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Abstract: The electrical generation industry is looking for techniques to precisely determine the
proper maintenance policy and schedule of their assets. Reliability-centered maintenance (RCM)
is a methodology for choosing what maintenance activities have to be performed to keep the asset
working within its designed function. Current developments in RCM models are struggling to solve
the drawbacks of traditional RCM with regards to optimization and strategy selection; for instance,
traditional RCM handles each failure mode individually with a simple yes or no safety question in
which question has the possibility of major error and missing the effect of a combinational failure
mode. Hence, in the present study, a hybrid RCM model was proposed to fill these gaps and find
the optimal maintenance policies and scheduling by a combination of hybrid linguistic-failure mode
and effect analysis (HL-FMEA), the co-evolutionary multi-objective particle swarm optimization
(CMPSO) algorithm, an analytic network process (ANP), and developed maintenance decision tree
(DMDT). To demonstrate the effectiveness and efficiencies of the proposed RCM model, a case study
on the maintenance of an electrical generator was conducted at a Yemeni oil and gas processing
plant. The results confirm that, compared with previous studies, the proposed model gave the
optimal maintenance policies and scheduling for the electrical generator in a well-structured plan,
economically and effectively.

Keywords: policy selection; optimization; reliability-centered maintenance (RCM); analytic network
process (ANP); hybrid linguistic failure mode and effect analysis (HL-FMEA); failure modes (FMs);
oil and gas plant; co-evolutionary multi-objective particle swarm optimization (CMPSO); developed
maintenance decision tree (DMDT)

1. Introduction

Industrial plants are concerned with the availability and reliability of production due to market
demand, such as the electrical industry and oil-gas plants. Nowadays, producing electric energy
without interruption has attracted much attention from industries. The maintenance of an electrical
generator, therefore, plays a critical role in ensuring the reliability of the energy supply, with key goals of
improving the operational efficiency and the service life of the equipment. Therefore, industrial plants
apply different maintenance strategies. Reliability-centered maintenance (RCM) is a methodology that
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can be used to decide what maintenance activities need to be performed in order to keep the equipment
working within its designed function range [1]. RCM can choose the most suitable maintenance tasks,
reduce the probability of failure, and/or reduce the consequences of failure. RCM was originally
created for use in the aircraft industry [2].

Many researchers [1,3,4] have described an extension of the RCM method. Moreover, RCM II was
presented by Moubray [1], designed to be applicable to conventional industry.

RCM offers valuable insights into existing maintenance to find pertinent maintenance policies and
thus creates a balance between reliability, availability, and the cost of equipment [5]. Moreover, the RCM
technique potentially has a wide area of successful implementation that ranges from use in a transmission
system [6] to a power distribution system [7]. Due to recent economic demands, maintenance teams
are often faced with a variety of difficulties, such as maintenance scheduling, asset criticality and
management, and practices in subsystems or plants [8]. Conventional reliability approaches for
maintenance are insufficient for industrial world demands such as preventive maintenance and
condition-based maintenance. Furthermore, in the electrical distribution field, RCM is mostly
combined with FMECA (failure modes, effects and criticality analysis) to define the criticality of
equipment for the improvement of the reliability of maintenance [9].

Despite all RCM’s advantages, some industrial plants have found RCM to be too sophisticated
a methodology because of some difficulties in implementation. Especially if they are analyzing a
massive amount of data in a large plant, this will require experts and will be time-consuming. However,
profits grow immediately after program implementation, which can be drawn out only for some
equipment or if the equipment is nonstandard [10]. Several studies have reported the drawbacks, as
follows [11–16]: complicated, time-consuming, costly, too qualitative an approach, shortfalls in safety
due to a failure to update maintenance approaches, a lack of identification and prioritization for failure
modes, and handling each failure mode individually, which misses out on the combinational effects of
failure modes.

Several methods have been suggested to overcome RCM’s drawbacks, such as a genetic algorithm
(GA) [6,7], particle swarm optimization (PSO) [17], game theory [18], GO methodology [19], MAUT
(multi-attribute utility theory) [20], direct fault tree analysis [21], and the ANN technique [22].

The FMEA approach is a part of the RCM steps, and in previous studies, FMEA structures were
improved to simplify the failure modes analysis and prioritization—for instance, ANP-DEMATEL
(Decision-Making Trial and Evaluation Laboratory) [23], hybrid linguistic failure mode and effect
analysis (HL-FMEA) [11], technique for order of preference by similarity to ideal solution (TOPSIS) [24],
and (an acronym in Serbian for a multi-criteria optimization and compromise solution) VIKOR with
house of reliability [25].

ANP is an extension of analytical hierarchy process (AHP), and was presented by Saaty [26]. The
advantages of ANP compared to AHP are an ability to offer an internal relationship, independence, and
interdependencies among the criteria, subclusters, and alternatives [26,27]. Similarly, ANP has a novel
calculation technique “supermatrix,” which is used to determine the weights of criteria and alternatives
for decision-making purpose [28]. According to Ziemba [29], ANP can assist a decision-maker with
solving the problem of the location and design selection for a wind farm, and is the best technique for
estimating issues and making decisions.

Particle swarm optimization (PSO) is an evolutionary algorithm based on a computation method
to find optimal solutions on Pareto fronts, introduced previously [30]. PSO models the collaborative
behavior of bird clustering or fish swarming. Also, the PSO algorithm has been successfully applied
in many fields, such as medical data classification [31], operation strategy optimization in integrated
energy systems [32], operation optimization [33], and fault diagnosis in power transformers [34].
Moreover, PSO was combined with Monte Carlo simulations to improve the outcomes of maintenance
planning for aircraft maintenance optimization [35]. Furthermore, several studies suggest that the
reliability and cost should be considered when determining the optimal maintenance plan [36] and
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the availability for multi-period scheduling [37]. Recently, several PSO algorithms were proposed to
improve standard PSO and handle some complicated multi-objective optimization problems [38,39].

In previous studies, it was noted that RCM models were improved to solve some drawbacks in
failure mode identification and prioritization. Similarly, the work of Heo and Lyu [17] has demonstrated
an improved RCM by integrating PSO and other methods into the analysis. However, unlike the study
of Heo and Lyu [17], most of the modified RCM versions lack a focus on the optimization of optimal
RCM policy selection.

To our knowledge, no previous research in RCM modeling has covered the three phases of
optimization of failure mode prioritization, multi-objective maintenance optimization, and multicriteria
decision-making, especially for electricity generation in a hazardous location like an oil and gas plant.
Hence, a new approach is needed to fill this gap. Therefore, a new hybrid RCM model was proposed via
the hybrid LFMEA (linguistic failure mode and effect analysis), CMPSO (co-evolutionary multi-objective
particle swarm optimization), ANP, and developed maintenance decision tree (DMDT) techniques to
overcome the drawbacks of traditional RCM. This paper aims to present a new RCM optimization
model with the objective of overcoming the drawbacks related to traditional RCM, with a valid
maintenance plan.

The rest of this paper is organized as follows. Section 2 illustrates the proposed methodology
of the new hybrid RCM model using the hybrid LFMEA, ANP, co-evolutionary multi-swarm PSO
algorithm, and the developed decision tree approach. Sections 3 and 4 give the discussion and results
of the practical implementation of the model using the electrical generators case study in a Yemeni oil
and gas plant. Finally, the paper’s conclusions and suggested future work are given in Section 5.

2. Proposed Methodology of New Hybrid RCM Model

In this part, a hybrid RCM model was established based on the hybrid LFMEA, ANP,
co-evolutionary multi-swarm PSO algorithm, and the developed maintenance decision tree approach.
The opinions of experts and engineers were considered to obtain a more precise RCM analysis during
the application of the methodology. Figure 1 displays the proposed model for the hybrid RCM model
in an oil and gas plant with a hazardous environment.
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The methodology of the proposed RCM model consisted of six steps, described as follows.

2.1. Identification and Prioritization of FMs by HL-FMEA Approach

Step 1: Classify the main dimensions and failure modes of the system. Data are extracted from
the literature reviews, vendor documents, the database of computerized maintenance management
systems (CMMS), and the opinions of industrial experts. A team of n experts will structure and
organize the data into m main risk factor dimensions and failure modes FM = {FM1, FM2, . . . , FMk},
where k is a number of failure modes.

Step 2: Apply the hybrid LFMEA approach to identify and prioritize the failure modes, which
contain all weights of LFMEA, DEMATEL, and the ANP supermatrix.

In this step, risk weights of all failure modes and main clusters are determined to rank the failure
modes and their main clusters.

The HL-FMEA technique is presented as follows [11]:

(i) Compute the weights for risk factors W = (wO, wS, wD) through an analytic network process
(ANP), where

∑
W = 1 .

(ii) Calculate linguistic evaluation matrix values Vt j for FMs and main risk factor, which will consist
of n rows of experts and m columns of FMs.

Vt j =
(
VO

tj , VS
tj, VD

tj

)
t = {1, 2, 3, · · · , n}; j = {1, 2, 3, · · · m},

(1)

where n denotes the number of expert members, and m denotes the number of failure modes.
VO

tj , VS
tj, VD

tj are risk language evaluation weights given by the expert member Expertt for every
failure mode FM j. Then, risk constant ϕx:

ϕx =

 1, i f VO
tj , VS

tj , VD
xj

wx/
∑m

j=1 w j, other
. (2)

(iii) Compute the linguistic risk priority value VRPN
tj for main clusters and failure modes.

VRPN
tj =

(
ϕO VO

tj

)wO
×

(
ϕSVS

tj

)wS
×

(
ϕD VD

tj

)wD . (3)

(iv) Determine the expert weights WEt = (wE1, wE2, . . . , wEn) by a fuzzy priority matrix, where∑
WEt = 1 .

Fuzzy priority matrix F is used to determine a weight for every expert member, which are
explained in the following steps:

• Rank the failure modes for every expert {FMt
1, FMt

2, . . . , FMt
m

}
.

• Describe the partial order of the pt
i j fuzzy priority number for every expert member t and FM j

failure mode.

pt
i j =


1, FMt

i is superior to FMt
j

0.5, FMt
i is equal to FMt

j
1− pt

i j, when i , j;

0, i = j or other

(4)

pi j =
n∑

t=1

pt
i j; i, j = 1, 2, · · · , m .
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• Determine the fuzzy priority matrix F for each fuzzy preference pi j and FM j .

F =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
...

. . .
...

pm1 pm2 · · · pmm

. (5)

• Calculate the consistency index γt , and rows’ summation of the fuzzy priority matrix F, then rank
them to get Rs =

∑m
i=1 p2i >

∑m
i=1 p5i >

∑m
i=1 pmi > · · · >

∑m
i=1 p3i :

γt =
γ
(
Rt

)
γ(Rs)

. (6)

The exert weights are

WEt =γt/
n∑

t=1

γt. (7)

Then, the expert constant βt:

βt =

 1, i f VRPN
tj � VRPN

xj

max
{
γt/

∑n
t=1 γt

}
, other

. (8)

(v) Compute the linguistic value of priority risk number LVRPN
j for every FM j .

LVRPN
j =

(
β1 VRPN

1 j

)WE1
×

(
β2 VRPN

2 j

)WE2
× · · · ×

(
βn VRPN

nj

)WEn , (9)

where βt is the expert constant, WEn is the expert weight, and VRPN
tj is the risk priority number.

(vi) Apply the DEMATEL approach with alpha cut to find the weights (r + c) j and the relationship
between FMs. The detailed steps for DEMATEL are described in [11].

(vii) Apply the ANP approach with supermatrix to evaluate the weights W j , feedback, and
interdependence among FMs. The ANP approach steps will be explained in Section 2.3.1.

(viii) Calculate the final risk weights HRPV f inal
j of FMs and main cluster:

HRPV f inal
j = LVRPN

j × (r + c) j ×W j. (10)

(ix) Rank the failure modes and clusters according to the final risk weights.

2.2. Multi-Objective Optimization Based on Multi-Swarm PSO Algorithm

Optimization of maintenance problems is a multi-objective optimization process. In this section, the
objective functions are defined and modeled for maintenance problems, then used in the co-evolutionary
multi-swarm PSO (CMPSO) algorithm to seek optimal multi-objective solutions.

Defining the appropriate objective functions plays a key role in setting up a multi-swarm PSO
optimization algorithm. A common multi-objective optimization is formulated in Equation (11) to
obtain the decision variable vector X = (x1, x2, . . . , xn), from the vector of objective functions F(x).

Min F(X) =
{
f1(x), f2(x), . . . , fn(x)

}
Subjected to :

{
gi(X) ≤ 0 i = 1, 2, . . . q
hi(X) = 0 i = 1, 2, . . . l

,
(11)
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where gi(X) represents q inequality constraints, and hi(X) represents l equality constraints.

2.2.1. Multi-Objective Function Modeling

Step 3: Select the multi-objective function of maintenance problems that will be used in the
next step of the optimization algorithm for evaluating and selecting the optimum solutions in the
multidimensional solution space.

In this paper, the objective functions of reliability R(X), risk (component failure) Urisk(X), and
cost C(X) are selected and formulated as follows.

Minimize : Urisk(X), C(X) X ∈ Rn

Maximize : R(X) X ∈ Rn (12)

Urisk(X) = f (µ1(x1), µ2(x2), . . . , µn(xn)) . (13)

Then, an approximate risk model can be formulated as follows [40]:

Urisk(X) ≈
∑

i

(
∏

j

µi j(X)), (14)

where µi(xi) is the failure risk of the ith equipment.
Finally, the objective function of cost can be formulated as follows:

C(X) =
m∑

i=1

ci(X), (15)

where C(X) ≤ C budget and ci(X) is the ith component cost.

2.2.2. Co-Evolutionary Multi-Swarm PSO Algorithm

The CMPSO approach deals with multi-objective optimization problems, and was developed by
Zhan et al. in 2013 [41]. However, unlike CMPSO, the standard PSO lacks the focus on the shortcomings
of the fitness assignment and is unable to optimize all objectives simultaneously due to achieving one
objective and being weaker on the other objectives.

The CMPSO approach consists of N subswarms, which are executed together to find optimal
solutions for N objectives. Similarly, each subswarm has the same optimization process of the
single-objective PSO technique. However, all subswarms and their particles share information by an
external shared archive. Therefore, the information gained from search experience is shared by all
subswarms and their particles, which achieves the actual Pareto front successfully.

Step 4: Apply the co-evolutionary multi-swarm PSO (CMPSO) algorithm to find the multi-objective
optimal solutions in the space of multidimensional objective solutions.

The particles in a swarm can travel in the multidimensional solution space and seek the optimal
solutions. Figure 2 shows the detailed steps of the proposed CMPSO algorithm for multi-objective
maintenance optimization.

In CMPSO, every ith particle in the nth swarm pn
i has positions Sn

i =
{
xn

i1, xn
i2, . . . , xn

im

}
, and the

velocity vectors Vn
i =

{
vn

i1, vn
i2, . . . ., vn

im

}
. Moreover, positions and velocity will be updated after the

fitness function calculation.
For iteration (t + 1) , the velocity vn

i and position xn
i can be updated with the following

equations [41,42]:

vn
i (t + 1) = ω.vn

i (t) + c1.r1.
(
pBestn

i − xn
i (t)

)
+ c2.r2.

(
gBestn

− xn
i (t)

)
+ c3.r3.

(
An

i − xn
i (t)

)
(16)

xn
i (t + 1) = xn

i (t) + vn
i (t + 1) , (17)
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where r1 , r2 , and r3 are random variables; (pBestn
i , gBestn) are the best local solution and the best

global solution of all particles in swarm n, respectively; An
i denotes the optimal random variable, which

is selected from the external archive; ω denotes the inertia weight; and c1 and c2 denote learning factors,
whereas c3 denotes a social learning factor.Processes 2020, 8, x FOR PEER REVIEW 7 of 25 
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2.3. Multi-Criteria Decision-Making (MCDM) Based on the ANP and DMDT Techniques

Increasing the size of optimal multi-objective solutions for maintenance problem will add
more difficulties for the decision-maker due to conflicting objectives and constraints. Likewise,
making maintenance decisions has to balance all objectives and consider all limitations and risks,
especially in a hazardous area. Therefore, a multi-criteria decision-making approach is proposed in the
next subsections.

In the proposed MCDM phase, ANP and the developed maintenance decision tree (DMDT) are
used simultaneously to evaluate alternative maintenance policies with differing goals for maintenance
policy selection and scheduling.
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2.3.1. ANP Approach

In this subsection, the ANP approach enables the decision-maker to prioritize the criteria and their
alternatives for maintenance policy selection, which involves six main factors: C1 (maintenance cost),
C2 (production loss), C3 (safety effect), C4 (environmental effect), C5 (complexity of maintenance), and
C6 (unavailability of spare parts).

Step 5: Apply the ANP approach to obtain the weights for the decision-making criteria and their
alternatives for maintenance selection.

The ANP approach is presented as follows [26,43,44]:

1. Arrange the ANP network structure of criteria, subcriteria, and alternatives according to the
relationship between criteria and their alternatives. The influenced criteria and alternatives are
exemplified in the supermatrix Equations (18) and (19), which will offer the feedback and the
interdependence weights at a higher level.

C1 C2 Cm

e11 . . . e1n1 e21 . . . e2n2 · · · em1 . . . emmm

A =

C1

e11

e12
...
e 1n1

C2

...
e 11
e12
...
e 1n1

...
C m

...
e 11
e12
...
e 1n1



W11 W12 · · ·W1m

W21 W22 · · ·W2m

...
W m1

...
W m2

...
· · · W m1



(18)

MD1 · · · MDm

c1 · · · ck

A =

MD1 c1
...

...
MDm ck


w11 · · · w1m

...
. . .

...
wm1 · · · wmm

 .
(19)

2. Construct matrix A through pairwise comparisons concerning the influenced criterion, clusters,
and alternatives on those that it influences.

3. Calculate the inconsistency of the pairwise comparison matrix (CR ≤ 0.1 [45]):

CR =
λmax − n

RI (n− 1)
, (20)

where RI denotes a random inconsistency value.
4. Calculate the weights of supermatrix through the following expression:

Aw = λmax w, (21)
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where A is the matrix of pairwise comparison, w is the eigenvector; and the maximum eigenvalue
is λmax.

5. Normalize the matrix by dividing every value in the supermatrix by the sum of its column to get
the weighted supermatrix Wr.

6. Compute the final weights of limit supermatrix WL as follows:

WL = W2k+1
r . (22)

2.3.2. Developed Maintenance Decision Tree (DMDT)

Step 6: Apply the proposed developed maintenance decision tree (DMDT) to determine the
optimum maintenance policies and schedules.

In this step, the DMDT algorithm is proposed to help the decision-maker select suitable
maintenance policies and scheduling, after the steps of ANP weight calculation and CMPSO
optimization. Moreover, the DMDT considers more criteria such as risk, safety, production loss,
cost of repairing, maintenance complexity, spare parts, and maintenance scheduling. Figure 3 shows
the proposed algorithm of the developed maintenance decision tree.
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3. A Case Study: An Electrical Gas Turbine Generator

3.1. System Descriptions

In this section, an electrical generator of a Yemeni oil and gas plant has been considered for the
case study. The objective of the case study is to demonstrate the applicability and effectiveness of the
proposed RCM model in a hazardous area. Electrical generators are the core parts of a power plant and
supply electricity to all machines in the plant. The reliability and availability of the electrical generator
are therefore essential for plant demand and production. The electrical generation unit consists of four
gas turbine generators and three emergency diesel generators. We performed analyses from the stage
of failure mode prioritization to the optimization phase, then the maintenance decision phase, as the
main purpose of this research is to obtain the optimum maintenance policies and schedules for the
whole system.

3.2. Data Collection

All the maintenance data for the electrical generator were collected, such as failures, shutdowns,
and health condition monitoring signals. These records were stored in the computerized maintenance
management system (CMMS). Furthermore, data were also obtained from the CMMS database, vendor
documents, a literature review, and experts’ opinions from the plant. Nevertheless, the collected
data should have acceptable consistency. This can be realized through a good correlation of vendor
recommendations and the experts’ judgments with the CMMS database to make accurate judgments
through the HL-FMEA framework. Moreover, during a data analysis of risk assessment, different
weights of experts have been evaluated according to their biases due to the dissimilarity of experts’
knowledge and background. Moreover, consistency tests were carried out during the ANP pairwise
compressions for risk assessment and decision analysis. Hence, experts’ weights and consistency tests
were used in the proposed methodology to create precise judgments and prevent serious bias in the
analysis and in the results.

The expert team is made up of five experts from five sections of the plant (operation, electrical,
mechanical, control system and instrumentation, and health and safety environment). They all
had more than nine years of experience in maintenance and risk analysis in the oil and gas
company. The experts’ judgments were gathered through a series of workshops and meetings.
The judgments of experts were built based on their industrial experience, skills, and knowledge.
The experts

{
Expert1, Expert2, Expert3, Expert4, Expert5

}
identified and analyzed 25 potential FMs

{FM1, FM2, . . . , FM25}; the potential FMs were organized under five main categories of FMs for
the electrical generator, as presented in Table 1. Moreover, the precise judgments were carried out by
the team of experts and through a group discussion, which eliminates the bias of a single expert and
improves the risk assessment and evaluation.
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Table 1. Main risk clusters and failure modes [11].

Main Dominations Failure Mode FMi Description

Operation (OP)

OP1 wrong operator action
OP2 overload/unbalanced voltage
OP3 wrong startup
OP4 wrong shutdown

Instrumentation and control
System (IN)

IN1 instrumentation failure
IN2 failure of calibration
IN3 failure of the control system
IN4 failure of data communication

Electrical (EL)

EL1 rotor failure
EL2 stator failure
EL3 winding & insulation failure
EL4 output power failure

Mechanical (ME)

ME1 cooling system failure
ME2 bearing failure
ME3 shaft failure
ME4 gearbox failure

Other external risks (OT)

OT1 material degradation
OT2 failure of the purging system
OT3 lubricant contamination
OT4 gas leakage

4. Results and Discussion

4.1. Hybrid Linguistic FMEA Rank

In this step, hybrid linguistic FMEA was conducted to prioritize the failure mode risk and the
weights of three risk factors (wO, wS, wD), which were determined by experts (0.326, 0.453, 0.221)
and through the ANP method. These weights are in line with previous studies [46,47], where the
severity risk factor (0.453) has a higher weight among other risk factors.

Table 2 illustrates the linguistic values of the main FMs with scale (V1/5, V1/4, . . . , V5). The

linguistic scale is s = 5, with range (2s − 1 = 9). Three risk values
(
VO

tj , VS
tj, VD

tj

)
were determined for

every FM by the five experts in Equation (1), as shown in Table 2.

Table 2. Linguistic risk value for the main clusters of failure modes.

(VO
tj ,VS

tj,V
D
tj) Expert1 Expert2 Expert3 Expert4 Expert5

OP (V1/2, V1/4, V1) (V3, V1/4, V1/5) (V4, V1/5, V1/4) (V1, V1/3, V1/3) (V5, V1/5, V1/2)
IN (V3, V1/4, V1/5) (V2, V1/4, V1/4) (V1, V1/5, V1/5) (V1, V1/5, V1/4) (V4, V1/5, V1/3)
EL (V1/4, V2, V1/2) (V1/3, V1, V1) (V1/5, V1, V1/2) (V1/4, V1/2, V1) (V4, V1/3, V2)
ME (V2, V3, V1/5) (V1, V2, V1/4) (V2, V1, V1/5) (V2, V1, V1/4) (V3, V3, V1/4)
OT (V1, V1/5, V1) (V1, V1/4, V1/4) (V1/2, V1/3, V1/2)(V1/2, V1/5, V1) (V1/2, V1/2, V1/3)

The risk constant ϕx = 1 is obtained by Equation (2); the consistency index γt is calculated by
Equations (4)–(6); for instance, if the rank of failure modes for an expert t is equal to Rt = FMt

5 > FMt
3 >

FMt
1 > · · · > FMt

x, the ordering consistency index will be γt = p51 + p53 + p52 + · · ·+ p5x + p31 + · · ·+

p3x + · · ·+ ptx. Therefore, the rank is ME > EL > OP > OT > IN , Rs =4 > 2.6 > 2.2 > 0.8 > 0.4 and
γt =

{
γ1,γ2,γ3,γ4,γ5

}
= {0.736, 1.027, 1.027, 1.027, 1.027}.

However, expert weights WEt and risk priority values VRPN
tj were calculated to obtain a linguistic

value of priority risk number LVRPN
j in Equations (7) and (9), then the expert constants βt = {0.212,

1} are given by Equation (8). Expert weights WEt = (0.152, 0.212, 0.212, 0.212, 0.212) showed that the
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evaluation of expert Expert1 departed from the team’s consensus. Moreover, expert Expert1 has a lower
weight (0.152) that will reduce his bias on the expert group. As a consequence, serious bias in the
analysis and FM assessment results will be prevented. The weights of (r + c) j and W j were calculated

through the DEMATEL and ANP approaches to obtain the final rank with risk weights HRPV f inal
j

in Equation (10). The final rank and risk weights HRPV f inal
j are shown in Table 3, and the result is

compared with the traditional FMEA approach.

Table 3. Final hybrid risk value of clusters and FMs.

Clusters
and FMs

Traditional FMEA HL-FMEA

RPN
Weight Rank

LVRPN
j

Weight
(r+c)j

Weight
Wj

Weight

Final
HRPVj
Weight

Rank

OP 216 3 0.614 3.732 0.284 0.651 4
IN 108 11 0.493 2.255 0.143 0.159 12
EL 210 4 0.741 2.991 0.29 0.643 5
ME 324 1 1.225 4.118 0.215 1.085 1
OT 144 8 0.491 3.353 0.268 0.441 7
OP1 162 7 1.297 1.247 0.148 0.239 10
OP2 63 16 1.23 1.083 0.048 0.064 18
OP3 30 19 0.956 1.484 0.022 0.031 21
OP4 90 13 0.749 2.006 0.067 0.101 16
IN1 60 17 1.271 1.31 0.023 0.038 20
IN2 7 23 0.96 0.895 0.016 0.014 23
IN3 100 12 1.4 1.426 0.092 0.184 11
IN4 7 23 0.765 0.796 0.012 0.007 25
EL1 180 6 0.96 2.758 0.163 0.432 8
EL2 72 15 0.671 2.665 0.049 0.088 17
EL3 84 14 0.893 2.52 0.066 0.149 13
EL4 24 20 0.612 2.239 0.013 0.018 22
ME1 8 22 0.55 2.022 0.008 0.009 24
ME2 120 10 1.32 3.064 0.028 0.113 14
ME3 256 2 1.811 3.157 0.121 0.692 3
ME4 200 5 1.537 2.701 0.058 0.241 9
OT1 45 18 1.056 4.242 0.023 0.103 15
OT2 126 9 1.608 2.74 0.139 0.612 6
OT3 9 21 0.854 3.451 0.013 0.038 19
OT4 256 2 2.786 2.862 0.091 0.726 2

As shown in Table 3, the highest-priority FMs are ME, OT4, ME3, OP, EL, and OT2, which are
associated with the hazards of gas and mechanical failures.

By contrast, the rank of the traditional FMEA for ME3, OT4, IN2, and IN4 is not clear due to the
drawback of mathematical calculation, while the HL-FMEA approach had a better ranking due to
the weights of the FM interrelationship and feedback, which were determined through the ANP and
DEMATEL methods.

So, according to the proposed methodology, a suitable maintenance policy should be selected to
prevent or control the risk of FMs. However, the selection of maintenance strategies involves many
factors (such as risk, cost, and reliability), which should be optimized before maintenance policy
selection and will be executed in the next steps.

4.2. Maintenance Optimization and Comparison

In this section, we applied the co-evolutionary multi-swarm PSO (CMPSO) to find a set of optimal
solutions. Figure 4 shows the 3D space of nondominated solutions and multi-objective functions.
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In this optimization phase, the three objective functions (risk of unavailability, cost, and reliability)
are treated simultaneously in Equations (11)–(15) through the CMPSO algorithm in Figure 2. However,
Equations (16) and (17) were used to find the best local and global solution of all particles in swarm n.
The CMPSO algorithm was executed in MATLAB® 2018b software to verify the effectiveness of the
optimization phase for obtaining the optimal solution set.

A stable value of fitness was obtained at 600 iterations. Hence, the maximum optimization
iteration of CMPSO number was set to 600, and the maximum capacity of external archive or Pareto
front is 200. The CMPSO algorithm contains three different swarms of PSO that work cooperatively.

The initial population size for each swarm was set to 30 particles, Learning factor as (c1 = c2 =
5
3 , c2 = 2

3 ), and inertia weight as ω = 0.9− gen− num× 0.5/600 .
To verify the effectiveness of the CMPSO methodology, the MOPSO [48] and NSGA-II [7] algorithms

were also applied to optimization problems and evaluated using the same objective functions. As can
be seen in Figure 5, the CMPSO has a better fitness value than MOPSO and NSGA-II due to the self
and social learning of subswarms and particles in CMPSO.Processes 2020, 8, x FOR PEER REVIEW 15 of 25 
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As observed in Figure 6, after 600 iterations, the Pareto fronts of cost reliability—dimensional, which
are provided by CMPSO, are more precise and faster than those provided by the NSGA-II algorithm.
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In Figure 7, the orange squares in the x-y plane represent the two objectives (cost and unavailability),
which show contradictory trajectories. As the cost goes up, the risk of unavailability becomes smaller.
The green stars in the x-z plane show the contradictory relationship of unavailability and reliability.
The blue dots in the y-z plane represent two objectives (cost and reliability) that show a positive
relationship of mutual rising. As the cost increases, the reliability rises until it becomes stable.Processes 2020, 8, x FOR PEER REVIEW 16 of 25 
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Figure 7. The relationships of three objectives (reliability, unavailability, and cost).

Figure 7 indicates that the optimum solutions are achieved with reliability (>93%) and
unavailability (<0.5 × 10−4) when the cost is greater than $140K. Thus, more attention would be
given to this multi-objective zone during the selection process.
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In Figure 8, the red spheres of the distributed surface represent a graphically optimal Pareto set
of three-dimensional solutions. Orange cubes, green stars, and blue dots are the projections of the
optimization objectives in three planes.
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Figure 8 illustrates the final optimal Pareto front, which was obtained from the CMPSO algorithm.
The optimum solutions have reliability (>90%), but the unavailability and cost vary (0.5 × 10−4 <

U(x) < 1 × 10−4), ($25K < C (x) < $125K). Therefore, more decision criteria are essential to deal with
the unavailability and cost variance for maintenance selection. Moreover, maximizing the system
reliability ensures that the unavailability and cost are optimized for maintenance selection with regards
to the decision-making criteria, especially for a multi-objective problem. Furthermore, the lower cost is
related to the measures of high unavailability and very low reliability. As such, the decision-maker
should always consider both the risk of unavailability and the maintenance costs. The final set of the
optimal Pareto front has 200 valid solutions in the reliability-cost-unavailability dimensions.

Finally, each element of the optimal solution is unique when all objectives are concerned.
Consequently, it may not be possible to select all elements for the optimization problem. Therefore,
the decision-maker needs assistance to select the best solutions efficiently. In this respect, the final
step of the proposed RCM model will be held in the decision phase by the assistance of the ANP and
DMDT approaches.

4.3. Multi-Criteria Decision-Making Phase and Performance Evaluation

4.3.1. ANP Weights of Evaluation Criteria

In this step, the ANP approach was used to compute the weights of maintenance decision criteria
and alternatives. By using those weights, the developed maintenance decision tree (DMDT) was
adopted to select maintenance policies and scheduling.

In order to find the evaluation criteria weights, the CMMS data of historical operation and
maintenance were analyzed and collected. Then, a pairwise comparison of the six evaluation criteria
was set up by engineers and experts from the production, safety, and maintenance departments. Each
pairwise evolution was determined based on the nine scores in Saaty [45].
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The relationships between the criteria and their alternatives were determined in judgment matrix
A; see Equations (18) and (19). Table 4 shows the pairwise comparison of the six criteria to the goal;
then those weights are placed in the column w21 of matrix A.

Table 4. Criteria pairwise comparison to goal.

Goal C1 C2 C3 C4 C5 C6 Geo-Mean Goal Weight

C1 1 5 0.714 1.429 1.667 2.5 1.664 0.246
C2 0.2 1 0.2 1.25 1.25 1.667 0.686 0.102
C3 1.4 5 1 3.333 1.429 2.5 2.090 0.309
C4 0.7 0.8 0.3 1 0.4 1.5 0.682 0.101
C5 0.6 0.8 0.7 2.5 1 1.667 1.058 0.156
C6 0.4 0.6 0.4 0.667 0.6 1 0.581 0.086

Sum 6.761 1

Then, the inconsistency ratio was derived from Equation (20); CR = 0.04758 (an acceptable value
is less than 0.1).

The same pairwise comparison steps were followed to construct the remaining columns of matrix
A. For the criteria feedback effects, four tables were organized to generate columns w23 of matrix A
and six tables were organized for every criterion to create the matrix columns (w32) . Moreover, the
final weights of the supermatrix were determined in Equations (21) and (22), as shown in Table 5. The
ANP supermatrix calculation was executed and verified with MATLAB 2018b software. The final
weights of each decision criterion and alternative are shown in Table 6 and Figure 9.

Table 5. The analytic network process (ANP) supermatrix for decision criteria and alternatives.

Goal C1 C2 C3 C4 C5 C6 PSM CBM CM

Goal 0 0 0 0 0 0 0 0 0 0
C1 0.246 0 0 0 0 0 0 0.28 0.211 0.183
C2 0.102 0 0 0 0 0 0 0.108 0.08 0.231
C3 0.309 0 0 0 0 0 0 0.377 0.425 0.326
C4 0.101 0 0 0 0 0 0 0.048 0.098 0.07
C5 0.156 0 0 0 0 0 0 0.157 0.124 0.145
C6 0.086 0 0 0 0 0 0 0.03 0.062 0.045

PSM 0 0.743 0.707 0.122 0.162 0.663 0.178 0 0 0
CBM 0 0.194 0.223 0.804 0.77 0.278 0.751 0 0 0
CM 0 0.063 0.07 0.074 0.068 0.059 0.071 0 0 0

Table 6. The final weights of limit supermatrix WL.

Goal C1 C2 C3 C4 C5 C6 PSM CBM CM

Goal 0 0 0 0 0 0 0 0 0 0
C1 0 0.237 0.237 0.237 0.237 0.237 0.237 0 0 0
C2 0 0.102 0.102 0.102 0.102 0.102 0.102 0 0 0
C3 0 0.399 0.399 0.399 0.399 0.399 0.399 0 0 0
C4 0 0.0756 0.0756 0.0756 0.0756 0.0756 0.0756 0 0 0
C5 0 0.139 0.139 0.139 0.139 0.139 0.139 0 0 0
C6 0 0.048 0.048 0.048 0.048 0.048 0.048 0 0 0

PSM 0.410 0 0 0 0 0 0 0.410 0.410 0.410
CBM 0.522 0 0 0 0 0 0 0.522 0.522 0.522
CM 0.068 0 0 0 0 0 0 0.068 0.068 0.068
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lowest rank due to the ability of the CMMS system, which can organize the spare parts automatically. 
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followed by PSM (preventive scheduled maintenance) due to the influence of machine condition 
monitoring and maintenance planning in failure prevention that is associated with a hazardous field 
such as oil and gas plants.  

 
Figure 9. Final weights of decision criteria and alternatives. Figure 9. Final weights of decision criteria and alternatives.

Figure 9 shows that C3 (the safety effect) has the highest rank among the maintenance decision
criteria, followed by C1 (the maintenance cost) due to the importance of safety effects in the oil and gas
field, which validates the proposed methodology. C6 (the unavailability of spare parts) has the lowest
rank due to the ability of the CMMS system, which can organize the spare parts automatically.

CBM (condition-based maintenance) has the highest rank among the maintenance policies,
followed by PSM (preventive scheduled maintenance) due to the influence of machine condition
monitoring and maintenance planning in failure prevention that is associated with a hazardous field
such as oil and gas plants.

4.3.2. Maintenance Policy Selection and Evaluation

After the prioritization of decision criteria and alternatives, the proposed developed maintenance
decision tree (DMDT) was implemented to select appropriate maintenance policies and scheduling.
Table A1 reveals the selected maintenance policies and the schedule of the proposed RCM model for
the failure modes of the electrical generator.

From Table A1 in Appendix A, the FMs with highest risk priority are suited to CBM because of
the strong impact of CBM on machine condition, production loss avoidance, and failure prevention,
especially in a hazardous field such as oil and gas plants. Furthermore, PSM and CM policies are
assigned for FMs with medium and low risk, respectively. Likewise, the highest-priority FMs are
OT4, ME3, and OT2, which required more condition monitoring due to hazardous gas leakages
and mechanical component failures. Thus, these findings demonstrate the validity of the proposed
maintenance decision-making methodology.

To validate the applicability of the above maintenance plan, the selected maintenance policies and
scheduling were executed within 72 weeks for the electrical generator unit in a Yemeni oil and gas
plant. The significant results are as follows:

• Triple transmitters were installed to overcome the functional failure of critical measures such as
vibration, temperature, and gas detection. Moreover, controller redundancy improves the safety
and reliability of operations and maintenance. For instance, the installation of triple gas detectors
cost $3030 and saved 5 h of production loss and a machine shutdown cost of $5000.

• For critical valves and instrumentations, functional testing and recalibration were carried out
at a workshop before the field installation, which reduces the failure rate and determines any
fluctuations in service at an early stage.

• Critical activities were carried out during shutdown or overhaul; this scheduling avoids production
losses and equipment failure.
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• For different sampling points, an oil analysis was carried out, which gave useful information
about when the oil must be changed due to the impact of load and condition changes.

• For operator error prevention, training and operation procedures were carried out. For instance,
operator decisions traditionally depend on experience, which varies from one operator to another.

• Modification of the graphical display and control logic is necessary to simplify the control view
and avoid repeatable control failures.

Moreover, there is no task of “run to fail” at all in the proposed maintenance plan due to its safety
impact in a hazardous oil and gas environment.

The optimization results of RCM implementation in comparison with traditional RCM for electrical
generators are summarized in Table 7. It is worth highlighting that the optimization results were
improved after the execution of the proposed plan due to the field experience of the maintenance team
that solved most of the practical maintenance issues. As seen in Table 7, it is clear that, in general,
the proposed RCM model has sufficient effectiveness in terms of reliability and unavailability and
represents a real cost reduction—of 38.7% in comparison with the traditional model.

Table 7. The optimization results of RCM implementation.

Parameters (Executed
Time: 72 Weeks

(1.5 Years))

Traditional RCM
Proposed Hybrid RCM

Before Execution After Execution

Reliability (%) 88.2 93.25 96.23333
Risk of Unavailability 2.49 × 10−4 1.16 × 10−4 1.31 × 10−5

Cost ($) $1,288,163.72 $966,122.5 $789,644.4

For the validation of the proposed RCM model, the proposed model was compared with other
RCM models based on the electrical generator case study. Therefore, the traditional RCM model, the
RRCM model [9], and the NA-RCM model [7] were selected for comparison to appraise the benefits of
the proposed RCM model. Table 8 reveals the risk prioritization and selected policy results of the four
FMs derived from the above RCM models.

Table 8. Comparison between the proposed model and other recent RCM models.

Models FM Method Optimization
Algorithm

Optimization
Objectives

Task
Selection

The Priority
of Failure

Modes

Optimal
Selected
Policy

Traditional
RCM FMEA - Cost-effectiveness Decision

logic tree
ME3 ≈ OT4

> ME4 > EL1 PM, CBM

RRCM [9] FMEA,
HAZP - Cost Depends on

critical FMs
OT4 > ME3

> ME4 > EL1 PM

NA-RCM [7] FMEA NSGA-II
Cost and

Reliability
index

Depends on
objectives of
optimization

OT4 > ME3
> OT2 > EL1 PM, CBM

Proposed
Hybrid RCM HFMA CMPSO

Reliability,
Cost, and

Risk of
unavailability

ANP and
IRCMDT

OT4 > ME3
> OT2 > EL1 CBM

In Table 8, the priority orders of FMs for the proposed model and the NA-RCM model [7] are
similar to each other, but different from the traditional RCM model and the RRCM model [9]. This
proves the validity of our proposed RCM model. Additionally, ME3 has been replaced by OT4 in the
proposed model due to the advantages of using risk assessment, which has a safety impact on the final
risk. CBM was selected as the optimal policy of the proposed RCM model. However, there are slight
differences in the optimal selected policies due to the considerable differences in the optimization
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algorithm and multi-criteria decision-making, which are adopted by the proposed RCM model in
relation to the literature in Table 8. Hence, the proposed RCM model has a better discrimination
degree than the traditional RCM, the RRCM [9], and the NA-RCM [7] models. By comparison, the
results reveal the ability of the proposed RCM model to find the optimal maintenance policy in a
hazardous environment.

This study shows that the proposed RCM model is the most suitable for selecting the optimum
maintenance policy and scheduling in a hazardous environment. This can efficiently support industrial
engineers in their decision-making and overcome the time-consuming nature and the complexity of
extended RCM models, such as the game theory RCM model [18] and the mode-based RCM model [49].

The application of the proposed RCM model in an oil and gas plant shows how companies can
benefit from the new optimization and policy selection methodology. Furthermore, the application of
the proposed RCM model proves that the implementation of the proposed maintenance plan helps
with creating practical tasks and schedules. Moreover, the proposed RCM model has a better ability to
deal with interdependencies and feedback effects due to considering all relationship weights among
all possible decision criteria through the ANP approach.

As a result of the above case study, the findings of optimization and policy selection were offered
to the maintenance department at a Yemeni oil and gas company to update the current maintenance
plan, particularly in order to prevent potential failures and improve the system reliability.

5. Conclusions

This paper presents the application of a new hybrid RCM model that integrates the HL-FMEA,
CMPSO, ANP, and DMDT approaches and is suitable for use in a hazardous environment. The
HL-FMEA approach was used to identify and prioritize the risk weight of FMs. Moreover, the CMPSO
algorithm was applied to handle multi-objective optimization problems. ANP and DMDT were
applied to determine the optimal maintenance policy and schedule for every FM cost-effectively while
sustaining the reliability requirements in a hazardous plant. The validation of the RCM model was
carried out through a practical application study and analysis of the electrical generators of an oil and
gas plant in Yemen. The three phases of the proposed methodology were integrated into the new RCM
model to overcome the main shortcomings of the traditional RCM model.

The results of the case study show that the proposed RCM model is capable of optimizing the risk
and cost with reducing reliability. Furthermore, the decision algorithm has a reasonable consideration
for the criteria weight of safety, production loss, and repair cost for carrying out the selection of
maintenance policy and schedule. This study also points out that multi-objective prioritization,
optimization, and decision-making methods can be integrated into other applications such as design
optimization and process management. Moreover, the model offers a quantitative and qualitative
approach that is well-structured to assist decision-makers, especially in selecting relevant maintenance
policies and actions instead of making a decision based on expert opinions only.

To our knowledge, the proposed hybrid RCM is the first RCM model that deliberately combines
the effects of the three phases, rather than the approach of traditional RCM, which only evaluates
FM independently and ignores the combined effects of safety, production loss, and repair cost on the
whole machine.

Overall, the results of the present research demonstrate that costs can be optimized by secluding
CM tasks to reduce the interval of the electrical generator maintenance and inspection in relation to the
equipment reliability and area risks. Also, the model provides a good defense against any sudden
failure, which may happen before or after a planned maintenance event. In addition, companies could
tap into this model to evaluate and classify their risk in order to prevent future failures and help
their decision-makers, especially in hazardous areas such as nuclear and gas electrical plants. Future
research should adapt the model using artificial and automatic approaches, such as ANN and machine
learning, so that experts and engineers can enhance maintenance plans.
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Acronyms

AHP Analytical Hierarchy Process
ANN Artificial Neural Network
ANP Analytic Network Process
CBM Condition-Based Maintenance
CM Corrective Maintenance
CMMS Computerized Maintenance Management System
CMPSO Co-evolutionary Multi-Objective Particle Swarm Optimization
DEMATEL Decision-Making Trial and Evaluation Laboratory
DMDT Developed Maintenance Decision Tree
FMEA Failure Mode and Effect Analysis
FMECA Failure Mode, Effects Critical Analysis
FMs Failure Modes
GA Genetic Algorithm
HL-FMEA Hybrid Linguistic Failure Mode and Effect Analysis
LFMEA Linguistic Failure Mode and Effect Analysis
MAUT Multi-Attribute Utility Theory
MCDM Multi-Criteria Decision-Making
MOPSO Multi-Objective Particle Swarm Optimization
NA-RCM New Approach to Reliability-Centered Maintenance
NSGA-II Non-Dominated Sorting Genetic Algorithm
PM Preventive maintenance
PSM Preventive Scheduled Maintenance
PSO Particle Swarm Optimization
RCM Reliability-Centered Maintenance
RPNs Risk Priority Numbers
RRCM Rational Reliability-Centered Maintenance
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

VIKOR
An acronym in Serbian for a multi-criteria optimization and
compromise solution
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Appendix A

Table A1. The selected maintenance policies and scheduling of the proposed RCM model.

Failure Mode Rank Item/Equipment Maintenance Policy Period Task Description Further Action

OP1 6 Operator behavior CBM 3M Monitor and record the panel operator action in
DCS

Train the operator Follow the
procedure

OP2 13 Voltage controller CM - Modify the control logic to prevent
overload/unbalanced voltage

OP3 16 Control system CM - Design a graphical display of start-up
permission in local panel and DCS panel

OP4 11 Blowdown and
shutdown valves PSM 1Y Functional test for valve stroking and Limit

switches
Check and make a request for

spare pasts

IN1 15 Transmitters and
control valve PSM 6M Functional test and recalibration Calibration in nearest

shutdown activities

IN2 18 Transmitters CM - Replace by the new instrument Check and make a request for
spare pasts

IN3 7 The control system CBM 3M Monitor the controller cards and display control
failure at DCS panel

Install triple controller to
overcome the failure of one

controller

IN4 20 Control panel CM - Clear alarms and fix failure of data
communication when it appears

EL1 4 Temperature
transmitter CBM 3M Monitor and compare reading in Local and

Control room
Calibration in nearest
shutdown activities

EL2 12 Electrical heater PSM 6M Visual inspection—check the measurement of
temperature
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Table A1. Cont.

Failure Mode Rank Item/Equipment Maintenance Policy Period Task Description Further Action

EL3 8 Temperature
transmitter CBM 1Y Monitor and compare reading in Local and

Control room
Calibration in nearest
shutdown activities

EL4 17 Power controller CM - Modify the control logic of power distribution Will be control by a protection
system

ME1 19 lube oil cooler fan PSM 3M Check temperature, belt looseness, and
Vibration

Greasing and functional test
before start-up

ME2 9 Bearing and its
transmitters CBM 6M

Vibration Monitoring, functional test, and
recalibration during shaft dismantling or

overhaul

Replace the bearing in nearest
shutdown activities

ME3 2
Vibration and
displacement
transmitters

CBM 6M
Vibration Monitoring, functional test, and
recalibration during shaft dismantling or

overhaul

Install triple sensors to
overcome the functional failure

of one sensor.

ME4 5 Gearbox transmitters CBM 3M Monitor Vibration and control protection system

OT1 10 Material thickness PSM Every
overhaul

Check and measure the material thickness of the
movement part Every overhaul

OT2 3 Purging controller CBM 3M Monitor and record the purging operation
remotely

OT3 14 Lube oil
PSM 6M Replace oil and filters Oil sampling every 54 h
CBM 3M Check and analysis the oil sample

OT4 1 Fire and gas detector CBM 1Y Compare the reading in Local and Control room Install triple sensors to
overcome the functional failure

of one detector.PSM 3M Calibration and functional test
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