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Abstract: Homogeneous mixture models are widely used to predict the hydrodynamic cavitation.
In this study, the constant-transfer coefficient model is implemented into a homogeneous cavitation
model to predict the heat and mass diffusion. Modifications are made to the average bubble
temperature and the Peclet number for thermal diffusivity in the constant-transfer coefficient model.
The evolutions of a spherical bubble triggered by negative pressure pulse are simulated to evaluate
the prediction of heat and mass diffusion by the homogeneous model. The evolutions of three bubbles
inside a rectangular tube are simulated, which show good accuracy of the homogeneous model for
multibubbles in stationary liquid.
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1. Introduction

Cavitation is usually caused by pressure decrease, leading to the growth of bubbles and followed
by their rapid collapse. During the bubble growth, the temperature inside the bubble decreases and
heat transfer occurs. Meanwhile, evaporation occurs at the bubble wall and vapor diffuses into the
bubble. The heat and mass transfer make it complex to accurately predict the bubble dynamics [1–3].
Interface capturing methods, such as VOF and level set, can accurately predict the dynamics of pure
gas bubbles [4]. However, they are inapplicable when there are huge number of bubbles. Instead,
homogeneous models are widely used to simulate the hydrodynamic cavitation.

Homogeneous models usually use the Rayleigh–Plesset-type equations to predict the bubble
dynamics [5–13]. Usually, only the local pressure but not the far-field pressure is known for
numerical simulations. Ye et al. [14] proposed a homogeneous mixture model based on the bounded
Rayleigh–Plesset equation [15]. This model solves the bubble dynamics using the local pressure,
and can accurately predict the bubble dynamics of an isothermal gas bubble before bubble rebound.
As some other homogeneous models [16–18], the heat transfer is simply treated by setting the polytropic
index to be a constant and the mass transfer is simply treated by assuming the vapor pressure to be
constant. Different working conditions need different constants. It is almost impossible to accurately
predict the heat and mass transfer by estimating proper constants. These treatments of heat and mass
transfer need to be improved.

Preston et al. [19] proposed a theoretical model named constant-transfer coefficient model,
which can capture the effect of heat and mass transfer efficiently for a spherical bubble. In this
model, two transport equations are used to, respectively, record the pressure (pGV) and the mass of
vapor (mV) inside the bubble, and two constant-transfer coefficients are used to estimate the heat and
mass flux at the bubble wall. In this study, this model is implemented into the homogeneous mixture
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model proposed by Ye et al. [14], and the calculations of the average bubble temperature and the Peclet
number for thermal diffusivity in the constant-transfer model are modified. In the validation part,
the evolutions of a spherical bubble triggered by pressure pulse are simulated and the evolutions
of three bubbles in a regular arrangement are simulated to evaluate the accuracy for multibubbles.
Comparisons with the predictions by the VOF method and the full computation (uses six equations to
predict the heat and mass transfer) are made.

2. Mathematical Model

2.1. Homogeneous Mixture Cavitation Model

The homogeneous mixture model proposed by Ye et al. [14] is based on the bounded
Rayleigh–Plesset equation [15] as follows:
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where R is the bubble radius, the over dot denotes the derivative in time, pb is the liquid pressure at
the bubble surface, pe is the pressure at r = Re, and ρL is the liquid density.
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where p is the local pressure and α is the volume fraction of gas–vapor mixture. In order to improve
the numerical stability, a minimum collapse rate
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where the subscripts V and 0, respectively, denote the vapor and the initial value, p0 is the initial
pressure outside the bubble, ps0 is the initial vapor saturation pressure, R0 is the initial bubble radius,
γ is the polytropic index, S denotes the surface tension coefficient, and µL is the dynamic viscosity
of liquid. γ = 1 for an isothermal process while γ =κ (adiabatic exponent) for an adiabatic process.
Usually, pV is simply supposed to be equal to ps0, and γ is set to be a constant between 1 and κ. In this
study, the pressure inside the bubble pGV (the subscript G denotes the noncondensable gas) will be
predicted by the constant-transfer coefficient model [19].

2.2. Constant-Transfer Coefficient Model

The constant-transfer coefficient model [19] is a theoretical model for spherical bubble dynamics
that considers the effects of heat and mass transfer. Several assumptions were made: (1) the gas–vapor
mixture was a perfect gas, (2) constant transport properties and surface tension coefficient, (3) thermal
equilibrium and vapor-pressure equilibrium at the gas–liquid interface, (4) pGV was spatially uniform,
(5) the liquid temperature was uniform, (6) no diffusion of noncondensable gas in the liquid, and (7) the
liquid was “cold.”
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Two transport equations are used to, respectively, predict pGV and mV. All variables were
non-dimensionalized in Ref. [19], which are converted into dimensional form in this study. The initial
pGV is determined as:

pGV0 = p0 +
2S
R0

(5)

The source term of the transport equation of pGV is determined by:

dpGV

dt
= −3κw

R

(
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.
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∂y
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− RVD0 pGV
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)
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where T is the temperature, C is the mass fraction of vapor, the subscript w denotes the value at
the bubble wall, κw = CwκV + (1− Cw)κG (κV = 4/3, κG = 1.4), kw = CwkV + (1− Cw)kG, and R =
CwRV + (1− Cw)RG are, respectively, the adiabatic exponent, thermal conductivity, and perfect gas
constant of the gas–vapor mixture at the bubble wall, and cp0 and D0 are, respectively, the specific heat
and the diffusivity of initial gas–vapor mixture. Since the vapor pressure at the bubble wall is assumed
to be in equilibrium, Cw can be obtained by:

Cw =
ps0MV

ps0MV + (pGV − ps0)MG
(7)

where M is the molecular weight. The gradients of C and T at the bubble wall are modeled using
constant-transfer coefficients βC and βT as [19]:

∂C
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where C ≈ mV/(mG0 + mV) is the average vapor mass fraction, T0 is the initial temperature, and T is
the average bubble temperature estimated by Preston et al. [19] as:

T ≈ pGVR3T0

pGV0R3
0

mG0 + mV0

mG0 + mV
(10)

According to the perfect gas law, it is modified to:

T ≈ pGVR3T0

pGV0R3
0

mG0RG + mV0RV

mG0RG + mVRV
(11)

βC and βT are obtained by linear analysis as [19]:

βC= ℛ{Ψ(PeG)} (12)

PeG = R2
0Ω0/D0 (13)

βT= ℛ{Ψ(PeT)} (14)
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0Ω0/kGV0 (15)

Ψ(Pe) =
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− 3
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where PeG and PeT are, respectively, the Peclet numbers for mass and thermal diffusivity, ρGV0 is the
initial density of gas–vapor mixture, and Ω0 is the bubble natural frequency determined by:

Ω0 =

√
3(p0 − ps0) + 4S/R0

ρLR2
0

(17)

mV is predicted by another transport equation, whose source term is as follows:

dmV

dt
= 4πR

D0 pGV
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∂C
∂y

∣∣∣∣
y=1

(18)

The initial mV and mG are determined as:

mV0 =
4
3

πR3
0ρV0 (19)

mG0 =
4
3

πR3
0ρG0 (20)

When pGV is obtained, pb is determined as follows instead of Equation (4):

pb = pGV −
2S
R
− 4µL

.
R

R
(21)

3. Validation

The validation cases are similar to those in [19]. A spherical bubble is triggered by a negative
pressure pulse. The gravity is neglected and the flows are assumed to be laminar. T0 is 298 K and the
negative pressure pulse takes the following form:

p = p0

(
1−Ap·e−(t/tw−3)2)

(22)

Table 1 shows the parameters of these validation cases. Cases A to H simulate the evolutions of
a pure gas bubble to evaluate the prediction of heat transfer. The negative pressure pulse is employed
at the distance of Re = 5 mm away from the bubble (Figure 1). Comparisons are made with the
predictions by the VOF method since it can accurately predict the heat transfer. For better comparison,
the surface tension is neglected. Before the comparison, all these cases are simulated under the
isothermal assumption to validate the accuracy of the VOF method and homogeneous model without
heat transfer, by comparing with the theoretical results predicted by Equation (1). Results show that the
relative differences between the predicted maximum bubble radius by the VOF method and Equation
(1) are less than 0.1%, and those between the homogeneous model and Equation (1) are less than 0.22%.
After the comparisons of one bubble, the validation case of three bubbles [14] is simulated to evaluate
the homogeneous model for multibubbles.

Cases I and J simulate the evolution of a gas–vapor bubble to include the mass transfer. Since
it is complex to consider the phase change for the VOF method, comparisons are made with the
theoretical results by the full computation [19] and constant-transfer coefficient model. It should be
clarified that Re = ∞ in the prediction by the full computation, while Re = 1 m in the prediction by the
constant-transfer coefficient model and homogeneous model. In order to prove the independency of
Re, the dynamics of a pure gas bubble with Re = 1 m and ∞ are simulated by Equation (1) under the
isothermal assumption; the relative difference of Rmax between them is only 0.001%.
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Table 1. Parameters for the validation cases of the spherical bubble triggered by the negative pressure
pulse in Equation (22) at the distance of Re.

Case R0 (µm) Re (mm) p0 (kPa) ps0 (Pa) S (N/m) Ω0 (kHz) βT βC Ap tw (s)

A 10 5 101.325 0 0 1746 5.15 - 1 10−4

B 40 5 20 0 0 193.9 5.02 - 1 10−4

C 40 5 50 0 0 306.6 5.28 - 1 10−4

D 40 5 101.325 0 0 436.5 6.46 - 1 10−4

E 40 5 200 0 0 613.3 9.03 - 1 10−4

F 40 5 500 0 0 969.7 15.7 - 1 10−4

G 40 5 800 0 0 1227 21.4 - 1 10−4

H 100 5 101.325 0 0 174.6 8.69 - 1 10−4

I 40 1000 101.325 3142 0.072 434.9 6.56 6.21 0.985 10−4

J 40 1000 101.325 3142 0.072 434.9 6.56 6.21 0.97 10−3

Processes 2020, 8, x FOR PEER REVIEW 5 of 9 

 

radius of ( ) 1/3
04 3nπ −  (marked in red in Figure 1). Additionally, the initial gas volume fraction inside 

this region is 3
0 04 3n Rπ , which makes the total gas volume equal to 3

04 3Rπ . When using the VOF 
method, special contractions of the mesh are applied around the bubble, and the grid number is about 
eight times larger. Rmax only increases by 0.019% for case D when the grid size around the bubble is 
further decreased by 33%. 

 
Figure 1. Computational grid for the cavitation of a spherical bubble using the homogeneous mixture 
model. The gas phase distributes inside the region marked in red. 

Figure 2 compares R and T  of case D predicted by the VOF method and homogeneous model. 
Both R and T  are a little overpredicted by the homogeneous model before bubble rebound, and 

maxRδ  (the relative difference of Rmax predicted by the homogeneous model and VOF method) is only 
0.18%. The dependences of maxRδ  on R0, tw, and p0 are analyzed based on case D, which are shown in 
Figure 3. Cases A, D, and H are used to analyze the influence of R0, while cases B to G are used to 
analyze the influence of p0. It can be seen from Figure 3a that maxRδ  increases with R0, and maxRδ  < 
1% when R0 ≤ 100 μm (the nucleus radius is usually smaller than 100 μm). It can be seen from Figure 
3b that maxRδ  also increases with p0, and it reaches 4.1% at 800 kPa, which means the heat transfer is 
obviously overpredicted. In order to reduce the heat transfer at large p0, the calculation of PeT 
(Equation (15)) is modified by fixing p0 to the atmospheric pressure. After this modification, maxRδ  at 
800 kPa decreases to 1.1%, much smaller than the original value. It can be seen from Figure 3c that 

maxRδ  is small in a wide range of tw and it is negative at small tw. Figure 3b,c also show the relative 
difference of Rmax between the constant-transfer model and VOF method; the results are quite close 
to the corresponding maxRδ , which means that the predictions by the constant-transfer model and 
homogeneous model are quite close to each other. After the modification to PeT, the heat transfer is 
well predicted by the homogeneous model in wide ranges of R0, p0, and tw; the absolute value of maxRδ  
is below 1.5%. 
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3.1. Gas Bubbles

Figure 1 shows the 2D computational grid for the homogeneous mixture model, which contains
1718 quadrilateral meshes. Rmax decreases by 0.11% for case D when the grid number is increased to
5087. The bubble is located at the lower-left corner of the computational domain. Since there is only
one bubble, a virtual initial bubble number density (n0) of 109 m−3 is given inside the region with the
radius of (4πn0/3)−1/3 (marked in red in Figure 1). Additionally, the initial gas volume fraction inside
this region is 4πn0R3

0/3, which makes the total gas volume equal to 4πR3
0/3. When using the VOF

method, special contractions of the mesh are applied around the bubble, and the grid number is about
eight times larger. Rmax only increases by 0.019% for case D when the grid size around the bubble is
further decreased by 33%.

Figure 2 compares R and T of case D predicted by the VOF method and homogeneous model.
Both R and T are a little overpredicted by the homogeneous model before bubble rebound, and δRmax

(the relative difference of Rmax predicted by the homogeneous model and VOF method) is only 0.18%.
The dependences of δRmax on R0, tw, and p0 are analyzed based on case D, which are shown in Figure 3.
Cases A, D, and H are used to analyze the influence of R0, while cases B to G are used to analyze
the influence of p0. It can be seen from Figure 3a that δRmax increases with R0, and δRmax < 1% when
R0 ≤ 100 µm (the nucleus radius is usually smaller than 100 µm). It can be seen from Figure 3b that
δRmax also increases with p0, and it reaches 4.1% at 800 kPa, which means the heat transfer is obviously
overpredicted. In order to reduce the heat transfer at large p0, the calculation of PeT (Equation (15)) is
modified by fixing p0 to the atmospheric pressure. After this modification, δRmax at 800 kPa decreases
to 1.1%, much smaller than the original value. It can be seen from Figure 3c that δRmax is small in
a wide range of tw and it is negative at small tw. Figure 3b,c also show the relative difference of Rmax
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between the constant-transfer model and VOF method; the results are quite close to the corresponding
δRmax, which means that the predictions by the constant-transfer model and homogeneous model
are quite close to each other. After the modification to PeT, the heat transfer is well predicted by the
homogeneous model in wide ranges of R0, p0, and tw; the absolute value of δRmax is below 1.5%.
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Figure 3. Dependences of δRmax on (a) R0, (b) p0, and (c) tw based on case D. The differences of Rmax

between the predictions by the homogeneous model and VOF method are small except at large p0, and
this difference is obviously reduced using modified PeT.

Then the homogeneous model is used to simulate three gas bubbles trigged by the pressure
pulse in Equation (22), which was simulated by Ye et al. [14] under the isothermal assumption.
The parameters are as follows: R0 = 50 µm, T0 = 298 K, S = 0, n0 = 109 m−3, p0 = 101325 Pa, βT = 6.82,
and Ap = 1.4; two cases are simulated with tw = 20 and 200 µs. The computational domain and
boundary conditions are shown in Figure 4. The size of the computational domain is 0.5 mm × 0.5 mm
× 50 mm. The pressure pulse is specified at the right face, whereas p0 is specified at the left face,
and the rest four are symmetry planes. Three bubbles are placed inside the computational domain
in a regular arrangement at the interval of 1 mm. The computational grids are the same as that in
Ref. [14]. Briefly, 1.23 million elements are employed for the VOF method while 500 elements are
employed for the homogeneous model. Figure 5 compares the total bubble volume predicted by the
VOF method and homogeneous model. It can be seen that the bubble volume is well predicted by the
homogeneous model with the consideration of heat transfer. The maximum bubble volume of the two
cases predicted by the homogeneous model are, respectively, 1.5% (tw = 20 µs) and 0.63% smaller than
the corresponding values predicted by the VOF method. The underestimate of the bubble volume is
more obvious at smaller tw, since the bubble radius is underestimated by the constant-transfer model
at small tw, as shown in Figure 3c.
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3.2. Gas–Vapor Bubbles

The computational grid for cases I and J is similar to Figure 1, with Re be increased to 1 m and the
grid number be increased to 34,000. Figure 6 compares R, T, C, and Cw of case I predicted by the full
computation [19], constant-transfer model, and homogeneous model. R is a little overpredicted and T
is underestimated by the homogeneous model and constant-transfer model, which might be due to
the overprediction of evaporation. Figure 7 compares R of case J predicted by the full computation,
constant-transfer model, and homogeneous model. The prediction by the homogeneous model shows
good agreement with that by the constant-transfer model; the relative difference of Rmax between these
two methods is below 0.26%. It can be seen from Figure 3c that the bubble radius can be well predicted
if the evaporation of case J is neglected, thus the overprediction of Rmax of case J is mainly due to the
overprediction of evaporation.
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Figure 7. Bubble radius of case J predicted by the full computation [19], constant-transfer model,
and homogeneous model. Rmax is overpredicted by around 2.5% by the constant-transfer model and
homogeneous model.

4. Conclusions and Prospects

The constant-transfer coefficient model is implemented into a homogeneous cavitation model
to consider the heat and mass transfer inside the bubble. Two transport equations are added to,
respectively, record the pressure and the mass of vapor inside the bubble. The calculations of the
average bubble temperature and the Peclet number for thermal diffusivity in the constant-transfer
coefficient model are modified. According to the validation cases of pure gas and gas–vapor bubbles,
the numerical predictions by the homogeneous model match well with the theoretical predictions by
the constant-transfer coefficient model: the relative difference of Rmax between these two methods is
below 0.26%; the prediction of heat transfer at large initial pressure is obviously improved after the
modification to the Peclet number for thermal diffusivity: the relative error of Rmax at p0 = 800 kPa
decreases from 4.1% to 1.1%. According to the validation cases of three gas bubbles, the cavitation of
multibubbles in stationary liquid can be well predicted by the homogeneous model.

This paper focuses on the bubble dynamics in stationary liquid; the influences of nucleation
and turbulence-cavitation interaction need to be considered in future, which are important for
hydrodynamic cavitation.
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