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Abstract: The drive at the center of gravity (DCG) principle has been adopted in computer numerical
control (CNC) machines and industrial robots that require heavy-duty and quick feeds. Using this
principle requires accurate corrections of positioning errors. Conventional error compensation
methods may cause vibrations and unstable control performances due to the delay between
compensation and motor motion. This paper proposes a new method to reduce the positioning errors
of the dual-driving gantry-type machine tool (DDGTMT), namely, a typical DCG-principle-based
machine tool. An error prediction method is proposed to characterize errors online. An algorithm is
proposed to quickly and accurately compensate the errors of the DDGTMT. Experiment results verify
that the non-delay error compensation method proposed in this paper can effectively improve the
accuracy of the DDGTMT.

Keywords: drive at the center of gravity (DCG); machine tool accuracy; error prediction; non-delay
error compensation; dual-driving system

1. Introduction

The positioning accuracy of computer numerical control (CNC) machine tools is influenced
by thermal errors, geometric errors, servo errors, etc. Geometric errors (i.e., errors in the geometry
of mechanical components) accounting for 45–65% of total errors are a major source of positioning
errors [1]. Geometric errors are different from an application case to another (due to differences in
load, speed, and direction), and may change over long-term usage. Therefore, they are difficult to be
measured and compensated.

Because of the large thrust, small inertia, large transmission stiffness, and large control bandwidth
of dual-driving structure, dual-driving feed system has high precision and stability, so it is widely
used in gantry-type machine tools and rectangular coordinate robots [2]. However, the different servo
and mechanical characteristics between the dual axes result in the non-synchronous errors of the
two axes, which does harm to the positioning accuracy and machining stability [3,4]. Therefore, it
is a key problem to be solved to improve the accuracy of the dual-driving feed mechanism. Usually,
a high-precision synchronous control strategy is used to improve the accuracy of the dual-driving
feed mechanism. The synchronization control strategies include the master–slave synchronization
control strategy [5], cross-coupled synchronization control strategy [6], and virtual electronic shaft
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synchronization control strategy [7]. These control strategies are difficult to consider the errors caused
by the mechanical structure. Besides, these strategies are a kind of essential passive compensation [8],
with certain delay phenomenon, and cannot guarantee that the errors of other non-dual driving feed
direction are compensated. In this paper, a comprehensive error compensation model of dual-driving
gantry-type machine tool (DDGTMT) is established and a non-delay error compensation method
is proposed to improve the positioning accuracy of the dual-driving machine tool. This method is
essentially an active error compensation method, which can reduce the error compensation delay.

Many methods have been applied to the modeling of geometric errors, such as the product of
exponential (POE) -equation [9,10], screw theory [11], differential transform theory [12,13], orthogonal
polynomials [14], and multi-body system (MBS) [15,16]. These methods are summarized in Table 1.
This paper presents a geometric model based on the homogeneous transformation matrix (HTM)
of MBS. This modeling method is simpler than conventional methods. It is also more complete by
containing ideal and actual error matrices of every axis. Additionally, the method could be used to
calculate the error of every axis with regard to kinematic transmission chains [16]. The DDGTMT is
chosen as an example to illustrate the stability and efficiency of the proposed model.

Table 1. Published applications of error modeling methods.

Research Objects Error Modeling Methods Properties

Robot manipulators [9]
Multi-axis machine tool [10]

Product of exponential
(POE)-equation

A better description of robots motion
[10]

Three-axis vertical machining center [11] Screw theory Realization of geometric error sources,
definite physical meanings [11]

Multi-axis CNC machines [12,13] Differential transform theory The geometric error is equivalent to the
differential movement [12]

CNC machine tool [14] Orthogonal polynomials Easy to calculate and program [14]
Gear hobbing machine [15]

Five-axis CNC gear profile grinding
machine tools [16]

Multi-body system (MBS) The modeling process is convenient and
intuitive [16]

Error prediction plays an important role in improving the operation accuracy and reducing
the cost of CNC equipment. Error prediction can reduce the time of error measurement and reflect
the error of CNC equipment under different operating conditions [17]. Error prediction can be
online or offline. There are examples of using online prediction to calculate machining errors [18,19].
Yang et al. proposed an offline tool path generation and an online contour error estimation method to
reduce the errors of a four-axis machine by 50% [20]. Using geometrical information of a reference
trajectory, Li et al. proposed a high accuracy contour error estimation method for five-axis machine
tools. Error estimation methods can reduce tracking and contour errors as well as filtering control
signal [21]. Li et al. proposed a real-time prediction method to estimate thermal errors of a screw
system considering various operating conditions [22]. Yang et al. proposed a generalized method
to control a five-axis machine and estimate its contouring errors. Experiments showed that the
error prediction and compensation method can greatly improve the accuracy of machine tools [23].
However, most of the error predictions are based on overall statistical results or empirical knowledge.
Specifically, no attention is paid to the analytical approach in the error predictions of CNC machines,
i.e., predicting the overall errors by assessing the source of errors in all axes. In addition, because of
the particularity of dual-driving structure, i.e., coupled between axes in a single direction, the effect of
these methods in dual-driving CNC machine tools has not been proved by experiments. According
to the characteristics of the dual-driving structure, this research addresses the analytical approach
with the aim to build a more complete and accurate prediction model, particularly considering errors
caused by all motion axes.

The error compensation is one of the most effective methods to improve the machining accuracy.
Error compensation methods can be either hardware-based or software-based. Hardware compensation
relies on adjusting the structure of CNC equipment or using compensation devices. Cui et al. constructed
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an error compensation software system to realize error compensation via numerical control program
reconstruction [24]. Dumanli et al. presented a dynamic error compensation approach and a novel
data-based closed-loop tuning scheme to enhance the tracking accuracy of machine tool feed-drives by
modifying a reference trajectory [25]. Xiang et al. proposed a method to measure, model, and compensate
both volumetric errors of the five-axis, using the NC program based on the kinematic model [26]. Chen et al.
analyzed measured data and modified the NC codes to compensate systematic errors [27]. Wang et al.
adopted a closed-form iteration combined with a weighting method to deal with anisotropic situations
which may reduce registration accuracy. The proposed methods provided an effective approach for
machine tool volume positioning error calibration and compensation [28]. Zhong et al. established
a recursive software-based method to compensate the geometric error of a large five-axis machining
center prototype [29]. Software compensation methods include modifying system parameters (such as
acceleration and velocity), modifying the NC program, closed iteration combined weighting method, zero
offset method, and reverse compensation method. However, applying the above error compensation
methods to DCG machines can be difficult due to the existence of non-synchronization errors in a DCG
machine. For example, a dual-driving machine is equipped with dual motors and dual ball screws in
a single feed direction. This mechanical structure involves complex mechanical coupling i.e., different
servo characteristics, unbalanced forces, and synchronization problems that conventional compensation
methods cannot deal with. Therefore, dual-driving machines require more effective error compensation
methods. Besides, most error compensation methods are passive error compensation methods, which will
cause the chattering of machine tools. The non-delay error compensation proposed in this paper refers to
the prediction method based on the real-time measurement data to predict the errors produced by the
machine tool, and the predicted errors are used to modify the position instructions before the machine
tool moves to compensate in advance to achieve the non-delay compensation effect.

This paper introduces the non-delay error compensation method for the DDGTMT. The core of
non-delay error compensation in this paper is using predictive errors to enable predictive compensation
in order to reflect the time-varying characteristics of errors and improve the accuracy of error
compensation instead of compensating errors through measured data directly. Meanwhile, error
compensation and the motion instruction are completed in the same period, in that way, compensation
will not be behind motor movements, and the aim is to improve the accuracy and speed of error
compensation to achieve the effect of non-delay. The traditional error compensation method (closed-loop
compensation method) and proposed error compensation method are used in this research with their
criteria of measuring the positioning accuracy and volumetric positioning accuracy of the tool center
to verify the effectiveness of the proposed error compensation method.

The structure of the paper is as follows: In Section 2, according to the characteristics of the dual-
driving structure, the error transformation matrix of the machine tool is derived using HTM, and
then the comprehensive error model of the tool center is established. In Section 3, the error elements
of machine tools are measured by measurement equipment (optical scales or laser interferometer).
Then the errors of axes are predicted by the Grey–Markov method according to error data, and the
predicted error data are fitted by the orthogonal polynomial regression method. In Section 4, an error
compensation algorithm is designed, and the virtual axis-electronic cam compensation method is
adopted. After compensation, the laser interferometer is used to measure the tool center errors to
verify the performance of the proposed compensation method. In Section 5, the experimental results
are discussed. In Section 6, the conclusions about the most important achievements of the paper
are summarized.

2. Error model of the DDGTMT

This research aims to improve the feeding accuracy of DDGTMT, proposing a non-delay error
compensation method that consists of the following three parts: error model, error prediction, and
error compensation. The error model aims to depict the errors between the tool and the workpiece of
the machine tool, providing the theoretical basis for compensation. Generally, the error compensation
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is directly using the last error data to compensate the next motor motion, but this compensation method
ignores the real-time variation of the errors, making the error compensation effect is not optimal.
Figure 1 reflects that when the motion instructions/ideal position commands are sent to the motion
controller, the actual position commands are calculated by the non-delay error compensation method
in the motion controller and then are sent to the servo driver to execute the position commands.
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Figure 1. The structure of the non-delay error compensation controller.

Figure 2 shows the process of the non-delay error compensation method. The error model of
DDGTMT is based on HTM. According to the real-time error data, the predicted errors are calculated
by adopting the Grey–Markov method [30,31]. The accuracy of the prediction is assessed via the
precision threshold. By the virtual axis-electronic cam compensation strategy, using the predicted data
to modify position commands, so that errors are compensated ahead of execution position commands
to achieve non-delay error compensation.
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The structure of the DDGTMT is shown in Figure 3; it has three feed directions—X-direction,
Y-direction, and Z-direction. X-direction adopts DCG-principle to design a dual-driving structure,
which can improve transmission stiffness of the feeding system. The typical dual-driving structure
contains dual-servo motor, dual-ball screw, dual-linear guide, and bearings. The machine’s crossbeam
moves along the X-direction. The movement of the saddle is along the Y-direction, using a singular
motor and ball screw. The movement of the headstock is along the Z-direction, adopting a single-driving
structure. Parameters of the machine are given in Table 2.
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Table 2. Parameters of the DDGTMT.

Parameter Magnitude

X-direction stroke 2000 mm
Y-direction stroke 1000 mm
Z-direction stroke

Maximum velocity in Z-direction
30 mm

3000 mm/min
Maximum velocity in X-direction and Y-direction 10,000 mm/min

Geometric errors usually include positioning errors, straightness errors, angle errors and
squareness errors [32]. As shown in Figure 4, O1, O2, and O3 represent base coordinate, ideal
coordinate, and actual coordinate; namely, there are six error elements when the moving parts move
on the guide rail, including three linear errors—positioning errors, two straightness errors, and three
angle errors—roll errors, yaw errors, and pitch errors [33]. ∆X, ∆Y, and ∆Z represent the linear errors,
where the subscript represents the error directions. θX, θY, and θZ represent the angular errors, where
the subscript represents the rotation axes of angular errors. Sxz, Syz, and Sxy represent three squareness
errors of x-axis, y-axis, and z-axis, where the subscript represents the squareness errors between two
axes. All these geometric errors are shown in Table 3. x, y, and z represent x-axis, y-axis, and z-axis,
respectively, and they also represent the direction of motion.Processes 2020, 8, x FOR PEER REVIEW 6 of 26 
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Table 3. Components of geometric errors.

Axis Error Components

x− axis ∆Xx, ∆Yx, ∆Zx,θXx,θYx,θZx
y− axis ∆Xy, ∆Yy, ∆Zy,θXy,θYy,θZy
z− axis ∆Xz, ∆Yz, ∆Zz,θXz,θYz,θZz

Errors-∆Y occur after the coordinate system O1 translates along the y-axis to the coordinate system
O2, and the translation transformation matrix can be represented as

Trans(∆Y) =


1 0 0 0
0 1 0 ∆Y
0 0 1 0
0 0 0 1

 (1)

Similarly, the translation transformation matrices Trans(x) and Trans(z) translate along the x-axis
and z-axis to coordinate system O2 with errors-∆X and ∆Z, respectively. They can be represented as

Trans(∆X) =


1 0 0 ∆X
0 1 0 0
0 0 1 0
0 0 0 1

 (2)

Trans(∆Z) =


1 0 0 0
0 1 0 0
0 0 1 ∆Z
0 0 0 1

 (3)

Similarly, the rotation transformation matrices Rot(θX), Rot(θY) and Rot(θZ) of coordinate
system O1 rotate around x-axis, y-axis and z-axis to coordinate system O2 with errors-θX, θY, and θZ,
respectively. They can be represented as

Rot(θX) =


1 0 0 0
0 cosθX − sinθX 0
0 sinθX cosθX 0
0 0 0 1

 (4)

Rot(θY) =


cosθY 0 sinθY 0

0 1 0 0
− sinθY 0 cosθY 0

0 0 0 1

 (5)

Rot(θZ) =


cosθZ − sinθZ 0 0
sinθZ cosθZ 0 0

0 0 0 0
0 0 0 1

 (6)

In the homogeneous coordinate transformation of the coordinate system, if coordinate system
O1 translates along x-axis, y-axis and z-axis by ∆X, ∆Y, and ∆Z, respectively, and then rotates around
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x-axis, y-axis and z-axis by θX, θY, and θZ to coordinate system O2, respectively, the homogeneous
coordinate transformation matrix between O1 and O2 is

O1
O2

T = Trans(∆X)Trans(∆Y)Trans(∆Z)Trans(θX)Trans(θY)Trans(θZ)

=


cosθY cosθZ − cosθY sinθZ sinθY ∆X

sinθX sinθY cosθZ + cosθX sinθZ − sinθX sinθY sinθZ + cosθX cosθZ − sinθX cosθY ∆Y

− cosθZ sinθY cosθZ + sinθX sinθZ cosθX sinθY sinθZ + sinθX cosθZ cosθX cosθY ∆Z

0 0 0 1


(7)

When the rotational angles-θX, θY, and θZ are small, based on the theory of small-angle
approximation, the second-order and high-order minuteness can be ignored. Therefore, Equation (7)
can be represented as

O1
O2

T =


1 −θZ θY ∆X
θZ 1 θX ∆Y
−θY θX 1 ∆Z

0 0 0 1

 (8)

Figure 5 is the coordinate system setting of the DDGTMT. The reference coordinate system-R is
created on the machine tool bed, and the local coordinate systems-X, Y, Z, S, T, and W are created on
the crossbeam, saddle, headstock, spindle, tool and workpiece, respectively. The kinematic chain of
the DDGTMT is W → R→ X→ Y→ Z→ S→ T .Processes 2020, 8, x FOR PEER REVIEW 8 of 26 
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If the tool center moves along x-axis, y-axis and z-axis, the homogeneous transformation matrix
from workpiece coordinate system—W to tool center coordinate system—T is

W
T T = W

R T·RXT·XYT·YZT·ZS T·STT (9)

where R
XT, X

YT, and Y
ZT are represented in Equations (10)–(12)

R
XT =


1 −θZx sinθYx x + ∆Xx1+∆Xx2

2
θZx 1 −θXx ∆Yx

−θYx θXx 1 ∆Zx

0 0 0 1

 (10)

X
YT =


1 −θZy θYy ∆Xy − ySxy

θZy 1 −θXy y + ∆Yy

−θYy θXy 1 ∆Zx

0 0 0 1

 (11)
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Y
ZT =


1 θZz θYz ∆Xz − zSxz

θZz 1 −θXz ∆Yz − zSyz

−θYz θXz 1 ∆Zz + z
0 0 0 1

 (12)

where x, y, and z are the position commands of x-axis, y-axis, and z-axis, respectively; ∆Xx1, ∆Xx2, ∆Yy,
and ∆Zz represent the positioning errors of x1-axis, x2-axis, y-axis, and z-axis, respectively; θXx, θYx

and θZx are three directional angular errors caused by motion along x-axis; θXy, θYy and θZy are
three directional angle errors caused by motion along y-axis; θXz, θYz and θZz are three directional
angle errors caused by motion along z-axis; ∆Yx and ∆Zx are straightness errors caused by motion
along x-axis; ∆Xy and ∆Zy are straightness errors caused by motion along y-axis; ∆Yz and ∆Xz are
straightness errors caused motion by along z-axis; Sxz, Syz, and Sxy are the squareness errors between
x-axis and z-axis, y-axis and z-axis, and x-axis and y-axis, respectively.

Because there is no relative movement between the spindle and headstock, the homogeneous
transformation matrix from the coordinate system—Z to spindle coordinate system—S is the unit matrix
that is Z

S T = I4×4. The tool center is connected with the spindle, so the homogeneous transformation
matrix from the spindle coordinate system—S to the tool center coordinate system—T is the unit matrix,
that is S

TT = I4×4. There is no relative movement between the workpiece and the machine tool bed, so
the homogeneous transformation matrix from the workpiece coordinate system—W to the reference
coordinate system—R is the unit matrix, that is W

R T = I4×4.
Therefore, the transformation matrix from the workpiece coordinate system—W to the tool center

coordinate system—T is

w
T T =



1 −θZx − θZy − θZz θYx + θYy + θYz x +
( ∆Xx1+∆Xx2

2

)
+ ∆Xy + ∆Xz − yθZx + zθYx + zθYy − ySxy − zSxz

θZx + θZy + θZz 1 −θXx − θXy − θXz y + ∆Yy + ∆Yx + ∆Yz − zθXx − zθXy − zSyz

−θYx − θYy − θYz θXx + θXy + θXz 1 z + ∆Zz + ∆Zx + ∆Zy + yθXx

0 0 0 1


(13)

and the error model of tool center for the DDGTMT is
σX =

(∆Xx1+∆Xx2
2

)
+ ∆Xy + ∆Xz − yθZx + zθYx + zθYy − ySxy − zSxz

σY = ∆Yy + ∆Yx + ∆Yz − zθXx − zθXy − zSyz

σZ = ∆Zz + ∆Zx + ∆Zy + yθXx

(14)

3. Error prediction of the DDGTMT

The x-axis, y-axis and z-axis positioning errors are measured by the optical scales, and the
straightness errors and angular errors are measured by an Agilent 5519 dual-frequency laser
interferometer (Agilent Technologies, Inc. United States). In the light of the ISO230-3 standard [34],
measuring the positioning errors of the machine tool should be carried out at the standard environment
temperature used in the experiment. The measurement strokes in X-direction, Y-direction, and
Z-direction are 2000 mm, 1000 mm, and 30 mm, with the measurement interval being 200 mm, 100 mm,
and 3 mm accordingly. The straightness errors are measured in the same condition. The starting point
of the measurement is set to the coordinate origin of the feed system. The model of the optical scales is
GVS608, which have a resolution of 0.1 µm.

The hardware integration diagram is shown in Figure 6. The control system of the machine tool
adopts a BECKHOFF system, in which the drivers and motors adopt AX5000 series drivers (Wales,
Germany) and AM8500 series AC servo motor (Beckhoff Automation GmbH & Co. KG, Verl, Germany),
I/O modules adopt EtherCAT bus terminal module, mainly using EK1100 series, EL1800 series (Beckhoff

Automation GmbH & Co. KG), EL2800 series, and EL5000 series components. The control program is
based on TwinCAT3 software (Beckhoff Automation GmbH & Co. KG).
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Figure 7 shows using an optical scale to measure positioning errors. The scale is fixed on
the machine tool and the transducer is on the moving block. The signal wire of the transducer is
connected to the EL5000 series terminal. EL5000 series terminal communicates with the motion
controller through EtherCAT so that the positioning errors can be obtained in real-time. Figure 8
shows that using a laser interferometer to measure the straightness errors and angle errors. Figure 8a
shows the measurement principle of straightness errors and angle errors. Figure 8b,c shows the
experimental setup of straightness error measurement. The measurement of angle errors is similar to
the measurement of straightness errors only by changing the corresponding measuring mirrors.
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The velocity range of motors in the X-direction, Y-direction is 1000 mm/min to 6000 mm/min,
respectively, with the Z-direction ranging from 500 mm/min to 3000 mm/min. The results error curves
are shown in Figures 9–11. Figure 9a,b shows x1-axis positioning error curves and x2-axis positioning
error curves, respectively. Figure 10a,b shows y-axis positioning error curves and z-axis positioning
error curves, respectively. Figure 11a,b presents ∆Yx and ∆Xy, respectively.



Processes 2020, 8, 748 10 of 25

Processes 2020, 8, x FOR PEER REVIEW 10 of 26 

 

Figure 7 shows using an optical scale to measure positioning errors. The scale is fixed on the 
machine tool and the transducer is on the moving block. The signal wire of the transducer is 
connected to the EL5000 series terminal. EL5000 series terminal communicates with the motion 
controller through EtherCAT so that the positioning errors can be obtained in real-time. Figure 8 
shows that using a laser interferometer to measure the straightness errors and angle errors. Figure 8a 
shows the measurement principle of straightness errors and angle errors. Figure 8b,c shows the 
experimental setup of straightness error measurement. The measurement of angle errors is similar to 
the measurement of straightness errors only by changing the corresponding measuring mirrors.  

 
Figure 7. Principle of optical scale measurement positioning errors. 

 
Figure 8. The experimental diagram of error measurement. (a) Principle of straightness errors and 
angle error measurement; (b) the experimental setup of straightness errors yXΔ  measurement; (c) 

the experimental setup of straightness errors xYΔ  measurement. 

The velocity range of motors in the X-direction, Y-direction is 1000 mm/min to 6000 mm/min, 
respectively, with the Z-direction ranging from 500 mm/min to 3000 mm/min. The results error 
curves are shown in Figures 9–11. Figure 9a,b shows x1-axis positioning error curves and x2-axis 
positioning error curves, respectively. Figure 10a,b shows y-axis positioning error curves and z-axis 
positioning error curves, respectively. Figure 11a,b presents xYΔ  and yXΔ , respectively. 

Figure 8. The experimental diagram of error measurement. (a) Principle of straightness errors and
angle error measurement; (b) the experimental setup of straightness errors ∆Xy measurement; (c) the
experimental setup of straightness errors ∆Yx measurement.Processes 2020, 8, x FOR PEER REVIEW 11 of 26 

 

 
Figure 9. Positioning error curves of 1xXΔ  and 2xXΔ . (a) x1-axis positioning error curve; (b) x2-axis 

positioning error curves. 

 
Figure 10. Positioning error curves of yYΔ  and zZΔ , (a) y-axis positioning error curves (b) z-axis 

positioning error curves. 

 
Figure 11. Straightness error curves of xYΔ  and yXΔ . (a) Straightness errors xYΔ  curves; (b) 

straightness errors yXΔ  curves. 

It can be seen from Figure 9 that the larger the velocities are, the larger the positioning errors of 
X-direction are. For example, at the position of 2000 mm, the x1-axis positioning errors of the velocity 
at 1000 mm/min and 6000 mm/min are −95.3 μm and −118.9 μm, namely. At the same velocity, the 
positioning errors of x2-axis are greater than that of x1-axis. Due to the dual-driving structure-
mechanical relation between the x1-axis and the x2-axis, there is a coupling relationship between the 
two axes. Because of the differences in the structural parameters and servo performance of the two 
axes, the loads and disturbances borne by the two axes are not identical, causing different forces on 
the two axes, and resulting in different positioning errors and between the two axes, then causing 

Figure 9. Positioning error curves of ∆Xx1 and ∆Xx2. (a) x1-axis positioning error curve; (b) x2-axis
positioning error curves.

Processes 2020, 8, x FOR PEER REVIEW 11 of 26 

 

 
Figure 9. Positioning error curves of 1xXΔ  and 2xXΔ . (a) x1-axis positioning error curve; (b) x2-axis 

positioning error curves. 

 
Figure 10. Positioning error curves of yYΔ  and zZΔ , (a) y-axis positioning error curves (b) z-axis 

positioning error curves. 

 
Figure 11. Straightness error curves of xYΔ  and yXΔ . (a) Straightness errors xYΔ  curves; (b) 

straightness errors yXΔ  curves. 

It can be seen from Figure 9 that the larger the velocities are, the larger the positioning errors of 
X-direction are. For example, at the position of 2000 mm, the x1-axis positioning errors of the velocity 
at 1000 mm/min and 6000 mm/min are −95.3 μm and −118.9 μm, namely. At the same velocity, the 
positioning errors of x2-axis are greater than that of x1-axis. Due to the dual-driving structure-
mechanical relation between the x1-axis and the x2-axis, there is a coupling relationship between the 
two axes. Because of the differences in the structural parameters and servo performance of the two 
axes, the loads and disturbances borne by the two axes are not identical, causing different forces on 
the two axes, and resulting in different positioning errors and between the two axes, then causing 

Figure 10. Positioning error curves of ∆Yy and ∆Zz, (a) y-axis positioning error curves (b) z-axis
positioning error curves.



Processes 2020, 8, 748 11 of 25

Processes 2020, 8, x FOR PEER REVIEW 11 of 26 

 

 
Figure 9. Positioning error curves of 1xXΔ  and 2xXΔ . (a) x1-axis positioning error curve; (b) x2-axis 

positioning error curves. 

 
Figure 10. Positioning error curves of yYΔ  and zZΔ , (a) y-axis positioning error curves (b) z-axis 

positioning error curves. 

 
Figure 11. Straightness error curves of xYΔ  and yXΔ . (a) Straightness errors xYΔ  curves; (b) 

straightness errors yXΔ  curves. 

It can be seen from Figure 9 that the larger the velocities are, the larger the positioning errors of 
X-direction are. For example, at the position of 2000 mm, the x1-axis positioning errors of the velocity 
at 1000 mm/min and 6000 mm/min are −95.3 μm and −118.9 μm, namely. At the same velocity, the 
positioning errors of x2-axis are greater than that of x1-axis. Due to the dual-driving structure-
mechanical relation between the x1-axis and the x2-axis, there is a coupling relationship between the 
two axes. Because of the differences in the structural parameters and servo performance of the two 
axes, the loads and disturbances borne by the two axes are not identical, causing different forces on 
the two axes, and resulting in different positioning errors and between the two axes, then causing 

Figure 11. Straightness error curves of ∆Yx and ∆Xy. (a) Straightness errors ∆Yx curves; (b) straightness
errors ∆Xy curves.

It can be seen from Figure 9 that the larger the velocities are, the larger the positioning errors
of X-direction are. For example, at the position of 2000 mm, the x1-axis positioning errors of the
velocity at 1000 mm/min and 6000 mm/min are −95.3 µm and −118.9 µm, namely. At the same
velocity, the positioning errors of x2-axis are greater than that of x1-axis. Due to the dual-driving
structure-mechanical relation between the x1-axis and the x2-axis, there is a coupling relationship
between the two axes. Because of the differences in the structural parameters and servo performance of
the two axes, the loads and disturbances borne by the two axes are not identical, causing different forces
on the two axes, and resulting in different positioning errors and between the two axes, then causing
non- synchronization errors. The positioning errors of the x1-axis and x2-axis increase nonlinearly with
the increasing of position commands, but trends of positioning errors of the y-axis are going up first
and then down nonlinearly. As shown in Figure 9a,b and Figure 10a that the velocity will affect the
positioning errors of the x-axis and y-axis. However, the overall change trends of straightness errors
and positioning errors are different. If the errors shown in the figures are greater than zero, it means
that actual position displacement is larger than the ideal position command. In the process of the tool
center moving along the y-axis as shown in Figure 10a, the positioning errors increase first and then
decrease, and the actual displacements of the tool center are greater than the ideal position commands.
Figure 10b shows that the fluctuation of Z-direction positioning errors is not obvious at different
velocities. The straightness errors are little affected by the velocities. The straightness errors change
with the enhancement of position command, but the range of straightness errors ∆Yx and straightness
errors ∆Xy are −11.5 µm to +13.7 µm and −16.4 µm to +21.2 µm, respectively. In addition, using the
least square method, fit the straightness errors ∆Yx and straightness errors ∆Xy in Figure 11a,b, and
their slopes are k∆Yx = −0.0427 µm/mm and k∆Xy = 0.1256 µm/mm, respectively. Sxy = 0.0825 µm/mm
can be obtained from the identification method of squareness errors as well as Syz = 0.0413 µm/mm
and Sxz = 0.0319 µm/mm. The angle errors of the machine tool are shown in Table 4.

Table 4. Angle errors of the machine tool.

θXx θYx θZx
0.0016 µm/mm 0.0024 µm/mm 0.0021 µm/mm

θXy θYy θZy
0.0026 µm/mm 0.0022 µm/mm 0.0014 µm/mm

θXz θYz θZz
0.0017 µm/mm 0.0021 µm/mm 0.0019 µm/mm

The error prediction data is obtained by using the Grey–Markov prediction method. Grey model
is an important part of Grey theory, which can get the forecast result simply and quickly with a small
amount of data. It has a great advantage when compared with the traditional forecast method, but the
model is relatively rough as well [30,31]. Markov method is introduced to optimize the prediction
results of the Grey model. Observing the trend of error curves, the polynomial regression method
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might be suitable for fitting prediction error data. The orthogonal polynomial regression method uses
a set of polynomials with orthogonal properties to solve various non-linear equations. It can solve the
regression problem that the relationship between variables is not clear [35]. Meanwhile, adopting the
orthogonal polynomials regression method is very useful and easy to program [14].

Take the x1-axis positioning errors as an example in the condition of x = 800 and v = 2000 mm/min
to introduce how to predict errors. The five groups of positioning error prediction data are got by using
10 groups of error data and the error prediction formula [30,36]. The prediction results are shown
in Table 5. It can be found that high prediction accuracy can be obtained by this prediction method.
The appendix shows detailed Grey–Markov method formula.

Table 5. Comparison between the predicted data of x1-axis positioning errors and the actual value.

Number Measured Value
(µm) em

Predicted Value
(µm) ep

Relative Residuals
r=|em−ep|/|em|

Accuracy

11 −32.1 −31.8 0.93% 99.07%
12 −32.4 −32.0 1.20% 98.80%
13 −32.2 −32.5 0.93% 99.07%
14 −33.5 −33.2 0.90% 99.10%
15 −33.6 −33.8 0.60% 99.40%

The predicted positioning errors—σi in the x1-axis are given as an example to introduce how to fit
prediction errors. When the velocity is 2000 mm/min, the results are shown in Table 6 (the orthogonal
polynomial component number n = 11; the calculation expressions of the value of Tables 6 and 7 can be
found in reference [35] or Appendix A Formulas (A15)–(A21).

Table 6. Calculation of orthogonal polynomials.

n φ1 φ2 5φ3/6 φ4/12 φ5/40 σi (µm) σ2
i

1 −5 15 −30 6 −3 0.0 0.00
2 −4 6 6 −6 6 −3.5 12.25
3 −3 −1 22 −6 1 −9.2 84.64
4 −2 −6 23 −1 −4 −20.7 428.49
5 −1 −9 14 4 −4 −31.8 1011.24
6 0 −10 0 6 0 −42.4 1797.76
7 1 −9 −14 4 4 −53.5 2862.25
8 2 −6 −23 −1 4 −61.9 3831.61
9 3 −1 −22 −6 −1 −71.7 5140.89
10 4 6 −6 −6 −6 −81.2 6593.44
11 5 15 30 6 3 −95.3 9082.09
B j −1078.9 −169.5 233.6 −91.2 −8.8

∑
σi = −471.2, i = 1, 2, · · · , n

S j 110 858 4290 286 156
∑
σ2

i = 30844.66, i = 1, 2, · · · , n
β j = B j/S j −9.808 −0.198 0.054 −0.319 −0.056 β0 = −42.84
p j = B2

j /S j 10582.05 33.49 12.72 29.08 0.49

Table 7. Analysis of variance of orthogonal polynomials.

Source of Variance Sum of Square Freedom Mean Square F Value

regression


φ1(x)
φ2(x)
φ3(x)
φ4(x)
φ5(x)

10667.77


10592.47

33.12
12.16
29.13
0.46

5


1
1
1
1
1

10582.05
33.49
12.72
29.08
0.49

F1 = 22664.04
F2 = 71.72
F3 = 27.24
F4 = 62.29
F5 = 1.06

Residual 2.33 5 0.46
Sum 10660.17 10
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Because of F0.1(1, 5) = 4.06, F0.05(1, 5) = 6.608, and F0.01(1, 5) = 16.3, it can be seen from
Table 7 that the first order is dominant; the second, third, and fourth order are significant, but the fifth
order is insignificant. Eliminating the fifth order to revise the regression equation yields Equation (15).

∆Xx1 = −42.84− 9.81φ1(x) − 0.198φ2(x) + 0.054φ3(x) ×
5
6
− 0.32φ4(x) ×

1
12

(15)

Substituting φ1(x), φ2(x), φ3(x) and φ4(x) into Equation (15) yields

∆Xx1= −42.84− 9.81× (x− 6) − 0.198× [(x− 6)2
−

112
− 1

12
]

+0.054×
[
(x− 6)3

−
3× 112

− 7
20

(x− 6)
]
×

5
6
− 0.32×

(x− 6)4
−

3× 112
− 13

14
(x− 6)2 +

3
(
112
− 1

)(
112
− 9

)
560

× 1
12

(16)

Substituting x = (x + 200)/200 into Equation (16) yields

∆Xx1 = −1.667× 10−11x4 + 7.229× 10−8x3
− 0.11× 10−3x2 + 0.007x− 0.285 (17)

Figure 12 shows the fitting curve of x1-axis prediction positioning errors. It can be seen from
the residual of the fitting curve that the residual interval is (−0.96, 0.91) which indicates a high
fitting accuracy.
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Using the same method, the fitting curves of x2-axis and y-axis prediction positioning errors can
be calculated as

∆Xx2 = −1.406× 10−11x4 + 6.646× 10−8x3
− 9.719× 1051x2

− 0.01102x− 0.1 (18)

∆Yy = −7.667× 10−10y4 + 1.367× 10−6y3
− 0.7583× 10−3y2 + 0.197y + 0.65 (19)

The expression of predicted straightness errors can be obtained by the same principle, as follows.

∆Yx = −6.937× 10−14x5 + 3.823× 10−10x4
− 7.191× 10−7x3 + 5.138× 10−4x2

− 0.096x− 4.072 (20)

∆Zx = −3.5× 10−11x4 + 1.304× 10−7x3
− 1.127× 10−4x2

− 0.018x + 15.741 (21)

∆Xy = 5.59× 10−14y5 + 5.811× 10−10y4
− 1.299× 10−6y3 + 6.878× 10−4y2

− 0.029y− 12.324 (22)

∆Zy = 4.357× 10−13y5
− 1.654× 10−9y4 + 2.056× 10−6y3

− 9.03× 10−4y2 + 0.06y + 12.38 (23)

∆Xz = −2.996× 10−6z5 + 3.176× 10−4z4
− 0.011z3 + 0.098z2 + 0.715z− 4.841 (24)

∆Yz = −1.187× 10−8z5 + 1.238× 10−4z4
− 0.007z3 + 0.072z2 + 1.092z− 6.19 (25)



Processes 2020, 8, 748 14 of 25

4. Error Compensation of the DDGTMT

To validate the validity and efficiency of the proposed method, error compensation experiments
contain the traditional error compensation method and the method proposed in this paper.
The traditional error compensation method refers to full/semi closed-loop error compensation method
that uses detection equipment, i.e., motor encoder or optical scale to obtain the position feedback signal,
compares the error signal with the position signal according to the error compensation algorithm
in the controller and then adjusts the position of the moving parts by the controller [37,38]. In this
article, the traditional error compensation method is full closed-loop error compensation, which is to
use the displacement signal measured by the optic scale as the feedback signal of the position loop,
and process it in the controller to get the error compensation value and send it to the motors. For
the DDGTMT, the accuracy of dual-driving axes has a heavy effect on the volumetric positioning
accuracy of the tool center. Therefore, the positioning accuracy and volumetric positioning accuracy
are used to measure the effectiveness of the error compensation method proposed in this paper [39,40].
Two kinds of error compensation experiments are carried out. The first is the error compensation
of the tool center movement along X-direction and Y-direction respectively, and the second is the
error compensation of the tool center space motion along the X-direction, Y-direction and Z-direction.
As seen in Section 3, the velocity will affect the positioning error of the machine tool; therefore, two
kinds of error compensation experiments are carried out at different velocities, whose purpose is to test
that the error compensation method proposed in the paper can improve the positioning accuracy and
volume accuracy of the DDGTMT at different velocities. The virtual axis-electronic cam method is used
for compensation. The principle of the virtual axis-electronic cam error compensation method is shown
in Figure 13. The measurement error data are acquired by measuring equipment such as positioning
errors coming from the optical scale real-time feedback, angle errors, and straightness errors coming
from the measurement of laser interferometer and the squareness errors coming from identification.
The error compensation curves are obtained based on the method described above. The principle is to
store the error fitting curve in the form of an electronic cam table in the motion controller so that the
motion controller will calculate the modified position commands of the motors automatically by using
an electronic cam table. Then, the motors execute the modified position commands to complete the
error compensation.
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As shown in Figure 14, according to the principle of virtual axis-electronic cam error compensation,
the electronic cam master axis—Master X, Master Y, and Master Z, electronic cam slave axis—Slave X1,
Slave X2, Slave Y, and Slave Z are established. Draw the electronic cam table in the controller, couple
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the virtual axis with Master X, Master Y, and Master Z, couple the Slave X1 with the motor X1, couple
the Slave X2 with the motor X2, couple the Slave Y with the motor Y, and couple the Slave Z with the
motor Z.Processes 2020, 8, x FOR PEER REVIEW 16 of 26 
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Figure 14. Creating virtual master axis, electronic cam slave axis and cam table.

In the experiment, the TwinCAT3 software based on the windows platform coming with the
control systems is used for real-time control. The software is integrated with Visual Studio and supports
the mixed programming of PLC and C++ language conforming to the IEC61131 standard. The servo
modules communicate via the high-performance BECKHOFF EtherCAT bus (Beckhoff Automation
GmbH & Co. KG). First set up the virtual axis and create the master electronic cam axis. Then, create
the slave electronic cam axis and draw the electronic cam table. The error data of optical scales is
stored in the PLC variable through the I/O module. Based on the Visual Studio platform, the error
compensation algorithm is written in C++ language in software TwinCAT 3 (Beckhoff Automation
GmbH & Co. KG) to get the error compensation curve and input it into the cam table through ADS
communication [41]. The resulting cam table is shown in Figure 14.

In the experiment process, the servo parameters of x1-axis and x2-axis motors are shown in
Table 8. The positioning errors of the tool center are measured by the laser interferometer to verify
the efficiency of the non-delay error compensation. In the first experiment, the tool center moves
along X-direction and Y-direction, respectively, so z = 0, then substitute into Equation (14), yield
σX = (∆Xx1 +∆Xx2)/2+∆Xy +∆Xz and σY = ∆Yy +∆Yx +∆Yz. Figure 15a shows the experimental
schematic diagram, and Figure 15b,c shows error compensation when the tool center moves along
Y-direction and X-direction, respectively.

Table 8. Servo parameters of x1-axis and x2-axis motors.

Control Loops
Servo Motors

x1-axis x2-axis

Position control Kv = 1.0(1000/min) Kv = 1.1(1000/min)

Velocity control Kp = 1.41A/(rad/s) Kp = 1.43A/(rad/s)
Tn = 8ms Tn = 8ms
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In the error compensation of tool center space motion along the X-direction, Y-direction and
Z-direction, the feeding velocities are 1000 mm/min, 2000 mm/min and 3000 min/min, respectively,
to test the error compensation method usefulness at different velocities. The tool center moves from
the starting position X0 Y0 Z0 to the position X2000 Y1000 Z30, and the end-point error results are
recorded with optical scales in directions of X, Y, and Z. The Figure 16 shows space motion error
compensation, and the data fed back by optical scales directly outputs the error value through PLC
programming. Figure 17 shows that uncompensated error results of the tool center can be derived
by using a dual-frequency laser interferometer under different velocities. Figures 18 and 19 are the
positioning error results of tool center compensation after using the traditional method and non-delay
method at different velocities, respectively. Table 9 shows the space motion error compensation results
of the traditional compensation method and the non-delay error compensation method proposed in
this paper.
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Table 9. Space motion error compensation results.

Velocity Axis No
Compensation

Traditional
Method etr

Non-Delay
Method enon

Improvement Result
η=|etr−enon|/|etr|

V = 1000 mm/min

x1-axis −92.1 µm −7.5 µm −4.2 µm 44.0%
x2-axis −98.3 µm −10.1 µm −7.3 µm 27.7%
y-axis 19.9 µm 8.4 µm 5.1 µm 39.3%
z-axis −12.3 µm −4.3 µm −2.6 µm 39.5%

V = 2000 mm/min

x1-axis −96.6 µm −11.5 µm −6.7 µm 41.7%
x2-axis −101.3 µm −13.3 µm −9.2 µm 30.8%
y-axis 25.4 µm 12.1 µm 7.3 µm 39.7%
z-axis −14.6 µm −6.9 µm −4.5 µm 34.8%

V = 3000 mm/min

x1-axis −101.9 µm −16.3 µm −12.6 µm 22.7%
x2-axis −110.4 µm −11.4 µm −7.8 µm 31.6%
y-axis 23.4 µm 13.8 µm 9.7 µm 29.7%
z-axis −14.2 µm −8.4 µm −5.9 µm 29.8%

5. Discussion

Figures 17 and 10a are the uncompensated error results of the tool center moving along X-direction
and Y-direction at velocities from 1000 mm/min to 6000 mm/min, respectively. It can be seen from
Figure 17 that the errors of the tool center along the X-direction increase nonlinearly with the
position commands, and the tendency is similar to that of the positioning errors of x1-axis and x2-axis.
In general, the greater the velocities are, the greater the errors are. Under the same velocities and
position commands, the errors of the tool center are within the range of the x1-axis and x2-axis
positioning errors. Figure 18a,b shows the error compensation results of the traditional method of
error compensation when the tool center moves at speeds from 1000 mm/min to 6000 mm/min in the
X-direction and Y-direction, respectively. Figure 19a,b shows the error compensation results of the tool
center moving from 1000 mm/min to 6000 mm/min in the X-direction and Y-direction, respectively,
using non-delayed error compensation method. From Figures 18 and 19, it can be seen that the errors
decrease significantly after the compensation of both methods. For example, the comparison between
Figures 19a and 17 shows that when the tool center moves along X-direction, the tool center positioning
errors are reduced significantly from more than 100 µm to less than 3 µm. In addition, the comparison
between Figures 19b and 10a shows that the tool center positioning errors decrease from (0 µm, 80 µm]
to (−2 µm, 2 µm] when tool center moves along the y-axis, and the positioning errors do not increase
first and then decrease after compensation. As Figures 18 and 19 show that the influence of velocities
on positioning errors reduces after compensation. However, when adopting the traditional error
compensation method, the compensation result is not ideal due to the delay of error compensation.
Moreover, the linear optical scale in the traditional method can only measure the positioning error but
not straightness and angle errors [38]. Besides, the compensation fluctuates obviously, ranging from
−1 µm to 6 µm, whose range is about twice that of the method proposed, so the compensation effect is
unsatisfactory. As shown in Table 9 that the effect of space motion error compensation is worse than
that of single-axis movement error compensation, because space motion requires the x-axis, y-axis,
and z-axis to be coupled with each other and produces complex error factors. However, the effect of
non-delay error compensation is better than that of the traditional error compensation method, and
the maximum improvement of error compensation can reach 44.0%. The space motion experiment
results suggest that the non-delay error compensation method can improve the volumetric positioning
accuracy of machine tools preferably. Hence, it can be found that the non-delay error compensation
method greatly improves DDGTMT feed accuracy.

6. Conclusions

This research proposes an error compensation method for machine tools aiming to improve
accuracy. A non-delay error compensation method is proposed for the DDGTMT. The essence of
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non-delay error compensation is using the predicted error data to modify the position command
in the motion controller, so that the error compensation is completed before executing the position
command. Firstly, the geometric error model of the DDGTMT is obtained by using the HTM. Based
on the measurement data, the error prediction data is obtained by using the Grey–Markov method.
Then, the orthogonal polynomial regression method is used to fit the error prediction data. Finally, the
virtual axis-electronic cam compensation method is employed to compensate the geometric errors.
The advantages and efficiency of the non-delay error compensation method proposed are verified
by experiments.

In the paper, the error prediction and compensation algorithm of the DDGTMT are developed,
and the error compensation of the dual-axis improves the synchronization performance of dual-driving
equipment. Experimental results show that the prediction and compensation of geometric errors are
realized, and the positioning accuracy of the DDGTMT is significantly improved from within 100 µm
to within 3 µm at different velocity. Simultaneously, whether the machine tool moves in a single
direction or space, the effect of non-delay error compensation is better than that of the traditional error
compensation method in the aspect of improving volumetric positioning accuracy of dual-driving
machine tools.
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Appendix A Appendix

The implication of main parameters in the Appendix.
Notation Implication
x(0) Measurement error data
ni Number of samples
x̂(0)(ni) Grey prediction results
Qim, Q jm State interval
P(km) Transition probability matrix from state Qim to state Q jm for km-steps
V(0), V(km) State vectors
Y(ni) Modified prediction value
σr Errors corresponding to motor instructions
j Order of polynomial
β0 Regression constant
β1 · · · β j Regression coefficient
n Number of measurement points

Grey–Markov Method Formula
Assuming that measurement error data x(0) with ni samples is expressed as

x(0) = [x(0)(1), x(0)(2), · · · · · · x(0)(ni)], ni = 1, 2, . . . (A1)

Where the subscript (0) represents the original data.x(0) is a non-negative sequence of error data,
if the original data x(0) is negative, it needs to be replaced.

Using the Formula (A2) x(1) can be generated by the accumulation of x(0).

x(1)(ki) =
ni∑

ki = 1
x(0)(ki) ki = 1, 2, · · · ni (A2)

x(1) = [x(1)(1), x(1)(2), · · · · · · x(1)(ni)] (A3)
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A differential equation can be established as follows

dx(1)

dt
+ agx(1) = ug (A4)

where ag and ug are the parameters to be identified. Assuming that â = (ag, ug)
T is an estimated

vector.
â = (ag, ug)

T = (Bg
TBg)

−1
Bg

TYN (A5)

Bg =


−

1
2 [x

(1)(1) + x(1)(2)] 1
−

1
2 [x

(1)(2) + x(1)(3)] 1
...

−
1
2 [x

(1)(ni − 1) + x(1)(ni)] 1

 (A6)

YN = [x(0)(2), x(0)(3), · · · x(0)(ni)]
T

(A7)

The ag and ug are calculated by the Formulas (A5)–(A7) and substituted into Formula (A4) to obtain

x̂(1)(ni) = [x(0)(1) −
ug

ag
]e−ag(ni−1) +

ug

ag
(A8)

The Grey prediction results of the error data obtained from Formula (A8) are{
x̂(0)(1) = x(1)(1)
x̂(0)(ni) = (1− eag)[x(0)(1) − ug/ag]e−ag(ni−1) (A9)

In order to ensure the validity of the Markov method and the correct Markov prediction process, it
is necessary to test the Grey prediction results. If the results are correct, the x̂(0)(ni) will be divided into
several state intervals, and the state transition probability matrix will be constructed, then the middle
value of the state interval will be taken, and the high-precision prediction value will be obtained.

The residual of the Grey error prediction value and the error actual value are divided into several
intervals to form the corresponding state intervals, and any state interval is expressed as

Qim = [Q1im, Q2im] im = 1, 2, · · ·
Q1im = x̂(0)(ni) + Aim
Q2im = x̂(0)(ni) + Bim

(A10)

where Aim and Bim are the state interval width, whose value depends on the data.
The state transition matrix P(km) can be solved by the Formula (A11)

P(km)
im, jm = Mim, jm(km)/Mim im, jm = 1, 2, · · · (A11)

where P(km)
im, jm is the transition probability from state Qim to state Q jm for km-steps. Mim, jm(km) is the

number of original data of state Qim transferred from the state Q jm for km-steps. Mim is the number of
original data in Qim.

The state transition probability matrix of km-steps is as follows

P(km) =


P11

(km) P12
(km)

· · · P1, jm
(km)

P21
(km) P22

(km)
· · · P2, jm

(km)

...
... · · ·

...
Pim,1

(km) Pim,2
(km)

· · · Pim, jm
(km)

 (A12)
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If the initial vector of the initial state Qim is V(0), after km-steps transformation, the state vector
V(km) is

V(km) = V(0)P(km) (A13)

According to the above probability transition matrix, when the state of the current moment
is known, the state of the next moment can be estimated. After the state Qd of the next moment
is determined, the change interval [Q1d, Q2d] of the relative predictive value of the next moment is
determined. Then, the middle value of the interval is taken to modify the Gray prediction result, that
is, the modified prediction value is

Y(ni) = (Q1d + Q2d)/2 = x̂(0)(ni) + (Aim + Bim)/2 (A14)

The residual value of predicted modified value and the measured value is compared with the
non-modified residual value. If the residual value is small, the predicted modified value meets the
requirements. Figure A1 shows the flow chart of the Grey–Markov method error prediction.

Processes 2020, 8, x FOR PEER REVIEW 22 of 26 

 

The state transition probability matrix of km-steps is as follows 
( ) ( ) ( )

11 12 1,
( ) ( ) ( )

21 22 2,( )

( ) ( ) ( )
,1 ,2 ,

km km km
jm

km km km
jmkm

km km km
im im im jm

P P P
P P P

P

P P P

 
 
 =  
 
  




   


 (A12) 

If the initial vector of the initial state imQ  is (0)V , after km-steps transformation, the state vector 
( )kmV  is 

( ) (0) ( )km kmV V P=  (A13) 

According to the above probability transition matrix, when the state of the current moment is 
known, the state of the next moment can be estimated. After the state dQ  of the next moment is 
determined, the change interval 1 2[ , ]d dQ Q  of the relative predictive value of the next moment is 
determined. Then, the middle value of the interval is taken to modify the Gray prediction result, that 
is, the modified prediction value is 

( 0 )
1 2 ˆ( ) ( ) 2 ( ) ( ) 2i d d i im imY n Q Q x n A B= + = + +  (A14) 

The residual value of predicted modified value and the measured value is compared with the 
non-modified residual value. If the residual value is small, the predicted modified value meets the 
requirements. Figure A1 shows the flow chart of the Grey–Markov method error prediction. 

 
Figure A1. Flow chart of Grey–Markov method error prediction. 

Orthogonal Polynomial Regression Method Formula  
According to the orthogonal polynomial regression method, errors compensation can be 

obtained 
2

0 1 2 ( 1, 2,3,...)j
r jX X X jσ β β β β= + + + + =  (A15) 

where rσ  represents errors corresponding to motor position commands-X, j is the order of the 
polynomial, 0β  represents regression constant, 1 jβ β  are the regression coefficient, and their 
calculation formula can be found in the Formula (A21). 

For the convenience of subsequent calculation, let 2
1 2( ) ( )X x X xφ φ= =，  and ( )j

jX xφ= , then 
Equation (A15) becomes 

Figure A1. Flow chart of Grey–Markov method error prediction.

Orthogonal Polynomial Regression Method Formula
According to the orthogonal polynomial regression method, errors compensation can be obtained

σr = β0 + β1X + β2X2 + · · ·+ β jX j ( j = 1, 2, 3, . . .) (A15)

whereσr represents errors corresponding to motor position commands-X, j is the order of the polynomial,
β0 represents regression constant, β1 · · · β j are the regression coefficient, and their calculation formula
can be found in the Formula (A21).

For the convenience of subsequent calculation, let X = φ1(x), X2 = φ2(x) and X j = φ j(x),
then Equation (A15) becomes

σr = β0 + β1φ1(x) + β2φ2(x) + · · ·+ β jφ j(x) (A16)
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φ j(x) can be calculated by the Formula (A17)

φ1(x) = x− x
φ2(x) = (x− x)2

−
n2
−1

12
φ3(x) = (x− x)3

−
3n2
−7

20 (x− x)

φ4(x) = (x− x)4
−

3n2
−13

14 (x− x)2 +
3(n2
−1)(n2

−9)
560

· · ·

φp+1(x) = φ1(x)φp(x) −
p2(n2

−p2)

4(4p2−1) φp−1(x)

(A17)

where n is the number of measurement points, x = (1 + 2 + 3 + · · ·+ n)/n, p = 1, 2, 3 · · · .
As can be seen from above, there is orthogonality between the variables, then

∑
φ2

j(x) , 0 j = 1, 2, · · ·∑
φα(x)φβ(x) = 0 α, β = 1, 2, · · · ,α , β

(A18)

then 

lαβ =
∑
[φα(x) −ϕα(x)]

[
φβ(x) −ϕβ(x)

]
=

∑
φα(x)φβ(x) = 0

(α, β = 1, 2, · · · ,α , β)
lαα =

∑
[φα(x) −ϕα(x)]

2 =
∑
φα(x)

2 (α = 1, 2, · · · )

l jy =
∑[
φ j(x) −ϕ j(x)

]
[σr − σr] =

∑
φ j(x)σr ( j = 1, 2, · · · )

ϕα(x) = 1
n
∑
φα(x) = 0 (α = 1, 2, · · · )

(A19)

then the normal equations are 

∑
φ2

1(xi)β1 =
∑
φ1(x)σri∑

φ2
2(xi)β2 =

∑
φ2(x)σri

· · ·∑
φ2

j (xi)βr =
∑
φ j(x)σri

(A20)

The regression coefficient is 
β0 = 1

n
∑
σri

β j =

∑
φ j(xi)σri∑
φ2

j (xi)

i = 1, 2, · · · n (A21)

From the above formulas, the regression equation between the motor position commands and the
geometric errors can be established, then the significance of the regression equation and the regression
coefficient can be tested. The test method can be based on the formulas in Table A1 of the orthogonal
polynomial regression variance analysis. If the higher-order items are not significant, they can be
eliminated. If the accuracy of the regression equation is not satisfactory enough, the higher-order terms
can be added, and the regression coefficients that have been calculated need not be recalculated.
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Table A1. Analysis of variance of orthogonal polynomials.

Source of Variance Sum of Squares Freedom Mean Square The F Value

regression


φ1(x)
φ2(x)
...
φ j(x)

SR


β1B1
β2B2
...
β jB j


1
1
...
1

β1B1
β2B2
...
β jB j

F1 = β1B1/δ2

F2 = β2B2/δ2

...
F j = β jB j/δ2

Residual Q = lyy −
∑
β jB j n − j − 1 δ2 = Q

n− j−1
Sum lyy =

∑
σ2

r −
1
n (

∑
σr)

2 [35] n − 1

In Table A1, lyy represents the sum of the squares of the total deviation, SR represents the sum of
the squares of the regression differences.
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