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Abstract: The installed productive capacity of a healthcare center’s equipment limits the efficient
use of its resources. This paper, therefore, analyzes the installed productive capacity of a hospital
angiography room and how to optimize patient demand. For this purpose, a Discrete Event Simulation
(DES) model based on historical variables from the current system was created using computer
software. The authors analyzed 2044 procedures performed between 2014 and 2015 in a hospital in
San José, Costa Rica. The model was statistically validated to determine that it does not significantly
differ from the current system, considering the DMAIC stages for continuous process improvement.
In the current scenario, resource utilization is 0.99, and the waiting list increases every month.
The results showed that the current capacity of the service could be doubled, and that resource
utilization could be reduced to 0.64 and waiting times by 94%. An increase in service efficiency
could be achieved by shortening maximum waiting times from 6.75 days to 3.70 h. DES simulation,
therefore, allows optimizing of the use of healthcare systems’ resources and hospital management.

Keywords: discrete events simulation; hospital management; process model; installed productive
capacity; healthcare engineering

1. Introduction

Discrete Event Simulation (DES) is an approach to event-based simulation through which a real
productive system can be represented, whether for goods or services, using a dynamic model over
time [1,2]. This type of simulation is recognized as a suitable technique for the quantitative analysis
of highly complex operations, since it can provide objective elements to traditional management in
construction, where decision mechanisms based on the intuition and experience of the decision-makers
involved in the project persist [3].

Part of the complexity considered by the DES models corresponds to the nature of the activities
to be represented and the variables involved. For healthcare services, the type of procedure to be
performed, the human resources involved (doctors, technicians, nurses, others), the infrastructure and
equipment, the coordination of the services and, undoubtedly, the specific condition of each patient
must be considered [4].

The complexity underlying healthcare services is related to high acquisition and operation
costs [5]. They require an adequate amount of resources to ensure quick attention times for patients and
financial sustainability over time for appropriate use of resources and avoidance of idle or overload
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problems [6,7]. Some services, such as coronary computed tomography angiography (CCTA), are costly,
ranging from $4630 to $8380 per patient, due to the complexity of the equipment, the materials, the
procedures and the technical personnel involved [8].

Among the uses of DES models are cost assessments of implementing new therapeutic technologies
for patients with major depressive disorders, in which they yield better results compared to other
models such as the Markov model [9]. This study focuses on logistical elements to determine the
resources needed to meet current demand and reduce waiting times, although it does not incorporate
cost and economic analysis.

Ambulance management is another example of the application of DES models, where the
interaction of elements such as patients, hospitals and health authorities is considered in the analysis
of response times of these units, mainly for patients with Acute Coronary Syndrome [10]. Unlike this
case, the model focuses on the interaction of the arrival of patients with the resolution capacity of the
angiography room by defining the resources needed, instead of using optimal distribution routes.

Another DES application was carried out in the orthopedics and neurosurgery specialties, where
the objective was in the possible configurations of both services to reduce waiting lists and attention
times [11]. The proposed model considered the availability of different amounts of resources for patient
care considering the utilization rate and waiting times to determine the optimal level of resources.

One of the concerns of emergency departments is the availability and occupation of beds for their
patients. DES models have been used to analyze different queuing disciplines in these situations,
with triage prioritization being the most convenient [12].

Another way in which the performance of an emergency department can be assessed is by
analyzing different scenarios considering the physical layout of the site, which can improve bed
utilization rates [13]. The model developed considers a queue discipline for First-In-First-Out (FIFO)
patients, which was used in the service while data were being collected. The research also focuses on a
room that performs catheter angiographic procedures and not on a functional healthcare center service,
for which it is essential to consider that the emergency department may require the angiography room
in some instances.

Another element for analyzing the efficiency of healthcare services is the bottleneck (process
restriction), which determines the maximum number of patients that can be attended to and the
average waiting time required to receive care. This situation occurs when the demand exceeds the
supply or installed productive capacity of a service. In some cases, this restriction is based on the time
it takes the patient to get from one place to another [14]. The analysis of this study also considers the
constraints theory. However, it is based on the installed productive capacity of the angiography room
under the conditions at the time of the study and scenarios where the supply is increased to reduce
patient waiting times.

Waiting time is often one of the causes of dissatisfaction among healthcare service users, particularly
in patient registration, which is the first contact with users. In these services, with a 24 h availability,
simulation is considered as an option to devise improvements that do not affect operation [15].
This analysis consisted only in verifying and validating the simulation model carried out and proposes
the analysis of resource requirements through scenarios for future work. This is one of the actions
carried out in the project developed by the research group.

Easter et al. (2019) evaluated the performance of nine emergency department distribution design
proposals by simulating discrete events and defined which option provides the best performance,
combined with other elements such as one-way and two-way analysis of variance (ANOVA) [13].
However, they used data with an empirical distribution to build the models. In contrast, in this
study, the authors used a constant arrival rate, and the server rate considers a parametric probability
distribution obtained from historical hospital data.

Discrete Event Simulation is one way to analyze the installed productive capacity of healthcare
services, which generally experience long waiting time problems due to factors such as demand growth,
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access limitations and capacity reduction [16]. The analysis carried out focuses on determining the
installed productive capacity of the angiography room to attend the demand.

Shortening waiting times is critical in the provision of healthcare services to ensure timely care and
avoid compromising patients’ integrity and increasing operating costs. The greater the pathological
complexity treated, the higher the operating cost; hence, the importance of analyzing patient flow
throughout the process to reduce waiting times [17,18].

Sometimes the process restrictions that affect patient flow correspond to clinical support services
(laboratory, medical imaging, and others) or operational services such as administrative staff [19].
This research considers the participation of resources as a whole and not separately, where even the
angiography room could be seen as a support service to the cardiology specialty due to the procedures
performed there.

Although the literature analyzed is extensive, no precedents have been found of similar works
that use simulation techniques based on discrete events to optimize the demand for care in high-tech
hospital wards.

This paper analyzes the installed productive capacity of an angiography room using Discrete
Event Simulation (DES) as support to decision-making processes, where the number of equipment
required to meet patient demand must be determined, the need to hire more staff must be evaluated,
and even the acquisition of new buildings must be made, all under a logistic approach applied to
high-tech rooms, such as those used to perform catheter angiography procedures. This will provide a
suitable tool for optimizing hospital management.

2. Materials and Methods

During the research, a Discrete Event Simulation (DES) model was created, and a simulated
model based on historical variables from the current system was built with software. The authors
analyzed the duration of 2044 procedures performed between 2014 and 2015 at a hospital in San Juan
(Costa Rica). The DES model considers these elements to determine critical variables such as patient
flow through the several stages and departments of the process, attention times, logical sequence of
activities and waiting times, among others [3,13].

At the time of the study, the hospital had an angiograph for performing cardiac catheterization,
an anesthesia machine, defibrillation and contrast injection equipment, as well as shelves to store the
materials and supplies used during the procedures. It also has a control area, dressing rooms for men
and women, a laundry area and a wardrobe. Right next to it, there is a space with six beds and wall
monitoring equipment for the patients to whom the angiographic procedures are performed. Generally,
patients must be admitted into hospital 24 h before the operation with the angiograph and remain
hospitalized between 24 and 72 h after, depending on the complexity of the procedure to monitor their
evolution. All these elements are specified in Figure 1.

The structure used in this research was based on the DMAIC methodology, composed of several
stages (Define, Measure, Analyze, Improve and Control), which is part of the continuous process
improvement methodology known as six sigma, used to reduce variability in the processes of goods
and services.

Define stage: The variability problem is established and will be addressed in the study [20].
It corresponds to reducing the number of patients on the waiting list for an angiography procedure [9].
Once the problem has been defined, the objective is to analyze the installed productive capacity in
health services by simulating discrete events, with which to compare the number of patients expected
to be treated in the angiography room with the proposed capacity.

Measure stage: A data collection plan was defined for the variables selected for the simulation
model. To this end, the official information sources available to the health service under study were
validated. The data correspond to records from the last seven years before this study. Table 1 shows
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the variables considered. The type of probability distribution had to be determined for cycle time data.
For this purpose, a goodness-of-fit test was applied to the observed data, following Equation (1).

X2 =
∑k

i=1

(oi − ei)
2

ei
(1)

where X2 is a value of a random variable whose sample distribution approximates the chi-square
distribution with v = k − 1 degree of freedom, where k is the total of data that compose the sample.
The variables oi and ei represent the observed and expected frequencies, respectively, for the i-th cell.

This test was performed at different parametric probability distributions, and the one with the best
fit to the data is selected, considering the mean square error. The tool used for the analysis is INPUT
ANALYZER version 15.10.00 (2019) (Rockwell Automation, Milwaukee, WI, USA) in the ARENA
software version 15.10.00001 (2019) (Rockwell Automation, Milwaukee, WI, USA), which was also
used to develop the simulation [21].

Analyze stage: A simulation model of discrete events using ARENA software was created to
determine how the installed productive capacity of the current service (supply) relates to patient
demand. This simulation model considered the variables defined in the measure stage and other
relevant elements of the current system under study. The discrete events discussed in this model
correspond to the patients’ arrival and care in the angiography room.

Figure 2 shows the elements considered in the simulation model created in ARENA, where
the entity that runs the process is the patient, the angiography room is the resource that the entity
takes, uses and then releases. When the entity finds the occupied resource, it queues using the
First-In-First-Out (FIFO) discipline, and then, it exits the system.
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Table 1. Data collection plan for the study.

Variables Description Variable
Type Source

Number of patients
served Number of patients seen in the angiography room by year Quantitative,

discrete
Healthcare center

operating software

Number of patients
on waiting lists

Patients registered pending a procedure in the
angiography room

Quantitative,
discrete

Healthcare center
operating software,

waiting list

Cycle time in the
room (µ)

The average duration of procedures performed in the
angiography room. This time includes when the patient is

admitted until he or she leaves the room.
Quantitative,
continuous

Healthcare center
operating softwareµ =

∑n
i=0 Si
n

S = Cycle time for patient i
n = Total number of patients seen in the service

Arrival time
between patients

(λ)

The average time of arrivals between patients.
Quantitative,
continuous

Healthcare center
operating software

λ =
∑n

i=0 ti
n

t = Time between arrivals for patient i
n = Total number of patients arriving at the service

Patient demand
It is the total amount of patients that require the service in
a year, considering both those served, on the waiting list

and those cancelled

Quantitative,
discrete

Healthcare center
operating software

Average waiting
time The average waiting time in the system and in queue Quantitative,

continuous Simulation model

Average number of
patients waiting

The average number of patients waiting to be seen in the
angiography room

Quantitative,
discrete Simulation model

Utilization rate
The ratio between the time between arrivals and the time. Quantitative,

continuous
Simulation model

Utilization = λ
µ
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Figure 2. Simulation model made for the angiography room.

For complementing the DES model, Figure 3 shows the state transition diagram. In this case, the
simulation model begins when the patient’s arrival with a constant time of 0.7 h, is in this moment
when the angiography room acquires the state of Busy and assign a time in minutes with a Beta
probability distribution, such as shown in Equation (6), for the attention of each patient. While the
angiography room has this state, also more patients join the system, which causes the queue and the
waiting time increases. When the angiography room does not have patients, it acquires the status of
Idle and does not assign time to the resource. Finally, at the end of the available simulation time, the
angiography room becomes inactive [22,23].

The scope of the project is delimited in knowing if the current resources are sufficient to meet the
patient’s demand for the service. That is why, when the angiography room is mentioned, reference
is made to the human resource (specialist doctors, technicians, nurses), angiography equipment
and infrastructure.
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Additionally, the simulation model created was validated statistically compared to the current
system carried out using confidence intervals. For this purpose, production data for one month (X)
were taken and compared with the data from the simulation (Y) for the same period. If the interval
created from this dataset contains zero, it indicates that there is sufficient evidence not to reject the null
hypothesis that there are no differences, otherwise, if there are [24,25]:

H0: X = Y (2)

Ha: X , Y (3)(
X −Y

)
± t(υ−1,1−α) ∗

√
σ2

X−Y (4)

where H0 is the null hypothesis. Ha is the alternative hypothesis. The variable X represents the
data obtained from the current system, corresponding to the data obtained by the simulation model,
X corresponds to the average of the data obtained by the current system. Y is the average of the data
obtained by the simulation model. t is the statistic of a probability distribution t par ν − 1 degrees
of freedom and a degree of confidence of 1 − α. σ2

X−Y is the variance of the difference of the current
system data compared to the data of the simulation model.

Improve stage: At this stage, new scenarios are proposed for the service provided in the
angiography room. The aim is to bring the installed productive capacity into line with the current
demand for the service, mainly by varying the amount of resources available [25].

Control stage: The purpose of this phase is to implement the improvement in the original process.
A series of indicators have, therefore, been developed with which the performance of the process can
be monitored to determine whether the objective of the study has been met. The indicators considered
in the simulation model were current patient demand, unmet patient demand, angiography room
supply and angiography room utilization rate.
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3. Results

3.1. Current Supply and Demand

Data for the last twelve months of output and demand for the angiography room are shown in
Table 2. The monthly output corresponds to the procedures performed in the angiography room for
the period under study. The demand considers the monthly output plus the cancelled procedures and
the waiting list, which totals 2325 cases.

Table 2. Monthly comparison table of production and demand in the angiography room.

Month Monthly Demand
(Procedures) Cancellations Waiting List Monthly Output

(Procedures)

1 58 26 5 27
2 107 5 8 94
3 201 7 9 185
4 217 3 11 203
5 266 5 15 246
6 281 3 17 261
7 260 6 15 239
8 164 4 21 139
9 205 7 24 174
10 195 4 21 170
11 181 5 19 157
12 190 9 32 149

Total 2325 84 197 2044

The gap between demand and production translates into an increase in the waiting list of patients
requiring the angiography room. This gap can be seen in Figure 4, where production is always below
the demand for the service. Additionally, the variations in the curve show how susceptible production
is to resource availability.
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Figure 4. Monthly demand and output of procedures in the angiography room.

Given the constant difference between supply and demand for the service, the waiting list increases
every month, generating ever longer waiting times for patients, as shown in Figure 5. Regarding care
in a public healthcare service, this situation will lead to a constant increase in the list. In contrast,
a private healthcare system will suffer a considerable market loss because patients will have to seek
other alternatives for service providers.
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3.2. Arrival Time between Patients (λ)

An average of 9.3 patients would have to be seen per day or its equivalent in time, i.e., that a
patient arrives every 0.7 h [26], in order to incorporate into the model an annual demand of 2325
procedures in the angiography room, during 250 days a year, in which there are 6.5 h of equipment
availability to perform the required procedures.

Additionally, the probability distribution was analyzed by the INPUT ANALYZER. The authors
identified that the data followed a normal parametric distribution, with a mean of 6.26 patients
and a standard deviation of 2.14 patients per day. Equation (5) shows the parameters of the
normal distribution:

NORM(6.26, 2.14), (5)

Figure 6 shows the histogram generated by the INPUT ANALYZER for daily patient arrivals.

Processes 2020, 8, x FOR PEER REVIEW 9 of 16 

 

NORM(6.26, 2.14),  (5) 

Figure 6 shows the histogram generated by the INPUT ANALYZER for daily patient arrivals. 

 
Figure 6. Histogram generated for daily patient arrival. 

The goodness-of-fit test shows that the smallest square error is for the normal probability 
distribution with a value of 0.00295, which was the best fit for the number of patients arriving at the 
angiography service. The Table 3 shows the results by the goodness-of-fit tests applied to ten different 
probabilities distributions. 

Table 3. Error table for daily arrival goodness-of-fit tests. 

Function Sq. Error 
Average 0.00295 

Triangular 0.00485 
Weibull 0.00517 

Beta 0.00616 
Poisson 0.0088 
Erlang 0.0163 

Gamma 0.0166 
Lognormal 0.0292 

Uniform 0.0447 
Exponential 0.083 

3.3. Cycle Time in the Room (μ) 

As for cycle time, the records of the room times were used, and the INPUT ANALYZER 
determined that they have a Beta probability distribution represented by Equation (6), expressed in 
minutes. 

T = 0.5 + 33 * BETA(0.732, 3.14) (6) 

where, T represents the cycle time with a probability distribution shown as Beta, according to the 
notation used by the INPUT ANALYZER. 

Figure 7 shows the probability distribution identified by the INPUT ANALYZER for the cycle 
time of the angiography room. 
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The goodness-of-fit test shows that the smallest square error is for the normal probability
distribution with a value of 0.00295, which was the best fit for the number of patients arriving at the
angiography service. The Table 3 shows the results by the goodness-of-fit tests applied to ten different
probabilities distributions.
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Table 3. Error table for daily arrival goodness-of-fit tests.

Function Sq. Error

Average 0.00295
Triangular 0.00485

Weibull 0.00517
Beta 0.00616

Poisson 0.0088
Erlang 0.0163

Gamma 0.0166
Lognormal 0.0292

Uniform 0.0447
Exponential 0.083

3.3. Cycle Time in the Room (µ)

As for cycle time, the records of the room times were used, and the INPUT ANALYZER determined
that they have a Beta probability distribution represented by Equation (6), expressed in minutes.

T = 0.5 + 33 ∗ BETA(0.732, 3.14) (6)

where, T represents the cycle time with a probability distribution shown as Beta, according to the
notation used by the INPUT ANALYZER.

Figure 7 shows the probability distribution identified by the INPUT ANALYZER for the cycle
time of the angiography room.Processes 2020, 8, x FOR PEER REVIEW 10 of 16 
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By applying goodness-of-fit tests, the authors determined that the Beta distribution has the best
fit, with the lowest error of all probability distributions evaluated. The Table 4 shows the results by the
goodness-of-fit tests applied to ten different probabilities distributions.

Table 4. Error table for cycle time goodness-of-fit tests in the angiography room.

Function Sq. Error

Beta 0.0105
Gamma 0.0149
Weibull 0.015

Lognormal 0.0153
Exponential 0.018

Erlang 0.018
Triangular 0.0485
Average 0.0519
Uniform 0.0711
Poisson 0.124
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3.4. Simulation Model

Among the assumptions used in the simulation model is that one working day corresponds to
6.5 h, so 21 days are equivalent to one month of output in service. The daily rate of patients requiring a
procedure has a normal probability distribution with a mean of 6.26 patients and a standard deviation
of 2.14 patients. This situation shows how stable the demand is over time. To meet the annual demand
of 2325 patients per year, the authors decided to establish the time between patient arrivals in the
system as a constant at 0.7 h, which is equivalent to 9.3 patients per day.

The cycle time of the procedures performed in the angiography room expressed in minutes has
a Beta distribution represented by Equation (6), which clearly shows a bias to the right due to the
variability of the times analyzed and the complexity of the procedures performed.

Each month, 196 patients are incorporated into the simulation model, and an average of 148
procedures (each procedure equals one patient) are performed in the angiography room. With these
data, a monthly average of 24 patients is added to the waiting list. This information is obtained by
running 12 replications of the simulation model, where a utilization rate of 0.99 was quantified for the
angiography room and a waiting time of 6.75 days. The average wait was 2.46 days.

Figure 8 shows how, as the days go by, an ever-widening gap opens between the patients who
enter the system and the patients who have attended, which is known in health services as the waiting
list. This gap corresponds to the difference between supply and demand for the service.Processes 2020, 8, x FOR PEER REVIEW 11 of 16 
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3.5. Validation of the Simulation Model

The monthly production results obtained from the 12 replications of the simulation model were
compared with the 12 monthly data collected from the current system, calculating the difference
between them. A 95% confidence interval of (−89.83, 133.66) was obtained. Zero was among the values
of the interval. The authors, therefore, conclude that there is no significant variation between the
results presented by the simulation model and the current system on which the design was based.

3.6. Improvement Scenario 1: To Have Two Angiography Rooms

The primary aim is to improve the current situation and to do that, the current capacity of the
resource, i.e., the angiography room, could be doubled, which is equivalent to incorporating an
additional room or outsourcing the service.

The simulation model maintains the same conditions; however, the capacity of the resource is
doubled, which means that the average number of procedures performed per replication is 194.42,
and the average waiting time per patient is 0.11 h (6.85 min approximately). The maximum waiting time
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recorded in the responses was 0.57 days (about 3.71 h). The use of the resource, the angiography room,
goes to 0.64, with the capacity to attend to eventualities such as increases in demand, maintenance
shutdowns or other contingencies that may arise in the daily operations of the room. The average
number of patients on the waiting list would increase to 1.45, which would cover the demand for
the service.

Figure 9 shows the small gap between supply and demand for the proposed scenario over the
time considered in the simulation model. This means that the system has sufficient installed productive
capacity to meet the required demand. The small differences between the two lines represent the
patients on the waiting list.Processes 2020, 8, x FOR PEER REVIEW 12 of 16 
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Figure 9. Supply and demand of the simulation model created for the enhancement scenario, where an
additional angiography room is incorporated.

3.7. Improvement Scenario 2: Enable an Additional Second Shift

The model maintains the same current parameters. However, the angiography room has a time
availability of 13 h per day and the arrival of patients is maintained at a schedule of 6.5 h with a rate of
arrivals of 1 patient every 0.7 h or the equivalent of 1.43 patients per hour. The average number of
patients that attended is 197.92, with a 95% confidence interval of (167, 222), and the average waiting
time per patient is 2.06 h, with a maximum of 16.50 h.

The angiography room reports a utilization rate of 0.64 with these new parameters, the same as
with the previous scenario, which enables having sufficient idle capacity to cover possible eventualities
such as those mentioned above.

Figure 10 shows the same situation as in the previous scenario, a small gap between supply and
demand, which means that the system has sufficient installed productive capacity to meet the required
demand. The small differences between the two lines represent patients on the waiting list but have
attended in the short term.
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4. Discussion

Attendance time in the angiography room has a wide variability, represented by a wide confidence
interval. When representing the current conditions of the process, the utilization of the room was 0.99,
showing that it is at full capacity and has no chance of meeting possible contingencies in the process,
which causes it to generate a waiting list that increases substantially over time. On average, 24 patients
a month wait for their treatment [2,27].

For the options considered, the current capacity doubles in both cases, either by acquiring an
additional angiography room or by enabling an additional work shift. Although, in both cases, the
utilization rate is 0.64, which provides an idle capacity to meet possible increases in demand and both
routine and sporadic maintenance items [28]. The difference between these lies in the patients’ waiting
time. Enabling a second shift generates a longer waiting time that can reach 15 h equivalent to just over
a day, while the wait would be close to 3.71 h with a new room. The waiting times are significantly less
with either option, which is currently at 6.75 days [29,30].

Incorporating an angiography room requires significant design and implementation time, and
while these start-up activities are being considered, the waiting list will continue to grow [31–33].
Besides, a new building and the required angiography equipment come with high initial investment.
In contrast, the fitting out of an additional work shift would only require the operating costs of supplies
and specialized technical personnel to perform the daily surgical procedures [34]. The Table 5 shows
an analysis of expense by each scenario.

Table 5. Types of expenses to be considered in each proposed improvement scenario.

Type Purchase of Additional
Angiography Room

Enable a Second Shift
in the Current Room

Building design x
Building construction x

Purchase of angiography equipment x
Purchase of supplies x x

Recruitment of specialized technical staff x x

The availability of beds is another point that must be considered in the analysis of installed
productive capacity since sufficient quantities must be guaranteed to hospitalize patients one day
before and between one and three days after the procedure [35].

It is essential to consider that although the results of the proposed model indicate limited or zero
waiting times, patients do not always want immediate care [36]. If the patient is a mother who is
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fully dedicated to the care of her children, she will need to find a caregiver for the time she will be
away. A worker may require some time in advance to prepare for their absence [37]. This is the case in
elective procedures, not emergencies [13].

Social security systems have waiting lists. The problem is greater or lesser, depending on the
resources available to the system [38]. Spain, Italy, England, New Zealand, Canada, and Australia are
the countries with the most documented waiting lists situation. According to the OECD, “in the wake
of the recent economic downturn and severe pressures on public budgets, waiting times may again be
on the rise” [39].

The DES models are created with different assumptions according to the needs or problems that
require be analyzed; in this case, it focused on analyzing the amount of resources necessary to meet the
demand of patients, therefore, this document explained that the arrival time between patients, as well
as the cycle time has kept constant. The only factor that changes in the model is the amount of resource
until it has enough installed productive capacity to meet the demand. Additionally, the activities
carried out within the angiography room are standardized and present a series of clinical and legal
requirements to identify the integrity of patient care, which are outside the logistical scope of this
investigation [13].

The real variability of the time data is represented in the model by the probability distributions
used and they were statistically validated [40].

In the improvement process, usually the reorganizing or eliminating of some of the activities that
do not have value added are considered. However, this is not the target in this project because this
process has activities with medical and legal requirements that must be considered in the attention of
the patient; these aspects that are outside the logistical focus of this research [41].

This paper technically demonstrates that the proposal is viable and solves a significant and latent
problem for social security systems. Future research should focus on applying this methodology to the
optimization of waiting times in other care areas of a hospital.

5. Conclusions

The authors used the Discrete Event Simulation model to determine that the current installed
productive capacity in the angiography room is not sufficient to meet demand, given that it has
a utilization rate of 0.99. Therefore, doubling the current capacity results in a utilization of 0.64.
The most favorable recommendation is, therefore, to enable a second shift because it is more economical
and reduces patient waiting times, compared to building a new angiography room or the current
service offering.

However, if with the information provided in this study and with the availability of budget,
it is considered appropriate to build a properly equipped building, the time required until the
implementation would be not less than one year. For this, a second shift should be provisionally
made available to avoid the waiting list from increasing because according to the model developed,
the average monthly number of patients on the waiting list is 24, reaching a maximum of 71 in some
replications. Although both improvement proposals reduce the utilization rate to 0.64 and increase the
monthly output of the angiography room to 200 patients, having an additional shift increases patient
waiting times compared to enabling a parallel resource.

During the research, DES simulation proved to allow for the optimization of the use of resources
used in healthcare systems and is a suitable tool for optimizing hospital management.
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