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Abstract: Condensate-liquid accumulation in the vicinity of a well is known to curtail gas production up to
80%. Numerous approaches are employed to mitigate condensate banking and improve gas productivity.
In this work, a field-scale simulation is presented for condensate damage removal in tight reservoirs
using a thermochemical treatment strategy where heat and pressure are generated in situ. The impact of
thermochemical injection on the gas recovery is also elucidated. A compositional simulator was utilized
to assess the effectiveness of the suggested treatment on reducing the condensate damage and, thereby,
improve the gas recovery. Compared to the base case, represented by an industry-standard gas injection
strategy, simulation studies suggest a significantly improved hydrocarbon recovery performance upon
thermochemical treatment of the near-wellbore zone. For the scenarios investigated, the application of
thermochemicals allowed for an extension of the production plateau from 104 days, as determined for
the reference gas injection case, to 683 days. This represents a 6.5-fold increase in production plateau
time, boosting gas recovery from 25 to 89%. The improved recovery is attributed to the reduction of
both capillary pressure and condensate viscosity. The presented work is crucial for designing and
implementing thermochemical treatments in tight-gas reservoirs.

Keywords: tight reservoirs; gas recovery; thermochemical treatment; field-scale simulation

1. Introduction

Condensate banking constitutes a common challenge for hydrocarbon production from tight-gas
reservoirs [1–3]. The reduction of reservoir pressure below dew point gives rise to condensate dropout [4–6].
Liquid accumulates near the wellbore, potentially reducing gas production by up to 80% [2,7,8].
Several methods are employed to remove condensate damage and restore gas productivity [3,9].
Gas injection and hydraulic fracturing are among the most effective treatments in mitigating condensate
banking [10–12].

Generally, gas injection aims to either increase or maintain pressure in proximity of the wellbore
above dew-point pressure [10,13,14], allowing for the revaporization of the condensate liquid into
the gas phase [4,15,16]. Usually, gas injection is initiated every six to nine months depending on
specific reservoir conditions [3,9]. Treatment involves the injection of hydrocarbon gases like methane,
or nonhydrocarbon gases like nitrogen or carbon dioxide, in combination with a cyclic intervention
approach [10,12,16–18]. The administration of carbon dioxide in a huff-and-puff configuration in
particular shows great potential in mitigating condensate banking owing to the ability of CO2 gas to
reduce the dew-point pressure of condensates, hence counteracting liquid dropout [12,19,20]. Notably,
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though, this procedure needs to be repeated about every 6 to 9 months to maintain its effectiveness,
giving rise to logistical challenges associated with CO2 procurement, transportation, and on-site
handling challenging its economic viability [3,9,21].

Alternatively, hydraulic fracturing may be used to mitigate condensate banking by creating longer
conductive paths between wellbore and formation [9,11,22]. Fractures induce help to reduce pressure
drop, and delay condensate dropout [11,23]. However, once reservoir pressure drops below dew
point as a result of the ongoing depletion process, liquids precipitate and accumulate within fractures,
and then impede gas flow towards the production well [3,9]. Solvent or gas injection may be used to
vaporize the liquids and re-establish fracture conductivity [11,23].

Evidently, gas injection, hydraulic fracturing, or a combination thereof constitute pragmatic
approaches to mitigating condensate banking. However, gas injection needs to be executed on
a frequent basis to maintain its efficacy. Hydraulic fracturing only delays the inevitable development
of a condensate bank. Hence, at some point, gas injection may be required to become part of
the reservoir-management process. Needless to say, both gas-injection and hydraulic-fracturing
treatments are of great concern with respect to project economics [3,9]. Therefore, in this paper, an
innovative condensate-treatment concept based on thermochemical fluids (TCFs) is introduced [3,24–27].
Exploiting enthalpy associated with the thermochemical reaction allows for remarkable increases
in pressure and temperature to be realized downhole [28,29]. The suggested treatment exhibits an
attractive performance profile that can combat condensate-banking-related challenges for various
types of gas reservoirs associated with carbonate, sandstone, and shale formations [27,30].

Figure 1 illustrates the concept of thermochemical injection for removing the condensate bank.
Initially, during gas production, condensate liquid drops out and accumulates in the vicinity of the
wellbore, thereby restricting gas flow towards the producing well. The injection of TCFs into the
condensate-banking zone helps to reduce fluid viscosity and improve condensate mobility. Furthermore,
in situ generated pressure and temperature increase associated with the thermochemical reaction provide
additional driving force, enhancing the flow of the condensate liquid into the well. Several fluids, such as
magnesium sulfate, sodium nitrate, and ammonium chloride solutions, may be used. Importantly,
compared to conventional methods, the outlined process yielded higher thermal efficiency and lower
energy loss compared to those of conventional gas-injection methods on an equimolar basis.
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Given successful lab trials [24–27,30], this paper for the first time presents a field-scale simulation
based on experimentally obtained data for condensate removal from gas reservoirs by means of
a thermochemical treatment strategy. In addition, sensitivity analysis was conducted to study the
impact of different wellbore conditions on gas-production rate. Furthermore, the relationship between
condensate-bank development, and gas-production rate and flowing bottom-hole pressure was
investigated. Lastly, the effectiveness of thermochemical treatments reflected in associated production
profiles was contrasted with a conventional gas-injection approach.

2. Methodology

2.1. Process Description

The described thermochemical process constitutes the injection of two chemicals that mutually
react under downhole conditions to generate heat and nitrogen, thereby significantly increasing
pressure and temperature. The induced temperatures and pressures can yield changes in the excess of
533 K (500 ◦F) and 35 MPa (5000 psi), respectively, depending on injected TCF volume and chemical
concentrations. In this work, two aqueous solutions (sodium nitrite NaNO2 and ammonium chloride
NH4Cl) were used as thermochemical fluids. The thermochemical reaction is given by the following
equation [24,29]:

NH4Cl + NaNO2 → NaCl + 2H2O + N2 + ∆H (heat) (1)

The reaction could be accelerated by increasing temperature and/or lowering system pH below 4.
During the reaction, the produced nitrogen gas (N2) led to a rise in pressure, and generated heat (∆H)
resulted in an increase in temperature. Consequently, TCF injection into a condensate region supported
the revaporization of a portion of the condensate liquid, and the reduction of both condensate viscosity
and density. Furthermore, in field applications, the chemical reaction could be triggered inside the
reservoir formations to minimize risks associated with chemical reaction. Thermochemical fluids can
be injected into the formation around the wellbore; then, acidic fluid is injected to lower pH, it can
activate exothermic reactions within the reservoir formation.

During the experiment investigation, heat and pressure were monitored, and condensate properties
were measured before and after introducing TCFs. Figure 2 displays the experiment configuration
used to monitor the process. The setup consisted of a high-pressure and high-temperature (HPHT)
reactor, pressure and temperature sensors, a heater, an N2 cylinder, and a data-acquisition system.
Thermochemical fluids were injected into the HPHT reactor, and no rock sample was used in order to
minimize the uncertainty associated with rock composition. Subsequently, the reaction was triggered
by acetic acid. A pressure source (N2 cylinder) was utilized to study the reaction behavior for various
pressures. High-accuracy sensors in combination with a data logging system were used to record the
temperature and pressure profiles as a function of time.

Figure 3 summarizes the recorded temperature profiles resulting from the reaction at different
initial system temperatures of 292, 314, 328, and 347 K (65, 105, 130, and 165 ◦F). For all temperatures,
the reaction increased the in situ temperature by around 333.15 K (140 ◦F). Expectedly, for higher initial
temperatures, temperature peaks were reached more quickly compared to lower initial-temperature
conditions. The conversion of reactants as a function of time for various initial temperatures is plotted
in Figure 4. The time to reach the peak temperature decreased from 1000 s, for an initial temperature of
292 K (65 ◦F), to around 320 s, for an operating temperature of about 347 K (165 ◦F).
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Figure 2. Experiment setup for monitoring thermochemical process.
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Figure 3. Temperature profiles for different initial vessel temperatures.

In addition, enthalpy impact on condensate liquids was investigated. Figures 5 and 6 illustrate the
temperature and pressure profiles for two selected cases, only TCFs and a thermochemical-condensate
system. Higher temperatures were recorded for the pure TCF system, while introducing the condensate
liquid into the TCF system led to a reduction of the temperature, measured by around 7.4 K (11 ◦F) due
to the added thermal capacity of the condensate. The condensate properties were changed considerably
after the chemical reaction occurred. Rheological measurements substantiated condensate-viscosity
reduction from 0.94 to 0.57 cP after TCF injection, amounting to a 39% decrease. Upon injection,
generated pressure increased the gradient to push the condensate liquid towards the producing
well. Importantly, the pressure generated multiple fractures (Figure 7) in the treated formations,
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thereby increasing pore-throat size and reducing capillary pressure by up to 51% [25]. The reduction
in capillary pressure due to the creation of multiple fractures can be explained by the following
equation [25,31]:

Pc =
2σcosθ

r
, (2)

where Pc is capillary pressure, σ is interfacial tension, θ is contact angle, and r is pore-throat size.Processes 2020, 8, x FOR PEER REVIEW 5 of 19 
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Figure 5. Temperature profiles for pure thermochemical-fluid (TCF) and TCF-condensate system.
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2.2. Reservoir Model

An advanced equation-of-state (EoS) compositional and unconventional simulator (GEM) from
Computer Modelling Group (CMG) software was utilized. The used data were collected from the
available literature [32–34]. Ayub and Ramadan [12] examined reservoirs with respect to the areal
extensions and associated drainage areas in the vicinity of the gas-production well. They reported
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that a 1 by 1 km sector could accurately represent the actual behavior of pressure depletion for
a gas-condensate reservoir. Consequently, the reservoir was built around a Cartesian grid covering
a square area of 1 km2. Figure 8 provides an overview of the reservoir model used in this work.
The initial reservoir conditions are listed in Table 1. Vertical heterogeneity is captured by defining
four layers with permeabilities ranging from 5 to 315 mD. On the basis of field data reported by
Whitson and Kuntadi [34], reservoir porosity was given with 0.13, initial reservoir pressure with
48.3 MPa (7000 psi), temperature with 408 K (275 ◦F), and rock compressibility with 3.5e–8 1/Mpa
(5.0e–6 1/psia). A single well was completed in the model center, and production simulated for a total
of five years. Two wellbore constraints were applied with minimal flowing bottom-hole pressure of
10.4 MPa (1500 psi) and maximal flow rate of 30 MMSCFD.Processes 2020, 8, x FOR PEER REVIEW 8 of 19 
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Figure 8. Three-dimensional view of rectangular reservoir model used in simulation.

Table 1. Initial reservoir conditions.

Parameter Value

Total bulk reservoir volume (ft3) 9.00× 108

Total pore volume (ft3) 1.17× 108

Total hydrocarbon pore volume (ft3) 9.83× 107

Original oil in place, OOIP (STB) 1.79× 106

Original gas in place, OGIP (SCF) 2.77× 1010

In addition, relative-permeability curves were generated using available correlations in CMG
software based on Corey’s model [35]. Figures 9 and 10 summarize the relative-permeability curves
used in this work, respectively.
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2.3. Fluid Model

The fluid-property-characterization tool (WinProp) was employed to develop the EoS model on
the basis of the Peng–Robinson framework using the fluid composition listed in Table 2. Figure 11
details the resulting two-phase envelope. During production, reservoir pressure decreased entering
the two-phase region, allowing for gas and liquid condensate to coexist. Generally, it can be assumed
that the gas is produced under isothermal conditions. Heat loss from the reservoir was considered
negligible due to the poor thermal conductivity of the reservoir rock and the insulating nature of the
overburden formations. Importantly, constant composition expansion (CCE) measurements were
used to validate the developed fluid model. An acceptable match was achieved between experiment
measurements and simulation results, as evidenced in Figure 12.
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Table 2. Fluid composition adopted in this work [32–34].

Component Mol %

N2 10.07

CO2 2.01

H2S 2.65

CH4 66.89

C2H6 6.85

C3H8 3.05

NC4 1.25

IC4 0.59

NC5 0.5

IC5 0.46

FC6 0.68

FC7 0.79

FC8 0.8

FC9 0.67

FC10 0.53

FC11 0.33

C12+ 1.88

Sum 100.00Processes 2020, 8, x FOR PEER REVIEW 10 of 19 
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Figure 11. Two-phase diagram for the gas condensate reservoir under consideration. The straight line
indicates the assumed isothermal pressure depletion program.
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3. Results and Discussion

The simulation work was conducted in two stages: condensate development and thermochemical
injection. First, the impact of wellbore conditions on condensate formation was studied. The effects of
flowing bottom-hole pressure and gas-production rate on the development of condensate banking were
examined. A sharp decrease in the gas-production profile served as an indicator for condensate banking.
Next, production plateau time, defined as the duration of stabilized gas production, was calculated
as functions of both gas-flow rate and flowing bottom-hole pressure. During the second stage,
the thermochemical treatment was initiated. The effects of in situ generated heat, and pressure
triggered by the thermochemical reaction on condensate bank and gas production were studied. Lastly,
the effectiveness of the thermochemical treatment was compared with the efficiency of the conventional
gas-injection approach in terms of stabilized production times and total gas recovery.

3.1. Impact of Flowing Bottom-Hole Pressure

The relationship between the evolution of the condensate bank and associated flowing bottom-hole
pressure was studied by producing the hydrocarbon gas at different levels of flowing bottom-hole
pressure (BHP). Figure 13 summarizes the profiles of gas-flow rates at flowing bottom-hole pressure of
3.5, 6.9, and 10.4 MPa (500, 1000, and 1500 psi), respectively. Production was constrained to a maximal
gas-flow rate of 30 MMSCFD. Initially, the well produced at a constant production rate with bottom-hole
pressure decreasing as a result of the depletion process. Once pressure reached a specified BHP value
(500, 1000, and 1500 psi), it was kept constant, and production rate correspondingly decreased until
it reached 0 MMSCFD, revealing that the well had been killed due to condensate banking. At this
point, the relationship between stabilized gas-production rate and flowing bottom-hole pressure was
determined. Figure 14 plots the production plateau as a function of flowing bottom-hole pressure.
Evidently, a decrease in flowing bottom-hole pressure allowed for sustaining the production plateau
for increased periods of time. For example, the production plateau could be increased by around
13% by reducing flowing bottom-hole pressure from 10.4 to 6.9 MPa (1500 to 1000 psi). However,
curtailing flowing bottom-hole pressure could exacerbate condensate dropout near the wellbore.
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Figure 14. Duration of production plateau plotted against flowing bottom-hole pressure.

3.2. Impact of Gas-Production Rate

Figure 15 encapsulates gas-production profiles for gas-flow rates of 10, 30, and 60 MMSCFD,
respectively. The corresponding flowing bottom-hole pressure profiles are plotted in Figure 16. It can
be observed that a constant production rate of 60 MMSCFD could only be sustained for 400 days,
with the rate sharply dropping thereafter due to flow impediments associated with condensate banking.
Naturally, reducing gas-flow rate from 60 to 10 MMSCFD postpones the onset of liquid dropout.
Plotting the duration of the production plateau maintained in days versus stabilized gas-flow rate
suggested exponential relation, as indicated in Figure 17.
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Figure 17. Stabilized production time (production plateau) plotted against gas-production rate.

3.3. Thermochemical Treatment

The overall impact on gas production upon injection of thermochemical fluids into a gas-condensate
reservoir can be divided into three major components, all of which were included in the model. First,
the reaction products, mainly steam and nitrogen, yield an increase in pressure of up to 34.5 MPa
(5000 psi) [24,28,29]. Thus, this effect finds equivalency in standard nitrogen injection. Second,
the released heat, able to boost temperatures in the order of 422 K (300 ◦F), promotes a reduction in
viscosity [28]. Third, the pressure pulse resulting from released enthalpy stimulates the formation by
creating microfractures. This particular effect was integrated by adjusting capillary pressure on the
basis of the work of Hassan et al. [9,25], who reported a reduction of the former by around 51%.

Figure 18 exemplifies the profiles of gas-flow rate and flowing bottom-hole pressure before and
after thermochemical treatment. After 668 days of gas production, flowing bottom-hole pressure
dramatically dropped, resulting in diminished gas-flow rate due to condensate development. At this
point, gas production was halted, and chemical treatment commenced. In total, three treatment cycles
were performed; a chemical concentration of 1 molar and total chemical volume of 1000 bbl were
utilized. Each cycle was initiated with the injection of the chemicals, followed by a one-week soaking
period. After completion of the cycles, production continued applying a maximal gas-flow rate of
30 MMSCFD, and minimal flowing bottom-hole pressure of 10.4 MPa (1500 psi). The intervention
raised pressure and temperature in the near-wellbore region in excess of 31 MPa (4500 psi) and 324.8 K
(125 ◦F), respectively. Consequently, as illustrated in Figure 19, liquids were revaporized, allowing for
683 additional days of gas-flow rate at 30 MMSCFD, succeeding the remedial efforts (Figure 18).
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Figure 18. Profiles of gas-production rate and flowing bottom-hole pressure prior to and after
thermochemical treatment.
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Figure 19. Revaporization of condensate liquid due to thermochemical treatment.

3.4. Comparison Analysis

The performance of the thermochemical treatment was compared to that of a conventional gas
injection approach. The gas-injection process was simulated using reservoir and wellbore conditions
similar to thermochemical injection. The production well was shut in after 668 days; subsequently,
a mixture of N2, CO2, and CH4 gases was injected in three cycles for a total of one month. All other
parameters were kept the same with respect to the thermochemical treatment. Figure 20 summarizes
profiles for gas production and the corresponding flowing bottom-hole pressures pre- and post-treatment.
After the gas-injection treatment, production was stable only for a period of 104 days (3.5 months).
With reference to Figure 18, the thermochemical-based strategy enabled a sustained gas-production rate
for a period of 683 days (22.7 months) for equal reservoir and well conditions, extending the production
plateau by a factor of 6.5 compared to the gas-injection case.
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Figure 20. Profiles of gas production and associated flowing bottom-hole pressure before and after
gas-injection treatment.

Cumulative gas production is plotted in Figure 21. The conventional approach only allowed for
a production of 23.2 MMMSCF, equivalent to total gas recovery of about 25% of hydrocarbons in place.
In contrast, the application of thermochemicals improved gas recovery by a factor of 1.76 to 40.8 MMMSCF,
corresponding to a total recovery of about 89% of the gas in place. Given that the injected gas had a similar
composition to that of reservoir fluids, no chemical reaction was expected, and only condensate revaporization
took place. Gas injection only increases pressure in the near-wellbore region, fostering the revaporization of
the condensate liquid, thereby improving gas flow into wellbore [16,17]. Thermochemical injection, however,
not only increases pressure, but also reduces capillary forces and decreases condensate viscosity [24–27].
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4. Conclusions

This work presented a field-scale simulation quantifying the effectiveness of thermochemical
injection for removing the condensate bank, thereby improving gas recovery. The following conclusions
could be drawn from this work:

• Compared to conventional gas-injection treatment, the thermochemical approach was found to be
vastly superior in coping with condensate-banking-related production issues.

• The simulation work indicated that thermochemical injection could restore the initial reservoir
condition and sustain gas production for more than 680 days, compared to 104 days using
gas-injection treatment.

• For the particular model used in this investigation, total gas recovery for the thermochemical-based
procedure was 89%, compared to 25% for the traditional gas-injection approach.

• In the case of the thermochemical-based approach, the exothermic nature of the thermochemical
reaction released pressure and heat, thereby increasing pressure around the wellbore, and heating
fluids in this region.

• Edicts reacted rather violently, giving rise to a pressure pulse, fostering the creation of
microfractures accompanied by an according reduction in capillary pressure.
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