible
solution found in the time limit.

Table 5. Test results of M1 for instance group L.

m n Set #Vars #Cons #BVars Gap #B Node Runtime GSECs

10 10 (1) 2156 628 1866 0% 30,233 44 1052
10 10 (2) 2146 617 1866 0% 22,589 28 1038
10 10 (3) 2156 628 1866 0% 17,661 27 1005
10 10 (4) 2166 639 1866 0% 19,602 32 1024
10 10 (5) 2166 639 1866 0% 25,845 31 954

10 20 (1) 4836 1647 3866 0% 59,050 266 2108
10 20 (2) 4816 1626 3866 25% 174,286 600 2203
10 20 (3) 4816 1626 3866 12% 187,786 600 2106
10 20 (4) 4776 1584 3866 32% 108,165 600 2741
10 20 (5) 4816 1626 3866 6% 176,893 600 1650

10 30 (1) 7836 2984 5866 33% 40,977 600 3491
10 30 (2) 7836 2984 5866 30% 48,641 600 2755
10 30 (3) 7836 2984 5866 43% 29,950 600 4432
10 30 (4) 7746 2891 5866 36% 63,432 600 3510
10 30 (5) 7806 2953 5866 52% 30,385 600 4655
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Table 5. Cont.

m n Set #Vars #Cons #BVars Gap #B Node Runtime GSECs

15 10 (1) 4476 823 4141 0% 40,842 133 2120
15 10 (2) 4486 834 4141 0% 24,924 88 2090
15 10 (3) 4486 834 4141 0% 17,389 76 1865
15 10 (4) 4466 812 4141 0% 36,068 124 2408
15 10 (5) 4476 823 4141 0% 16,542 79 2336

15 20 (1) 9726 2063 8641 68% 15,187 600 5991
15 20 (2) 9686 2021 8641 70% 19,465 600 5356
15 20 (3) 9666 2000 8641 49% 28,431 600 4613
15 20 (4) 9726 2063 8641 64% 22,679 600 3930
15 20 (5) 9686 2021 8641 57% 26,496 600 3846

15 30 (1) 15,316 3641 13,141 98% 8968 601 9291
15 30 (2) 15,316 3641 13,141 – 8442 600 7097
15 30 (3) 15,286 3610 13,141 – 9727 601 5861
15 30 (4) 15,376 3703 13,141 80% 10,540 600 4914
15 30 (5) 15,316 3641 13,141 85% 7473 600 6544

Table 6. Test results of M1 for instance group LA.

m n Set #Vars #Cons #BVars Gap #B Node Runtime GSECs

10 10 (1) 2094 628 1804 0% 10,212 15 745
10 10 (2) 2084 617 1804 0% 5779 13 929
10 10 (3) 2094 628 1804 0% 25,709 31 953
10 10 (4) 2104 639 1804 0% 3980 13 1105
10 10 (5) 2104 639 1804 0% 8797 17 833

10 20 (1) 4774 1647 3804 31% 135,029 600 1888
10 20 (2) 4754 1626 3804 23% 125,342 600 1960
10 20 (3) 4754 1626 3804 0% 48,764 165 1965
10 20 (4) 4714 1584 3804 30% 120,860 600 1990
10 20 (5) 4754 1626 3804 29% 118,298 600 1980

10 30 (1) 7774 2984 5804 54% 23,608 600 3127
10 30 (2) 7774 2984 5804 51% 51,117 600 2873
10 30 (3) 7774 2984 5804 64% 33,012 600 3085
10 30 (4) 7684 2891 5804 64% 33,178 600 3777
10 30 (5) 7744 2953 5804 55% 33,484 600 3640

15 10 (1) 4294 823 3959 0% 81,498 160 2164
15 10 (2) 4304 834 3959 0% 55,273 165 2116
15 10 (3) 4304 834 3959 0% 106,169 249 2128
15 10 (4) 4284 812 3959 0% 127,983 256 2905
15 10 (5) 4294 823 3959 0% 220,737 344 1769

15 20 (1) 9544 2063 8459 66% 35,127 600 3679
15 20 (2) 9504 2021 8459 62% 27,643 600 3878
15 20 (3) 9484 2000 8459 58% 35,291 600 3297
15 20 (4) 9544 2063 8459 72% 21,749 600 3921
15 20 (5) 9504 2021 8459 70% 34,165 600 4398

15 30 (1) 15,134 3641 12,959 88% 9876 601 5509
15 30 (2) 15,134 3641 12,959 91% 9416 600 5512
15 30 (3) 15,104 3610 12,959 80% 10,503 600 5484
15 30 (4) 15,194 3703 12,959 90% 10,928 600 5329
15 30 (5) 15,134 3641 12,959 92% 7755 600 5304

Tables 4–6 show that M1 reliably optimizes the problem instances with ten buckets and give
relatively good feasible solution for the problem instances with twenty buckets.
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5.4. Third Test: Comparison with the Setup Crossover Model (MM2)

Ramya, et al. [1] introduced the only research result on CLSP with sequence-dependent setup,
setup carryover, and setup crossover. In the model, no idle times are allowed during setup operation
and setup carryover. MM2 is a formulation introduced in [1] for the problem. But MM2 is too big
to solve even problems of moderate size. MM2 has 8mn3 + 4m2n2 + 6mn2 + 4m2n + 6mn + n binary
integer variables and more than 150 types of constraints. Ramya, et al. [1] reported that it took more
than 26,000 s to solve a test instance with 15 items and 10 buckets and that the solver failed with a file
error after 8.5 h due to insufficient space in the hard disk while solving a test instance with 15 items
and 15 buckets.

For the comparison with MM2, a modified version of M1 was developed and used for the test.
The modified formulation, referred to as M2, needs two types of new variables described in Table 7.

Table 7. New variables for M2.

wi
t

Variable indicating cleanup state: 1 if production of item i is completed and model change
is prepared in bucket t, and 0 otherwise.

zi
t

Variable indicating carryover of completed job: 1 if the setup state is for completed item i at
the beginning of bucket t, and 0 otherwise

With the variables, M2 is defined as follows:
Min (3) subject to (4)–(7), (9) and (11)–(19) and∑

i∈I

(
zi

t + zi
t

)
+

∑
i, j∈I|i, j

∑
(s,u)∈Ti j |s<t,u≥t

ei j
su ≤ 1, for all t = 1, · · · , n + 1 (27)

zi
t+1 + wi

t = yi
t, for all i ∈ I, t = 1, · · · , n (28)

zi
t+1 +

∑
j∈I|i, j

∑
(t,u)∈Ti j

ei j
tu = wi

t + zi
t, for all i ∈ I, t = 1, · · · , n (29)

Lt ≤ Ct ·
∑
i∈I

(
wi

t + zi
t

)
, for all t = 1, · · · , n (30)

zi
t ∈ {0, 1} for all i ∈ I, t = 1, · · · , n + 1 (31)

yi
t ∈ {0, 1} for all i ∈ I, t ∈ T (32)

z0
1 = 1. (33)

Here, 0 in z0
1 means the initial setup item. M2 has (2n− 1) ×m2 + 2nm + 3m binary integer

variables, whereas MM2 has 8mn3 + 4m2n2 + 6mn2 + 4m2n + 6mn + n binary variables. We can say
that M2 is a much compact formulation than MM2.

Ramya et al. [1] used six problem instances for the test, but just one instance with 10 items and
15 buckets was reported, so that we can use only that. They reported that MM2 found an optimal
solution of the problem in 425 s. M2 was tested with the instance and get the result reported in Table 8.
M2 solved the problem just in 2 s to the optimality. In addition, the optimal solution provided the same
production plan as [1], except when idle time occurred. Even considering the performance differences
in the computers used and limited test instance, it is judged that these differences show the superiority
of M2.

Table 8. Test results of M2.

m n #Vars #Cons #BVars Gap #B Node Runtime GSECs

10 15 3752 900 3238 0% 1 1.53 44
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6. Conclusions

In this paper, the CLSP with sequence dependent setup, setup carryover, and setup crossover
was considered. A new mixed integer programming formulation was introduced. The formulation is
based on three building blocks: the facility location extended formulation [2]; the setup variables with
indices for the starting and the completion time periods [14]; and exponential number of generalized
subtour elimination constraints (GSECs) [18]. A modified version of the separation routine of [25] was
adopted to generate the violated GSECs.

Three groups of artificial test instances and an instance from [1] were used for computational
experiments. The computational results showed that the proposed formulation outperformed the
models from the literature, but the formulation has still large number of binary setup variables,
O
(
n× |I|2

)
, to solve the problems with more than twenty buckets in 10 min.

To overcome this drawback, studies to reduce the number of setup variables are needed. These
studies could involve using the column generation technique or heuristics based on variable fixing.

Funding: This study was supported by research fund from Chosun University, 2017.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Modified MLOV-SM Model

The formulation for the modified MLOV-SM model [19] is follows:

Min
∑
i, j∈I

n∑
t=1

ci jyi jt +
∑
i∈I

n∑
t=1

hi
tIit +

∑
i∈I

n∑
t=1

bi
tBit (A1)

Subject to
I jt−1 − B jt−1 + x ji − I jt + B jt = d j

t , for all j ∈ I, t = 1, · · · , n (A2)∑
i∈I

pi
txit +

∑
i, j∈I

τi jyi jt + St−1 − St + slkt = Ct, for all t = 1, · · · , n (A3)

x jt ≤
Ct

pi
t

× z jt, for all j ∈ I, t = 1, · · · , n (A4)

∑
i∈I

αit = 1, for all t = 1, · · · , n + 1 (A5)

αit +
∑
j∈I

(
y jit −OLS jit

)
= zit, for all i ∈ I, t = 1, · · · , n (A6)

αit+1 +
∑
j∈I

yi jt −
∑
j∈I

OLS jit = zit, for all i ∈ I, t = 1, · · · , n (A7)

OLSi jt + ak
i jt ≤ yi jt, for all i, j, k ∈ I, t = 1, · · · , n (A8)

αkt +
∑
i∈I

ak
ikt = zit, for all k ∈ I, t = 1, · · · , n (A9)

αit +
∑
j∈I

ak
jit ≥

∑
j∈I

ak
i jt, for all i , k ∈ I, t = 1, · · · , n (A10)

St ≤
∑
i, j∈I

τi jOLSi jt, for all t = 1, · · · , n (A11)

∑
j∈I

OLS jit ≤ αi,t+1, for all i ∈ I, t = 1, · · · , n (A12)
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OLSi jt ≤ yi jt, for all i, j ∈ I, t = 1, · · · , n (A13)

x jt, I jt, B jt ≥ 0, for all j ∈ I, t = 1, · · · , n (A14)

St, slkt ≥ 0, for all t = 1, · · · , n (A15)

zit, yi jt, OLSi jt, ak
i jt ∈ {0, 1}, for all i, j, k ∈ I, t = 1, · · · , n (A16)

αit ∈ {0, 1}, for all i ∈ I, t = 1, · · · , n + 1 (A17)

Iin, Bin, Ii0, Bi0 = 0, for all i ∈ I (A18)

ak
kjt = 0, for all j, k ∈ I, t = 1, · · · , n (A19)

S0 = 0 (A20)

y j jt = 0, for all j ∈ I, t = 1, · · · , n (A21)
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