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Abstract: The basic principles of geological risk calculation through probability of success (PoS) are
mostly applied to numerical estimation of additional hydrocarbon existence in proven reservoirs
or potential hydrocarbon discoveries in selected geological regional subsurface volumes. It can
be adapted and validated for a comprehensive input dataset collected in the selected petroleum
province, by dividing up geological events into several probability categories and classes. Such
methodology has been widely developed in the last decades in the Croatian subsurface—mostly
in the Croatian Pannonian Basin System (CPBS). Through the adaptation of geological categories,
it was also applied in hybrid, i.e., stochastic, models developed in the CPBS (Drava Depression),
mostly for inclusion of porosity values. As the robustness of this methodology is very high, it
was also modified to estimate the influence of water-flooding in increasing oil recovery in some
proven Neogene sandstone reservoirs in the CPBS (Sava Depression). This new modification is
presented to be applied to geological risk calculation, intending to assess the safety of geological
environment storage in deep wells, where spent nuclear fuel (SPN) would be disposed, a subject of
great importance. The conceptual study encompassed the magmatic and metamorphic rocks in the
pre-Neogene basement of the CPBS, intended to be used for such purpose. Regionally distributed
lithologies are considered for nuclear waste disposal purpose, in order to detect the safest ones,
considering petrophysical values, water saturation, recent weathering and tectonic activity.

Keywords: geological risk; pre-Neogene basement; radioactive waste disposal; northern Croatia;
probability of success (PoS)
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1. Introduction

Probability of success (PoS) is a deterministic method by which deterministic estimation of
independent categories within the hydrocarbon system are analyzed in potential or proven reservoirs
or selected properties. The main independent categories are trap, reservoir, migration, source rock and
preservation of hydrocarbons. These categories were determined on the basis of data from wells, logs,
seismic interpretation, core analysis, stratigraphy and fluid production.

This has been a longstanding application of the PoS method in the Croatian Pannonian Basin
System (CPBS). The first application in the CPBS was made on the example of Bjelovar Subdepression [1]
for the member of the Moslavačka Gora Formation Bridge and the members of the Polo and Ashes
of the Kloštar Ivanić Formation. Malvić [2] applied a deterministic−stochastic approach in the PoS
calculation of Badenian clastites of the Stari Gradac–Barcs Nyugat field (Drava Depression). Malvić
& Rusan [3] calculated the value of PoS for “basement rocks and Miocene breccias” and “Upper
Miocene sandstone” from Bjelovar Subdepression. Stochastically improved methodology for PoS
calculations for Stari Gradac–Barcs Nyugat field (Drava Depression) is proposed by Malvić & Velić [4].
The deterministic assessment of independent categories within the system analyses potential or proven
reservoirs or selected properties (called custom geological probability). The mathematical expression
for geological risk or geological probability (i.e., PoS, e.g., [1]) for hydrocarbon systems is presented in
Equation (1):

PoS = p(t) · p(r) · p(m) · p(sr) · p(CHp) (1)

where:

PoS - geological probability of success (%);
p(t) - probability of potential traps (%);
p(r) - probability of reservoir characteristics (%);
p(m) - the probability of hydrocarbon migration (%);
p(sr) - the probability of the existence of source rocks (%);
p(CHp) - the probability of hydrocarbon preservation (%).

Using the data indicated in Figure 1 and the mathematical Equation (1), the geological risk is
calculated for each observed stratigraphic interval.

Novak Mavar [5] calculated the geological probability of preserving the CO2 saturated reservoir
in the Ivanić field (Sava Depression). The author made an assessment of the risk of migration through
the sealing rocks of the oil–gas system into which CO2 is injected, which was previously saturated with
oil and/or methane. As the size of CO2 and CH4 molecules is approximately the same, a methodology
for estimating the possibility of CH4 migration through the same insulator rocks was used to determine
the probability of CO2 retention in the reservoir. The results of the calculation of the preservation
probability of the Ivanić field reservoir “gamma series” indicate a certain event (the calculated value is
1.00). The obtained value is expected since it is an existing hydrocarbon deposit.

Malvić et al. [6] used the PoS method to calculate the probability of finding new gas discoveries
in the wider area of Ivana and Ika gas fields (northern Adriatic, Croatia). Režić & Varenina [7] have
designed a computer program for the calculation of PoS used for the probability assessment of new
gas discoveries in the Croatian part of the Po Depression. The algorithm for calculating PoS in the
northern Adriatic is shown in Figure 2. Values for PoS and p are selected as categorical probabilities
within the 0–1 interval. According to the same authors, a PoS value of 0.2 is the cutoff value based on
which it is decided whether or not further research will be conducted in the CPBS area for the Upper
Miocene reservoirs. In any modification, where probability must be 100% (1.0), such cutoff should
not be applied, but methodology itself could be. Consequently, PoS less than 1.0 is not suitable for
nuclear waste disposal except if some risk for the selected variable in the long period (e.g., scale of 106

years) would be legally considered and allowed. It could be done for example in case of radionuclides
with shorter half-life cycle, or regional probabilities for variable active on long geological scale (e.g.,
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fault activity in the last 1 or more Ma). In any case, probabilities less than 1.0 must be particularized
in detail.Processes 2020, 8, x FOR PEER REVIEW 3 of 25 
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The methodology for determining geological probability was applied in calculating the persistence
of the remaining economic quantities of hydrocarbons in the western part of the Sava Depression by
Ivšinović [8]. This part of the Sava Depression is a relatively well-explored area with a large number of
wells and discovered hydrocarbon reserves. The values of individual categories and subcategories of
PoS are deterministically determined and PoS for the western part of the Sava Depression is 0.4218.

Recently, Malvić et al. [9] modified PoS was applied for assessment of water injection success in
the western part of the Sava Depression. Consequently, PoS is considered as a very robust method
for assessment of different subsurface rock–fluid–solid systems in deep boreholes. The disposal of
high-level radioactive waste (HLW) in such deep wells is a part of the Croatian plan to safely dispose
the spent nuclear fuel (SNF) from the Krško nuclear power plant. The national program for the
implementation of the radioactive waste, disused sources and spent nuclear fuel disposal Strategy
(program for the period until 2025 with a view to be extended until 2060; [10]) and the third revision of
the decommissioning program and the Krško nuclear power plant (NPP) radioactive waste (RW) and
spent nuclear fuel disposal program [11] predicts long-term storage of SNF from Krško NPP at the
power plant located in the Municipality of Krško in Slovenia. The process of obtaining the necessary
permits for such a storage site is ongoing. As a final solution for the disposal of SNF and/or HLW,
the radioactive waste, disused sources and spent nuclear fuel disposal strategy [12] and the national
program [10] envisage deep geological repository at a Croatia or Slovenia convenient location—or in
the territory of the European Union, if an international landfill is established. If the disposal at a Croatia
or Slovenia location is to be developed, probable host rock will be crystalline. The third revision of
the decommissioning program proposes the utilization of the KBS-3 V disposal concept. The focus
is given on deep geological repository with the recommendation to reconsider the possibilities of
optimizing the proposed solution, as well as other technologies for disposal of SNF and/or HLW
generated by processing or reprocessing of fuel from nuclear power plant “Krško” (Croat. abbr. NEK).
One is deep boreholes disposal, which could be favorable regarding the volume of HLW, since the
Slovenian/Croatian program is small, and Krško NPP has only one reactor with 1983–2043 operational
span and less than 2 500 SNF assemblies [13]. The disposal program is planned to start in 2052.

Such national programs are done in many countries with nuclear energy facilities, e.g., the basic
strategic to manage HLW and liquidation NPP is contained in the energy policy of the Slovak Republic
(e.g., [14]). The goal is to solve, in the long run, deposition of HLW and SNF. The most important part
of such a project is the disposal in deep subsurface rocks and the use of natural and artificial protectives
to safely isolate HLW from the biosphere. Galamboš et al. [14] pointed out the clays as very suitable
sealings, namely of bentonite type, and listed several deposits in the Slovak Republic, considering
specific geotechnical properties involved.

Later, such work has been extended [15] in studying bentonite volume changes due to water
content and using such property in the creation of artificial sealings in boreholes, especially for fillings
of fractures in such volumes. Those two Slovakian studies clearly show that national nuclear energy
policy and supporting experimental projects are of extreme importance for safely disposal and public
response to nuclear energy in general.

2. Geological Samples of the Pre-Neogene Basement Rocks in Northern Croatia

Lithological properties of two characteristic groups of rocks in the pre-Neogene basement,
sedimentary carbonates and metamorphic rocks, taken from the outcrops in Medvednica Mountains,
are described, serving as the analogs for similar lithologies found in the deep wells of the CPBS.
Geological relationships of the Neogene deposits and metamorphic rocks in the central part, as well as
with sedimentary carbonate rocks in the southwestern part of the Medvednica mountains, are shown
in Figure 3 [16].

Sedimentary carbonate rocks found in the pre-Neogene basement of the CPBS are mainly Middle
and Upper Triassic marine limestones and dolomites, which are well described at the outcrops in
Medvednica mountains [18–21], as well as in the neighboring Samoborska Gora and Žumberak [20–23].
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Their clasts are regularly found as constituents in the overlying Neogene carbonate breccias. Pebbles
of these rocks are also significantly incorporated in the Plio-Quaternary alluvial deposits of the Sava
River [24]. Similar Middle Triassic rocks were also described as the Neogene basement rocks in the
Papuk mountains [25], where Middle Triassic limestones and dolomites predominate.
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Figure 3. Geological relationships of the Neogene deposits and the pre-Neogene basement rocks in the
central and SW parts of Medvednica mountains. Legend for geology, after [17]: Pz, ?T—Paleozoic to
Triassic parametamorphites; T2—Middle Triassic limestones and dolomites; T3—Upper Triassic
dolomites; K2—Upper Cretaceous carbonate clastics; M4, M7—Neogene deposits; Pl, Q, IQ1,
Q2—Plio—Quaternary deposits.

Several lithofacies of Triassic dolomites were described in the Medvednica mountains as dark-gray
dolomite, often intersected with secondary tectonic cracks and veins (Figure 4a) filled with carbonate
cements and matrix, prevailing among carbonate lithotypes. This dolomite is heavily weathered, often
cut up into small pieces and grinded up to the sand grain size. In a microscale, it shows fine-grained to
medium-grained hipidiotopic dolomite texture (Figure 4b). It is often accompanied with dolomite
breccias of different types and origin. These rocks show various types and significant volumes of
secondary porosity, mainly of diagenetic or tectonic origin, as well as the combination of both [21,23].
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brecciated dark gray dolomite (width of the photomicrograph is 1.7 mm).

The light-colored crystalline dolomite is almost equally represented in the outcrops and quarries
(Figure 5a), having hipidiotopic to xenotopic macrocrystalline texture, often accompanied with
brecciated dolomite fabric (Figure 5b). These are, again, rocks with a significant secondary porosity of
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the diagenetic origin in light-colored crystalline dolomites, further enhanced, due to the tectonics, in
dolomite breccias. All these carbonate rocks described in the Medvednica mountains are intensively
weathered and karstified at the surface outcrops, and they represent significant and valuable volumes
for karst aquifers development. This is also acknowledged for the similar Triassic carbonate rocks from
the Papuk mountains [25].
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Low-grade metamorphic rocks of the greenschists metamorphic facies from the central part of the
Medvednica mountains [16] represent an analog for similar metamorphic rocks in the pre-Neogene
basement of the CPBS. These rocks are the products of low-grade metamorphism, affecting the Mesozoic
older sedimentary and volcano–sedimentary successions [20,26,27]. Their appearance at outcrops
(Figure 6a), as well as in the hand samples (Figure 6b) shows compact, lepidoblastic and nematoblastic
schist structures.Processes 2020, 8, x FOR PEER REVIEW 7 of 25 

 

 
Figure 6. (a) Outcrop with the greenschists in the Medvednica mountains; (b) hand sample of the 
greenschist from the Medvednica mountains. 

Physical properties of greenschists often show anisotropy due to their structure and their 
porosity is lower than in observed sedimentary carbonate rocks, unless the rocks are later tectonized 
and secondary porosity of tectonic origin developed as cracks and fissures within the rocks. 

Magmatic rocks occasionally intruded within the other pre-Neogene basement rocks of the 
CPBS. Recently, several types of granitoids from the pre-Neogene basement of the CPBS were 
reported from the deep wells in Eastern Croatia. These rocks were analyzed and interpreted as 
shallow plutonic alkali–feldspar granites; hypabyssal monzodiorites–granodiorites; as well as 
monzogranites and leucogranites [28]. All these rocks are more-or-less compact and they have grainy 
to porphyric structures with low porosities, unless they are later tectonized, similar to the previously 
described metamorphic rocks. 

3. Basic Geological Settings of the Pre-Neogene Basement Rock in the Northern Croatia 

All rock types drilled and discovered in northern Croatia could be divided in two different 
groups. The first, younger group, includes Neogene and Quaternary deposits and the second group 
the rocks in the pre-Neogene basement. They are also lithologically very distinctive. The Ng–Q 
sediments are clastics and basement rocks are carbonates (mostly Mesozoic), as well as magmatites 
and metamorphites (mostly Paleozoic). The younger group is better explored, but enough regional 
data are available for both groups. The Mz–Pz group was marked as a target for subsurface disposal 
of wasted nuclear fuels, i.e., radioactive waste, because of: (a) depth, (b) compactness and hardness 
with lower porosity and permeability, (c) lower influence of neotectonic displacements, (c) they are 
not subdued to meteoric, but only connate waters. 

The entire northern Croatia is a part of the CPBS, shown on Figure 7, divided in the four large, 
regional depositional–tectonic structural units of the 2nd order. Those are Mura, Drava, Sava and 
Slavonija–Srijem Depression. In the Sava Depression two regional units of the 3rd order are located—
the Karlovac and Požega Subdepression and in the Drava Depression—the Bjelovar Subdepression. 
The basement rocks are explored on the hills and mountains at margins (e.g., Trgovska gora Hill) and 
in central parts (Medvednica, Moslavačka gora, Psunj, Papuk, Požeška gora mountains). 

Figure 6. (a) Outcrop with the greenschists in the Medvednica mountains; (b) hand sample of the
greenschist from the Medvednica mountains.

Physical properties of greenschists often show anisotropy due to their structure and their porosity
is lower than in observed sedimentary carbonate rocks, unless the rocks are later tectonized and
secondary porosity of tectonic origin developed as cracks and fissures within the rocks.

Magmatic rocks occasionally intruded within the other pre-Neogene basement rocks of the CPBS.
Recently, several types of granitoids from the pre-Neogene basement of the CPBS were reported
from the deep wells in Eastern Croatia. These rocks were analyzed and interpreted as shallow
plutonic alkali–feldspar granites; hypabyssal monzodiorites–granodiorites; as well as monzogranites
and leucogranites [28]. All these rocks are more-or-less compact and they have grainy to porphyric
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structures with low porosities, unless they are later tectonized, similar to the previously described
metamorphic rocks.

3. Basic Geological Settings of the Pre-Neogene Basement Rock in the Northern Croatia

All rock types drilled and discovered in northern Croatia could be divided in two different
groups. The first, younger group, includes Neogene and Quaternary deposits and the second group
the rocks in the pre-Neogene basement. They are also lithologically very distinctive. The Ng–Q
sediments are clastics and basement rocks are carbonates (mostly Mesozoic), as well as magmatites
and metamorphites (mostly Paleozoic). The younger group is better explored, but enough regional
data are available for both groups. The Mz–Pz group was marked as a target for subsurface disposal of
wasted nuclear fuels, i.e., radioactive waste, because of: (a) depth, (b) compactness and hardness with
lower porosity and permeability, (c) lower influence of neotectonic displacements, (d) they are not
subdued to meteoric, but only connate waters.

The entire northern Croatia is a part of the CPBS, shown on Figure 7, divided in the four
large, regional depositional–tectonic structural units of the 2nd order. Those are Mura, Drava,
Sava and Slavonija–Srijem Depression. In the Sava Depression two regional units of the 3rd order
are located—the Karlovac and Požega Subdepression and in the Drava Depression—the Bjelovar
Subdepression. The basement rocks are explored on the hills and mountains at margins (e.g., Trgovska
gora Hill) and in central parts (Medvednica, Moslavačka gora, Psunj, Papuk, Požeška gora mountains).

The CPBS (e.g., [1,29–34]) was created at the margin of the Pannonian Basin System (PBS), which
resulted in some depositional and tectonic specific features. The entire CPBS is created along the
several regional transcurrent faults. The first lake environments were created in the Lower Miocene.
During the Lower Badenian (16.4–15.0 Ma), the 1st marine transgression of the Central Paratethys
covered the northern Croatia, overlying the siliciclastic basement with dominant alluvial fan deposits
and coralgal bioconstructions deposited during the fast subsidence (1st transtensional phase). During
the Middle and Upper Badenian (15.0–13.0 Ma), tectonics was weak and fine-grained clastics and
carbonates were deposited. The period ended with the 2nd flooding of the Paratethys.

It was followed with the 1st transpressional phase from the Sarmatian to the end of the Lower
Pannonian (13.0–9.3 Ma), when the Pannonian Lake (brackish to freshwater) was gradually created.
Then followed by the 2nd transtensional stage, which lasted throughout the Upper Pannonian (9.3–7.1
Ma) and Lower Pontian (7.1–6.3 Ma). The monotonous, thick marl and sandstone sequences were
deposited, first in the Pannonian Lake, later in local Sava and Drava lakes. Sandstone detritus
originated from the Eastern Alps, transported by turbidites and redeposited on tectonic ramps. Marls
are typically of lacustrine origin.
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The last, 2nd transpressional phase, started in the Upper Pontian (6.3–5.6 Ma). The lacustrine
environments are reduced to the Slavonia Lake, eventually closed in the Pliocene (5.6–2.6 Ma).
The Quaternary (2.6–rec. Ma) is characterized by a completely continental environment. During the
entire Upper Cenozoic, especially during the transpression, older structural highs and mountains (e.g.,
Medvednica, Papuk, Psunj mountains) were uplifted, including the youngest Bilogora mountains,
completely uplifted during the last 2.5 Ma [35]. It resulted in a significant thickness of the Ng–Q
sediments with more than 7000 m in the Drava and more than 5000 m in the Sava Depression.
Depositional evolution and lithology of the CPBS are clearly visible in regional lithostratigraphy and
can be easily correlated and compared in all depressions (Figures 8 and 9).

The long-lasting deposition and tectonics resulted on numerous structures and fault zones.
The major ones are mapped from the basement up to surface, other are local and shorter. However,
along the major fault systems, throws could reach several hundred meters (Table 1, locations are
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given at Figure 10), as observed on examples taken from the regional structural map of the Bjelovar
Subdepression [37].
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Table 1. Absolute vertical fault throws (in meters) along the main fault zone in the Bjelovar
Subdepression [37].

Pre-Cenozoic–
Miocene
(16.4 Ma)

Sarmatian–Early
Pannonian
(11.5 Ma)

Early–Late
Pannonian

(9.3 Ma)

Late
Pannonian–Early

Pontian
(7.1 Ma)

Early–Late
Pontian
(6.3 Ma)

Late
Pontian–Pliocene

(5.6 Ma)

Transverse Normal Faults (NE–SW)

(1) Primary normal 300 100 100–200 100 100 50
(2) Secondary normal 100 100 100 – – –

(3) Western 150 100 100 50 50 50
(4) Štefanje 50 50 50 50 50 50

(5) Eastern Marginal 100 100 Unconformity Unconformity 100 50
(6) Uljanik 100 100 Unconformity Unconformity 100 50–100

Diagonal Faults (WNW-ESE)

(7) Bilogora 200 100 100–200 100 50 100
(8) Šandrovac-Ciglena 50 100 100–200 50 50 50

(9) Primary reverse 200 100 100 100 100 50
(10) Secondary reverse 200 100 50–100 100 – –
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4. Lithology and Petrophysics of the Pre-Neogene Basement Rock in the Northern Croatia

As mentioned, there are two lithological types of the Neogene basement: magmatics and
metamorphics, dominantly Paleozoic and carbonates, mostly Mesozoic.

Magmatics and metamorphites are, in practice, named as “Basement Rocks” (Croat. “temeljno
gorje”). Such name can also be considered as an informal lithostratigraphic unit of a group rang.
Paleozoic is often composed of granites and gabbro intrusions, and, by intrusion, cracked and altered,
metamorphized rocks. Metamorphites include the rocks of the amphibolitic facies with different schists
and gneisses.

In addition, they were subdued to several orogeny cycles and displaced from their locations
numerous times. However, deep data can be correlated with the same lithotypes collected from
outcrops on mountains and hills in the CPBS. Dominantly, those rocks are of the Paleozoic, but some
are of the Mesozoic age. For example, Pandžić [38] stated that ophiolites in the SW part of the PBS
were continuously created both in Paleozoic and Mesozoic. Later, Hernitz [39] assigned the gabbro
and serpentinite on NW Majevica and Trebovac to the Upper Cretaceous. The most of the schists were
formed during the intrusions of granite magma, caused by the contact metamorphosis, resulting in
quartz–mica and quartz–mica–chlorite schists. Mineral paragenesis indicates the greenschist facies.
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Well data are extremely significant for the determination of petrophysical values, particularly in the
weathering zone, which is almost always developed in the topmost part, also characterized with
secondary porosity. Such weathering mostly happened during the Paleogene and could develop from
several meters to several dozens of meters from the basement top.

The next group of carbonate rocks was named in practice as “Tertiary basement” (Croat. “podloga
tercijara”; today Paleogene and Neogene Basement should be used instead of the Tertiary) and can also
be considered as an informal lithostratigraphic group. Those are different limestones and dolomites,
often cataclyzed and weathered in breccia and conglomerates, especially in the youngest part. Such
rocks are also drilled in the deepest parts of the CPBS, such as in the Drava Depression in the wells Vir-3
(where effusives are syngenetic with carbonates) and Or-1 (Figure 11) where dolomites are detected at
−4740 m.

Petrophysical values of the basement rocks are mostly very rare, when compared with younger
rocks in the CPBS. However, the dataset was comprehensive enough to get a regional insight
in interval values of porosity and permeability, as critical variables for any estimation of sealing
properties, which can be calculated from cores or logs. Such values were generally low, lower in the
magmatic–metamorphic than in the carbonate basement (with much stronger influence to dissolving
and cataclysing). In basement, for example in the Bjelovar Subdepression, porosity varies between 0.9%
and 4.1% in different schists, quartzite sandstones and gabbro. The maximal vertical permeability is, in
VT-1 well, 0.24× 10−3 µm2. The basement rocks, as well as hydrocarbon reservoirs in them, can be easily
recognized on e-logs (Figure 12). This is an example of how e-log allows to recognize metamorphic
basement (not a discussion about hydrocarbon reservoir existence). In addition, the existence of
reservoirs does not mean that “seal” is not appropriate for nuclear waste disposal. If migration
happened several Ma ago, it could be considered an appropriate safe medium for waste disposal.

In Mesozoic carbonates, the petrophysical values were generally slightly higher, e.g., 2%, with
both permeabilities mostly less than 0.1 × 10−3 µm2 (example of Dež-1 well, Bjelovar Subdepression).

There were also interesting data about the basement saturated water salinity. As average for the
Drava depression, Cota & Britvić [42] referred 18 g/L NaCl for magmatites and metamorphites and
15 g/L for carbonates. However, locally, values can significantly vary [43], from 3.24 (Gr-1z) to 15.34 g/L
(Pav-1) for magmatites/metamorphites and from 9.9 (VC-1) to 23.29 (Ptk-1) g/L. The lower values in
magmatites/metamorphites are the probable result of mixing with waters from younger formations and
higher in carbonates with longer inactivity of the aquifer and consequently more strongly dissolved.

There is also one very famous structure in the CPBS where Paleozoic and Mesozoic rocks can be
simultaneously studied, based on numerous data from deep wells, seismic and logs. That is the Molve
Structure, located in the central Drava Depression (Figure 13).

The Molve structure is particularly interesting because hydrocarbon reservoir included four
different lithofacies, from the Paleozoic to the Badenian (Middle Miocene), each with its own
petrophysical properties, but still representing a single hydrodynamic unit. Those four lithofacies
(e.g., [44]), range from pre-Devonian to the Middle Miocene and from the granite and amphibolitic
schists, metasandstones, quartzites, carbonates to the lithothamnion limestones, biocalcarenites
and biocalcrudites.

Analyzing the porosity variations through those four lithofacies, it could easily be observed
a regular decreasing of values along the depth and age of rocks (Figure 14). It goes from 20% in
the Badenian breccia, to less than 2% in Paleozoic diaphtorite rocks. However, some samples from
diaphtorite rocks develop secondary porosity around 20%, which is a clear indication of strong
weathering zone in the topmost part of the basement.
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Figure 13. Geographical location of the Molve structure [44].
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5. Proposal and Discussion of a Modified PoS Methodology for Radioactive Waste Disposal in
Pre-Neogene Basement of the Northern Croatia

Every modeling in the subsurface exploration can comprise two main routines: static geological
modeling and dynamic engineering simulation. Both can be done simultaneously or only the
static model can be applied during the early, exploration phase. These two approaches are often
interconnected in one general integrated model. A complete geological model includes numerous
analytical methods (stratigraphic, structural, tectonics studies, petrophysical and geochemical variables
analyses, creation of maps). In a later stage, fluid migration parameters could be also collected. All
or most of these data need to be collected during the modeling of deep borehole disposal (DBD)
radioactive waste program.
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For any variable, the most important property is a spatial continuity, which is directly connected
with data quantity and clustering. The geological variables (e.g., porosity, permeability, thickness) have
spatial continuity, which could be expressed via autocorrelation function (such as a variogram). They
are also regionalized variables with known general statistics, but also with an uncertainty interval. This
has to been taken into consideration when these variables are selected in the modified PoS intended
for DBD of highly radioactive waste (HLW). Previously, two assumptions are set for the selection
of favorable geological units for HLW disposal: (1) promising structures are selected on structural
and paleostructural maps; (2) promising lithostratigraphic units are selected in basement with low
petrophysical values.

5.1. Connections between Categories in Classical and Modified PoS Models (Hydrocarbon vs. DBD
Critical Variables)

The PoS table used for hydrocarbon reservoir probabilities is largely modified, using only two
assumptions. The classical principle, based on the workflow published, e.g., in White [45] and
Hernitz et al. [46] studies, was carefully redesigned for each of the basic categories defined in a typical
hydrocarbon system. Similar modifications have been done in the past, but to a lesser extent and for
problems still defined in hydrocarbon systems. Example of such PoS systems, applied in the CPBS,
can be found in Malvić & Rusan [3,47] studies. However, the basement rocks in northern Croatian
subsurface are not still extensively explored, so no modified PoS methodology intended to assess the
HLW based on different geological variables can incorporate a detailed list of numerous geological
events and probabilities. Consequently, most variables in categories of hydrocarbon systems must be
replace or omitted.

Category “Source rocks–maturity–migration”—The existence of source rocks is not important for the
assessment of basement rocks, particularly because they cannot contain source facies at all. In addition,
the role of migration in hydrocarbon systems is crucial, but in HLW it is the most unfavorable event.
For that reason, it was omitted in the modified PoS. However, the temperature variable, as a crucial
parameter for organic matter maturity, is important for the long-term preservation of any artificial
inputs in basement rocks in “original” or intact state. Hence, the variable “temperature” was inserted
in the modified PoS as a new category.

Category “Trap–isolator rocks–time”—Trap is a variable which does not exist in the HLW systems in
the connotation of hydrocarbon reservoirs, because solid waste is disposed in the rock systems where
neither structural closure nor migration time is important. The sealing properties are the only and the
most important variables. That has to fit the condition that any migration of radioactive nuclides must
be stopped and practically slowed to zero regarding the geological time scale. Hence, in this particular
PoS modification, the isolator properties (natural and artificial) need to be highlighted as a category.

Category “Reservoir–porosity–permeability”—Reservoir rocks are one of the most critical parameters.
In hydrocarbon system it is the most favorable and in the DBD the most disadvantage variable. Any
type of porosity (either primary or secondary) and permeability are not desired in the DBD program
and are considered as a critical variable for the new category. The fault zones, as the second critical
variable, also decrease the permeability of DBD volume for HLW, in particular such fault zones where
cementation has not happened or finished.

Category “Preservation–quality–producing”—This category is almost entirely very specific for
hydrocarbon systems. Preservation, production and quality of hydrocarbons are not connected in any
way with the HLW, except as indicators of subsurface fluid activity, causing flushing, degradation
or ionic exchanges. Most such events are a result of regional stress, salinity stratifications and
regional hydrological conductivities. Hence, the aquifers’ properties would be presented as a category,
connected with numerous measurements from the previous ones.

As in hydrocarbon systems, the DBD of radioactive waste is based mostly on measurements from
deep wells. Improvements in drilling technologies in the past revived the DBD for disposal of HLW,
like SPN and plutonium, instead of the placement in underground mines, e.g., at depths 500–800 m
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(e.g., [48]). The large-diameter cased boreholes (e.g., for the lowermost interval, it could be 0.194 m for
drill pipe, 0.305 m for drill collars and 0.356 m for drilling [48]) can be used at 4–6 km depths, to safely
dispose the HLW into the granitic basement, i.e., upper part of the continental crust. The radioactive
waste is disposed below drilled sealings [48]. The granite is almost always considered as an ideal
lithology for HLW disposal all over the world. For example, Wang [49] described the Beishan area (NW
China, Gansu Province) as the most suitable country area for HLW repository because of its favorable
socioeconomical and natural conditions, which included eight (3 the most) favorable granite intrusions,
where total crust thickness 47–50 km and no earthquakes with Ms > 4.75 were recorded. The hydraulic
conductivity ranges between 6.6 × 10−10 m/s and 3.9 × 10−14 m/s [49]. Considering also the moderate
in situ stress (4.54–12.77 MPa), the described granite could be a location for the permanent disposal of
HLW. However, such sites are sensitive to the complex stress fields, which could initiate earthquakes.
Their triggering is related to changes in stress fields [50]. Consequently, it is necessary to make a map of
earthquake distribution in the analyzed area and point out all of them with some “critical” magnitude
(e.g., Ms > five or six), which happened in the past and are recorded in historical data.

5.2. The New Categories and Critical Variables

The categories and parameters for the modified PoS which could be applied for radioactive waste
disposal (critical variables are included) in northern Croatia are shown in Table 2. All probabilities
can range between 0.0 and 1.0. A value of 1.0 is added if all subcategory criteria are completely
satisfied at the most favorable level. Oppositely, if none of such criteria is matched, the value is 0.05
(if measurements are missing) or 0.0 (if non-existence is proven). Single category 0.0 value makes all
further calculation unnecessary (e.g., [4,5]).

The probability values are connected with the original PoS applied for hydrocarbon reservoirs in
Croatia and simply define statistical quartiles. Such approach proved to be successful in the assessment
of both potential and proven reservoirs, just as simple and comparable with other reserves classification,
qualitatively described as possible, probable and proven. With the present level and quantity of the
northern Croatian basement data, it is reasonable and logic to continue to use such probability quartiles
in an exploration phase, until the new data and benchmarking reveal the necessity to define more
probability classes, maybe even of irregular probability intervals. A special attention must be given to
the selection between probabilities 0.05 and 0.0. While the last one makes the calculation meaningless
and does not require new data, the value 0.05 oppositely and inevitably needs collecting new data
because the variable cannot be estimated due to insufficient measurements. In both cases, the total
probability will be significantly smaller than 1.0, which could result in the elimination for any structure
where safety needs to be 100%. Consequently, expert analysis is necessary.

A. Temperature. As one of the critical variables, temperature can degrade the stability of any
metal or concrete container-based protection during a long-time interval (102–104 years). Cumulative
temperatures in the disposal volume could be the result of several sources. The natural sources are
heat flow or geothermal gradient and the heat released from radioactive decay. The source could be
induced energy released from the heaters used to melt and recrystallize the rock where containers
are disposed.

In addition, sealing properties depend on the temperature. For example, Gibb et al. [51] proposed
using high-density support matrix (HDSM) for sealing of waste which, while decaying, generates
temperatures higher than approximately 185 ◦C in the annulus (volume between the disposed package
and borehole walls). If the basement rock temperatures could be expected to reach 80–130 ◦C [48],
it is obvious that the decay will generate additional heat, especially if highly radioactive fuels had
not undergone the process of cooling. The question is if such additional heat will lead to an increase
in the temperature that will alter the host rock and the waste containers. As a possible solution to
such problem, the HDSM includes lead-based, fine-grained, alloy that is delivered after each waste
package [51], filling all pores around such containers, in an uncemented zone, i.e., between casing
and walls.
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Table 2. Categories and variables selected for the modified PoS to potentially be applied for radioactive
waste disposal in northern Croatia.

Categories and Variables

Probabilities for Particular Structure in the
Croatian Part of the Pannonian Basin

System (CPBS)

Probability of the Crucial
Geological or Engineering

Events in the Category (0–1)

Probability for
Category

(A) temperature

a1 × a2 × a3 × a4 = A

a1. The present-day temperature in basement rocks is
considered as a long-term value.

a2. Quaternary volcanism is not observed.
a3. The paleothermal gradient is known at least for the

last 100 Ky.
a4. Heat flux <75 mW/m2

(B) sealing properties of rock

b1 × b2 × b3 × b4 = B

b1. Lithological isolator properties need to be proven all
around the disposal volume.

b2. Granite is favorable, magmatic and metamorphic rock
types are a necessary condition.

b3. The sedimentary sequence in the top of
granite/magmatics is rich in clayey and fine-grained rocks

(claystones, marls . . . ).
b4. If artificial sealing of the borehole displacement zone is

performed, its quality must be proven.

(C) low petrophysical values + fault zone(s) inactivity

c1 × c2 × c3 × c4 = C

c1. Petrophysical properties (<2%, <10−15 m2) needs to be
proven in the entire volume.

c2. Fault zone(s) must be inactive or with throw less than
50 m in the Quaternary.

c3. Regional fault zones must be located more than 2 km
from the disposal, and the closest fault zone(s)

must be cemented.
c4. Depth of HLW disposal has to be more than 3 km.

(D) subsurface fluids and aquifers

d1 × d2 × d3 = D

d1. Subsurface fluids and aquifers must be regionally still,
i.e., inactive.

d2. The deep saline aquifers are favorable.
d3. Regional weathering zones must be absent or

separated from the disposal, with enough thick sealing
part of basement.

Structure probability (E = A × B × C × D) E

The strongest natural influence on subsurface temperature comes from the geothermal gradient,
i.e., geothermal heat flux, regional as well as local. In Table 3, a heat flux of the upper marginal allowed
value <75 mW ×m2 for the DBD, is proposed. The regional mean value calculated for the CPBS is
76 mW/m, with geothermal gradient ranging approximately 0.04–0.07 ◦C/m [52,53]. For the higher
interval value of gradient, the temperatures at the depths of three or more km could be higher than
200 ◦C and special attention needs to be given on the stability of casing and containers.

B. Sealing properties of rocks. Sealing rocks have to be located all around the disposed containers.
Franklin el at. [54] mentioned that DBD would be ideally at 3–5 km (or at least >2 km, where overlying
argillaceous rocks could be beneficial) in crystalline basement, reaching robust geological conditions
that demand the minimal engineering support.

Sealing properties need to be assessed both through basement lithologies as well as artificial
sealings. Major uncertainties exist regarding the length of time that has to be guaranteed for the
disposed materials inactivity. The quality of filling has the largest influence in case of drilling the
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damage zone (or excavation damage zone (EDZ)). Such zone, in granite, could be restricted to a few
tens of centimeters [48]. According to Gibb et al. [56], EDZ thickness at mining enterprises during the
usage of “conventional” technology varies between 0.3–1.4 m

Table 3. Examples of technical criteria for selecting a potential site for consideration, which would
contribute to the safety case (taken from Franklin et al. [54]; which modified it from U.S. Nuclear waste
technical review board [55] and U.S. Department of Energy (DOE) documents).

Characteristics Criteria

Depth to crystalline basement <2 km

Simple basement structure No known regional structures, major shear zones, major
tectonic features within 50 km

Low seismic and tectonic activity No Quaternary age volcanism or faulting within 10 km

Absent flow of fresh groundwater at depth Absent significant topographic relief to drive deep
recharge, old and highly saline groundwater at depth

Low geothermal heat flux preferred <75 mW/m2

Sufficient area for well array Design-dependent

Absent existing contamination Absent surface or subsurface contamination at the
proposed site

Minimal disturbances from other surface or
subsurface uses

Prefer sites with minor impacts, e.g., wastewater
injection, oil and gas activities, groundwater production,
mining and potential mineral resources in the bedrock

The EDZ, as a bypass, must be eliminated at least locally, i.e., in intervals just above the disposal
zone. One of the methods [51,57,58] similar to HDSM, could be applied at the selected borehole interval
where casing is removed and finely grained, crushed granite (or any host rock) is backfilled. Such
detritus is partially melted together with host rock using the artificial electrical heating and left to
slowly cool and recrystallize into the virtually original host rock, but without borehole damaging zone.
The process is known as rock welding (e.g., [48]), where partial granite melting happened at 700–800 ◦C,
and then cooling, finishing recrystallization at about 550 ◦C. Eventually, natural and artificial sealing
properties create stable DBD volume.

C. Low petrophysical values + fault zone(s) inactivity. Based on experimental values from the
explored cores in the CPBS, the basement structures are often characterized with porosities less than
2% and accompanied with less than 10−15 m2 permeabilities (both in vertical and horizontal directions).
In crystalline basement depths of a few kilometers, such values could be expected. For example,
Beswick et al. [48] reported for such rocks very low bulk hydraulic conductivities (<=10−11 m/s), even
in fractured parts and saline brines, which do not mix with meteoric groundwater (rarely extending
below 1–2 km), making density stratification. As a result, HLW cannot move far away from the disposal
place. Generally, crystalline rocks, especially in the stable mid-continent region, can be low permeable,
where permeability of unfractured crystalline bedrock ranges from 10−16 m2 to 10−20 m2 [59]. Values
decline with depth due to the increasing confining pressures [48].

Fault zones must not cross disposal volumes and the closest ones must be inactive. The fault zone
inactivity is hard to estimate. It depends on numerous parameters like periodicity of fault activity,
size of the fault zone, length of fault, age of fault, cementation of the fault zone, etc. In Table 3 it is
indicated that disposal place needs to be more than 10 km of active regional fault zone. However, as
the CPBS is much narrower than the mid-continent plateaus, and the deepest parts are connected with
fractures along the main regional fault zones (Table 1, Figure 10), the 10-km limits would eliminate
much of the deep basement as a target for the disposal. Respecting the regional paleorelief maps and
hydrodynamics in discovered hydrocarbon reservoirs, the minimal two-kilometer distance between
DBD well and main depressional fault zone was set. Such reservoirs exist at least unchanged in upper
Quaternary, representing more than one million years ago. Without further drilling and benchmarking,
this value cannot be precisely defined, and it cannot be assessed with probability 1.0, but rather with
0.5 or so.
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As an elimination parameter, the Quaternary volcanism (Table 3) does not need to be applied
in the CPBS (no present-day volcanic activity of shallow magma chambers), but fault activity does.
The Quaternary inactivity (and Neogene low activity) of regionally fault zones is a necessary condition
in the selection of the DBD zone. Based on the regional palinspastic analysis (e.g., Table 1) low fault
activity could be described, Quaternary cumulative throw up to 50 m, but inactive faults would not
have any throw at all to fulfil probability of 1.0 as safe critical variable.

D. Subsurface fluids and aquifers. They have to be still, regionally inactive, where the pressure
gradient is gradually dispersed through rocks, mostly with geostatic normal pressure. “Safe and slow”
flow would occur in nanosized pores found along the edges of crystals (e.g., [54]), not through the
developed fracture systems, when basement crystalline rocks may have much higher permeabilities in
connected natural fractures. Nevertheless, there will be upward transport of radionuclides due to the
presence of hot waste, sometimes supported with secondary permeability from drilling damage and
leaky sealing materials. Moreover, radioactive heating can pressurize the connate water around the
boreholes and create the initial potential for fluid flow, and buoyant thermal convection will maintain
flows over longer times (e.g., [54]), such as the gases developed by the decomposition of the waste
containers. Weathering zones could be a crucial unfavorable factor in the CPBS due to the geological
history. During the entire Paleogene, most basement surfaces were largely exposed in continental facies
subdued to strong weathering and developed thick breccious lithofacies (e.g., [30,31]). Such lithology,
if not cemented later, enabled the strong and continuous migration during the long geological time,
even until the Quaternary (when hydrocarbon migration happened in the CPBS). That is proved by
numerous discovered hydrocarbon reservoirs where oil and gas are found in single hydrodynamic
units, simultaneously encompassing pre-Neogene basement and the Badenian coarse-grained clastites.

5.3. Probability Classes in the Proposed Categories

In theory, each category in the proposed PoS for the DBD can be assessed in the 0-1 probability
range. The final decision is always made by an expert. However, standardization can be set using
certain geological classes with the same probabilities that reflect the attitude of completeness for
the observed variable in the virtually “infinity” number of measurements. Such categorization is
previously done for hydrocarbon systems in the CPBS (Figure 1) and can be used also later for this type
of PoS modification. In such case, all variables are defined with the following values: l.00 for proven,
0.75 for highly reliable, 0.50 for fairly reliable, 0.25 for unreliable, 0.05 for an undefined variable (and
0.00 for non-existent variable, thus making PoS meaningless). Such classification purely reflects the
statistical quartiles already mentioned and has been proven as successful in the previous application of
the PoS in Croatia (e.g., [4,5]). Further research and analysis of particular structure case studies for HLW
could lead to a larger number of events and event categories and more event probabilities. However,
this could be done only when additional data are collected from the exploratory deep boreholes made
intentionally for this purpose and numerous laboratory, seismic and log analysis done on the collected
samples. With enough large datasets, the presented PoS can be easily benchmarked and, if necessary,
improved and extended.

6. Conclusions

This study presents a modified PoS, intending to assess the safety of geological environment in
deep wells, where depleted radioactive fuel could be disposed in the pre-Neogene basement of the
CPBS. This is a subject of enormous importance, encompassing the regional study of the magmatic and
metamorphic rocks in that area of Croatia at the regional level.

This is the first review of the northern Croatian deep subsurface for the purpose presented in this
text. Therefore, an extensive introduction clarifying the subsurface geological system is considered to
be extremely important for this study. Moreover, this is a conceptual study, and it was intentionally
conceived in such a form. As up to date there is no real location explored for the described nuclear
waste disposal purpose, real calculations cannot be performed, but the methodology behind how
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such calculations can be done for the very first projects in the CPBS, can be presented. The proposed
probability method can be upgraded as new results come up and benchmarking plays an important
role. This means that, in this case, the PoS table can be developed and upgraded as increasingly deep
wells for safe nuclear waste disposal are drilled.

Two main assumptions are initially established, the need for promising structures for waste
disposal and promising lithostratigraphic units with low petrophysical values. Considering the
proposed modification of PoS with the above assumptions, the classical PoS table is reassessed.
Categories not fitting the scope of radioactive waste disposal are removed and new ones are created.
Proposed categories and parameters for the modified PoS to be applied for radioactive waste disposal
in the northern Croatia are (a) temperature, (b) sealing properties of rocks, (c) low petrophysical values
+ fault zone(s) inactivity and (d) subsurface fluids and aquifers. Probabilities for each category risk can
range between 0.0 and 1.0. A value of 1.0 is added if all subcategory criteria are completely satisfied at
the most favorable level. A value of 0.05 is added if none of the criteria is matched in the structure due
to lack of data. The 0.0 value is added if data confirmed that variable is a non-existent one. The selection
of probability is proposed for the descriptive categories, selected by experts, as follows: 1.00 for proven,
0.75 for highly reliable, 0.50 for fairly reliable, 0.25 for unreliable and 0.05 for an undefined variable.

This modified PoS is a regional one. No case study with the purpose of the DBD for HLW is
yet performed. Hence, the first step will consist in the selection of several deep structures in the
pre-Neogene basement in the Drava and Sava Depressions, based on paleostructural maps. Each of
them needs to be assessed with the proposed methodology and then ranked. Such assessment will
also be a benchmark of the methodology itself, making it possible to improve categories as well as the
selection of critical variables.

Further development of the DBD program in Croatia depends on several research activities,
mostly connected with deep drilling and laboratory measurements. It is necessary to create a database
of the basement rock geomechanical properties, regionally and expressly for the most promising
mapped structures. Regional stress, present-day and in the past, must be known, as well as values for
geothermal heat flux and gradient variations. The sealing-borehole techniques must be tested at the
samples from the northern Croatia basement. The historical earthquake activity maps would also be
made, as well as palinspastic reconstruction of the major fault zones in depressions.
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23. Pavičić, I.; Dragičević, I.; Vlahović, T.; Grgasović, T. Fractal analysis of fracture systems in Upper Triassic
Dolomites in Žumberak Mountain, Croatia. Rudarsko-geološko-naftni Zb. (Mining-Geological-Petroleum Eng.
Bull.) 2017, 32, 1–13. [CrossRef]
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42. Cota, L.; Britvić, V. Hidrodinamika i kemizam formacijskih voda Dravske potoline—Panonski bazen
[Hydrodynamic and chemistry of Drava Depression formation waters—Pannonian Basin]. Nafta 1991, 42,
121–136, (In Croatian, with Abstract in English).



Processes 2020, 8, 755 24 of 24
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