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Abstract: Cupriavidus necator DSM 545 can utilise glycerol to synthesise poly(3-hydroxybutyric acid)
under unbalanced growth conditions, i.e., nitrogen limitation. To improve poly(3-hydroxybutyric acid)
(PHB) batch production by C. necator through model-guided bioprocessing or genetic engineering,
insights into the dynamic effect of the fermentation conditions on cell metabolism are crucial. In this
work, we have used dynamic flux balance analysis (DFBA), a constrained-based stoichiometric
modelling approach, to study the metabolic change associated with PHB synthesis during batch
cultivation. The model employs the ‘minimisation of all fluxes’ as cellular objectives and measured
extracellular fluxes as additional constraints. The mass balance constraints are further adjusted based
on thermodynamic considerations. The resultant flux distribution profiles characterise the evolution
of metabolic states due to adaptation to dynamic extracellular conditions and provide further insights
towards improvements that can be implemented to enhance PHB productivity.

Keywords: metabolic modelling; poly(3-hydroxybutyric acid); flux balance analysis;
bioprocess; constraint-based stoichiometric modelling; pseudo-steady state; thermodynamics;
data-driven approach

1. Introduction

In recent decades, biopolymers produced naturally have gained much attention due to rising
concerns about environmental issues caused by fossil fuel-based plastics along with a growing strategic
interest in bioeconomy. Poly(3-hydroxybutyric acid) (PHB) is the most commonly produced type of
natural polyhydroxyalkanoates (PHAs), which features biodegradability and biocompatibility [1]. PHB
can be synthesised as an intracellular carbon and energy storage compound in the form of cytoplasmic
inclusion when bacteria grow under unbalanced nutrient conditions, typically when essential growth
nutrients, such as N and P, are limiting [2–4]. Due to having physical properties comparable to those of
conventional plastics, PHB and its copolymers find potential applications in moulding [5], food and
agriculture industry [3,6–8] and in biomedical industry [9,10]. Nevertheless, the choice of carbon
sources remains a major limiting factor in the development of economically viable, large-scale and
technologically feasible biopolymer processes. The use of low-cost substrates derived from sustainable
sources is desirable and thus has been intensively investigated [11–14].
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Meanwhile, in biodiesel production, vegetable oil is converted into methylated fatty acid via
transesterification reaction. In this process, a notable amount of crude glycerol is generated as the
main byproduct, which accounts for 10% weight of oil consumed [15]. The ever-expanding biodiesel
industry happens to provide a stable supply of a large amount of crude glycerol as an inexpensive
and renewable carbon source for microbial growth [15]. With appropriate bacterial strains and culture
conditions, PHB derived from glycerol can have molecular weights comparable to those derived from
glucose [16]. Thus, the bioconversion of crude glycerol to PHB shows potential to be a win-win strategy
as it addresses both the environmental performance and the economic viability aspect of both the
biodiesel and biopolymer processes.

C. necator is a Gram-negative soil bacterium capable of accumulating PHB up to 80% of its total
weight [17], and maintaining decent yield and productivity in the presence of impurities in crude
glycerol [18,19]. In particular, C. necator DSM 545, a glycerol positive strain, has attracted research
interest in the area of PHB biosynthesis [12,20–23]. Thanks to the advancement in high-throughput
DNA sequencing technology, a growing number of complete metabolic maps or main metabolic routes
have been determined for most industrially important strains, including C. necator. This facilitates the
construction of metabolic models, which not only offer microscopic insights into intracellular reactions
related to biosynthesis but also provide a rational basis for genetically engineering a strain to achieve
desirable phenotypes.

In principle, there are two types of metabolic models: stoichiometric metabolic models and
kinetic models [24]. Building kinetic models requires knowledge of enzymatic kinetics of intracellular
reactions and input of necessary fluxomics/metabolomic data sets. However, this information is
still not available or well understood for most microorganisms other than typical model organisms
(e.g., E. coli) [25,26], which means such models can be difficult to validate and are limited in terms of
scope. In comparison, stoichiometric models require primarily information on reaction stoichiometry
of the metabolic network. Hence, stoichiometric modelling is deemed as a more plausible approach to
explore the knowledge of cell metabolism of C. necator [27].

Several stoichiometric modelling approaches have been developed so far, with each of them
exploiting a different area of knowledge in microbial metabolism at steady state [27]: metabolic flux
analysis (MFA) is used to estimate intracellular flux distributions that satisfy measured extracellular
fluxes [28]; flux balance analysis (FBA) can predict flux distributions that optimise specific cellular
objectives (e.g., cell growth) [29]; elementary modes and extreme pathways are network-based pathway
analysis methods, which generate sets of flux vectors compatible with the biochemical networks
using convex analysis [30,31]. In addition, sampling methodologies have been developed to address
uncertainties in metabolic networks and discriminate between flux combinations reaching the same
optimal flux values [32].

In recent years, several studies of the metabolism of C. necator DSM545 using stoichiometric
methods have been carried out. For example, Lopar et al. have used elementary flux modes and yield
space analysis to study PHB production from glycerol [33], in which multiple sets of elementary modes
were obtained to test different assumed metabolic situations.

Metabolic modelling techniques can also be extended to visualise the evolution of intracellular
fluxes in dynamic systems such as batch and fed-batch cultures [34,35]. Dynamic metabolic flux
analysis (DMFA) has been used to investigate the transient response of metabolism in E. coli [36] and
human cell line AGE1.HN culture [37] under various environmental conditions; when combined with
macroscopic kinetics or process parameters, dynamic flux balance analysis (DFBA) could simulate
shifts of cellular phenotypes [38,39], and identify bottleneck pathways in biochemical networks [40].

In this work, we focused on analysing the dynamics of metabolism of C. necator DSM 545 under
different batch conditions using DFBA. Constrained by time-series of extracellular fluxes, the analysis
can estimate intracellular dynamics without using kinetic parameters. Estimated flux distribution
profiles were compared in order to gain understanding of the growth behaviours under different
conditions, as well as metabolic shifts caused by environmental changes. The analysis can be useful
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for improving PHB productivity by revealing beneficial genetic and process modifications. As an
extension of the study, we investigated the potential of DFBA to perform macroscopic predictions with
appropriate objective functions and flux constraints.

2. Materials and Methods

2.1. Experimental and Analytical Methods

Cupriavidus necator DSM 545 obtained from DSMZ (German Collection of Microorganisms and
Cell Cultures) is used throughout this study. Fermentations at flask and bioreactor scale were conducted
under the conditions specified in Table 1. Bioreactor experiments were conducted in duplicates and
flask experiments were conducted in triplicates. The medium recipes for both flasks and bioreactor
experiments can be found in our previous publication, Pérez Rivero et al. [41]. In order to benchmark
the performance of the bacterial culture, we used defined media supplemented with refined glycerol
rather than crude glycerol. Analytical methods are summarised in the supplementary file ‘File S1.docx’.
Data processing methods, including data smoothing and carbon balance, are summarised in the
supplementary file ‘File S1.docx’ [33,36,42–51].

Table 1. Fermentation conditions for all flask- and bioreactor-scale experiments.

Conditions Shake-Flask Electrolab Bioreactor

Temperature (◦C) 30 ◦C

Vessel Volume (mL) 600 1500

Working Volume (mL) 100 1000

Shaking/Stirring Speed (rpm) 220 220

G Force (g) 0.68 1.1 (impeller tip)

Oxygen supply Surface aeration 1 vvm

Inoculation size 5 mL (5% v/v) 50 mL (5% v/v)

2.2. Modelling Approaches

The fundamental ideal of FBA is to represent cell metabolism as a constraint-based optimisation
problem [26]. By solving the optimisation problem, FBA computes intracellular flux distributions that
represent the cellular phenotype expressed under specific conditions, such as optimal growth, varying
environmental parameters and genetic modification.

FBA is based on the pseudo-steady state assumption (PSSA). It assumes that cells carry
out biochemical reactions at steady state even in an environment which is externally dynamic
(e.g., Batch culture) since intracellular states are able to rapidly adapt to new conditions [52].
Thus, we can use extracellular fluxes obtained throughout the entire fermentation duration as FBA
inputs to determine time-series flux distributions. Depending on the source of extracellular fluxes,
such dynamic metabolic modelling can be further divided into two categories: the first one is a
kinetic-driven approach in which flux inputs are generated by macroscopic kinetic models; the second
one, which is used in the current work, is a data-driven approach, which uses fluxes derived from
time-resolved concentration profiles [35].

2.2.1. Flux Estimation

Deriving valid and reliable time-resolved fluxes from extracellular metabolite measurements is
pivotal for a data-driven modelling approach. It is useful to smoothen the experimental data to reduce
the noise, which would otherwise compromise the precision of estimated fluxes. Various offline fitting
and filtering procedures have been proposed, such as spline fitting [50], polynomial fitting [36], moving
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average [51] and Kalman filter [42]. Subsequently, metabolic fluxes can be calculated as the derivatives
of fitting expressions or concentration gradients between small time intervals.

In this work, concentration profiles obtained from batch experiments were fitted by polynomial
fittings, followed by data smoothing (moving average methods) in Matlab. Smoothened concentration
curves were then divided into multiple 0.5-h intervals such that fluxes could be calculated with central
difference approximation methods:

vi,t =
Ci,t+1 −Ci, t−1

2∆t
1

Mw,iCDCW, t

1000mmol
mol

(1)

Here, vi,t is the extracellular flux of metabolite i at time t, and Ci,t represents the corresponding
metabolite concentration (unit: g/L). ∆t is the length of the time interval equal to 0.5 h. Fluxes were
normalised by dividing each calculated gradient by the mass of non-PHB active biomass, CDCW,t
(unit: gDCW/L). Hence, the unit of metabolic flux is millimole per hour per gramme of active biomass
(mmol/(h·gDCW)).

2.2.2. Metabolic Network

A metabolic network of biochemical reactions of C. necator DSM 545 is primarily reconstructed
using existing information from KEGG and BRENDA databases and involves the identification of
reactions associated with cell growth and PHB synthesis and determination of their stoichiometry.
Information of network stoichiometry was largely taken from established networks of C. necator
JMP 134 (which can also grow on glycerol) and C. necator H16 (the ancestral strain of DSM 545).
Metabolic networks of C. necator included in the work of Yamane [53], Tanadchangsaeng et al. [54] and
Lopar et al. [33] were used as references.

All intracellular reactions were uniformly assumed to be reversible at this stage (i.e., the values
of their metabolic fluxes can be either positive or negative). This is also the case for any reversible
reactions catalysed by two separate enzymes each of which acts on forward and backward reactions,
such as phosphorylation of F6P to FBP catalysed by PFK-1 (E.C. 3.7.1.1) and FBPase (E.C. 3.1.3.11).
The PHB degradation pathway is considered inactive as long as there are still external carbon sources
available in the medium.

In addition, some reactions, according to the KEGG database, can be catalysed by more than
one type of enzymes or use more than one type of cofactors. Though such ‘redundancy’ may be
necessary to ensure the robustness of the cellular metabolism, it can introduce additional complexity
into our current metabolic model which is not desired from a practical point of view. To reduce possible
redundancy in the model, each of these reactions is assumed to be catalysed only by one particular
enzyme and/or use only one type of cofactor. We chose the ones that are most commonly used in
previous metabolic studies [33,54]. Hence, the following assumptions are made:

(1) GL3P dehydrogenase (E.C. 1.1.1.94) that can utilise both NADPH and NADH was set to use
NADH only.

(2) ICIT dehydrogenase (E.C. 1.1.1.42) that can utilise both NADPH and NADH was set to
use NADPH.

(3) PEP carboxylation that can be carried out by three types of carboxylases (E.C. 4.1.1.32, E.C.
4.1.1.31 and E.C. 4.1.1.49) was assumed to be catalysed by the ATP-specific carboxylase only
(i.e., E.C. 4.1.1.49).

The equation for biomass production was taken from [33], assuming the composition of active
biomass remains constant throughout the fermentation. Changes were made to the stoichiometric
coefficients of glutamine and glutamate in order to match with measured nitrogen content in biomass
(see ‘File S1.docx’ in the supplementary material for further details).

The main metabolic network shown in Figure 1, is encompassing glycerolipid metabolism,
glycolysis, pentose phosphate pathways (PPP), tricarboxylic acid (TCA) cycle, nitrogen assimilation
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and PHB synthesis pathway. The full list of reactions (including labels) and the stoichiometric network
were summarised in the supplementary file ‘File S2.xlsx’. A thermodynamics-based analysis was
used to check the reversibility and feasibility of the reactions in the metabolic network prior to flux
balance analysis.Processes 2020, 8, x FOR PEER REVIEW 5 of 27 
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Figure 1. Metabolic map of C. necator DSM 545. Only pathways associated with central carbon
metabolism are shown, while the remaining ones (such as most transport pathways) were omitted from
the figure for clarity of the layout.

2.2.3. Problem Formulation

All computations were performed in the MATLAB (The MathWorks, Natick, MA) version 2016a
environment. FBA and thermodynamic analysis were performed based on the methods described in
the work of Llaneras [27] and Angelez-Martinez et al. [55], respectively. The detailed description of the
optimisation problems, objective functions, nomenclatures and matrices dimension can be found in
the supplementary file ‘File S3.docx’.

i. FBA/DFBA

Under PSSA, there is no net accumulation or depletion of intracellular metabolites:

S·v =
dC
dt

= 0 (2)

Here, S is the stoichiometric matrix of size 49 × 52 (49 and 52 are the number of metabolites
and reactions, respectively) and v is the flux vector of size 49 × 1. Consequently, FBA/DFBA can be
formulated into a linearly constrained optimisation problem to estimate flux distribution:

Maximise: Objective Function Constraint No.

Subject to: S·v = 0 1

vmin,int ≤ vint ≤ vmax,int 2

vext − δvext ≤ vext ≤

vext + δvext
3

Intracellular fluxes vint were constrained by their respective upper bounds vmax,int and lower
bounds vmin,int. vext is the mean of reconciliated extracellular fluxes that were measured experimentally.
Both the upper and lower bounds of the extracellular flux vext were relaxed with propagated standard
error σ to account for experimental errors. It is important to note that DFBA was first performed
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to generate appropriate flux distributions needed by the thermodynamic analysis as initial guesses.
Based on the results of the thermodynamic analysis, the flux constraints were further modified, so that
DFBA could be performed again to evaluate different objective functions and generate time-series
flux distributions.

ii. Prediction of concentration profiles

Through the DFBA framework, the effect of the modification of specific pathways on the overall
fermentation performance can be predicted. For example, if we were to formulate the optimisation
problem in the case of gene knockout, we could assign zero values to both the upper and lower bounds
of the target pathways. We only used the glycerol and nitrogen uptake rates (average time-series data)
as extracellular constraints, while the bounds for the remaining fluxes were replaced by those generated
by flux variability analysis (FVA). The resultant extracellular fluxes for products (i.e., PHB, malic
acid and acetic acid) can be integrated over time to generate the profiles of metabolite concentration
(unit: g/L):

Ci,t =
1mol

1000mmol
Mw,i

∫ t

0
viCDCWdt (3)

iii. Thermodynamic-based flux estimation (TBFE)

Although stoichiometric modelling methods are versatile tools to explore knowledge of the
metabolism as they require information primarily on the structure of metabolic networks, they are
often highly underdetermined so that a family of solutions produces feasible answers. In this regard,
thermodynamic considerations can be imposed as additional constraints to shrink the solution space
further, by the elimination of thermodynamically infeasible flux distributions and the determination of
reaction reversibility and directionality [56–62]. In addition, polling-based FBA has been developed
to discriminate among equivalent feasible solutions [32]. The thermodynamic analysis here was
formulated as a non-linear optimisation problem. Each optimisation was performed using the
non-linear programming solver ‘fmincon’ in Matlab. Sequential quadratic programming is used for the
optimisation as it is a relatively robust algorithm and offers a higher chance to converge to a feasible
solution than other algorithms. The list of constraints used in TBFE is given in Table 2.

Table 2. List of constraints used in (TBFE) to probe the upper and lower flux limits of all
thermodynamically feasible reactions.

Maximise: (+vint) or (−vint)

Constraint No.

Subject to: S·v = 0 1

vmin,int ≤ vint ≤ vmax,int 2

vext − δvext ≤ vext ≤ vext + δvext 3

Cmin,i ≤ Ci ≤ Cmax,i 4∑
i=metabolites

Ci ≤ 0.3M 5

v j·∆rG j ≤ 0 6

abs
(
v j

)
+

∆rG j

tol v j ≤ 0 7

abs
(
∆rG j

)
+

v j

tol ∆rG j ≤ 0 8

∆rG j =
Products∑

i=1
ηi[∆ f G0

i + RTln
(

Ci
Cst

i

)
−

Reactants∑
i=1

ηi[∆ f G0
i + RTln

(
Ci
Cst

i

)
] + E 9

The problem formulation including the relevant nomenclature and the full description of the
constraints in Table 2, is given in the supplementary file ‘File S3.docx’. If only the mass balance
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constraints are used (i.e., constraint 1, 2 and 3), the system is reduced to a linearly constrained
optimisation problem. The calculation of the theoretical limits of intracellular fluxes using a linear
programming (LP) framework is called flux variability analysis (FVA) [63]. Compared to FVA, TBFE
is more stringently constrained and thus leads to narrower solution spaces. When coupled with
measured time-series fluxes, TBFE can, in theory, generate better insights into the dynamic metabolism
of cells. To check this, FVA was also conducted for the proposed network and compared with TBFE.

iv. Objective functions

Choosing an appropriate and rational objective function for FBA is crucial for obtaining reliable
predictions of flux distributions. Steady-state cellular metabolism is often assumed aiming to optimise
the fitness and survivability of the cells, such that the intracellular fluxes are driven to maximising
biomass growth [39,64] or ATP production per unit flux [65,66]. However, such assumed optimality
criteria are not always valid over the whole range of environmental conditions and growth states.
For instance, C. necator shifts from cell growth to PHB synthesis as nitrogen depletion is approached,
a physiological phenomenon that is almost certainly beyond what ‘optimising cell growth’ can describe.
In this case, optimisation with said objective functions would lead to biased prediction.

Hence, objective functions that can interpret the metabolism governed by dynamic environments
and predict consistent and reliable fluxes would have important implications for studying biosynthesis
in C. necator. Novel insights into bacterial growth have led to a number of justifiable objective functions
that can better represent our current system:

• Maximisation of energy storage (linear) [67]
• Maximisation of ATP yield [66,68]
• Minimisation of metabolic adjustment (MOMA) [67,69]
• Minimisation of all metabolic fluxes [70]
• Maximisation of ATP yield per flux unit [71]

The five objective functions listed above were evaluated on their ability to describe the operation
of the metabolic network of C. necator first. The system was constrained by substrate uptake rates to
predict metabolite secretion rates, and subsequently their concentration profiles. The objective function
that can describe the system relatively well should allow the model to generate concentration profiles
that better fit the experimental data. This objective function can then be used to perform further DFBA.

The mean Euclidean distance, which measures the absolute deviation between a pair of
concentration points, was used to quantify the agreement between the predicted and the experimental
data series.

‖C‖ =
1
n

n∑
i=1

√
(Ci −Ci,e)

2 (4)

where ‖C‖ is the mean Euclidean distance, n is the number of data points on each concentration profile,
and Ci and Ci,e are the predicted and experimental concentration at the ith data point, respectively.

3. Results and Discussion

Inputs of extracellular fluxes for thermodynamic analysis and DFBA were obtained from four
different batch cultures. Two were conducted in flasks with 20 and 30 g/L glycerol, respectively
(denoted as 20F and 30F). The other two were conducted in bioreactors with 30 and 60 g/L glycerol,
respectively (marked as 30B and 60B). The concentration profiles are shown in Figure 2.

For flask cultures, increasing the glycerol concentration from 20 to 30 g/L had a negligible effect on
cell growth, as both 20B and 30B had achieved a maximum growth rate of 0.14 gDCW/(l·h). However,
for 30F, glycerol was consumed and, consequently, PHB was produced at faster rates than for 20F after
the cell growth phase ended. By the end of the fermentation 30F, a total of 21.6 g/L of glycerol was
consumed and 5.68 g/L of PHB was produced; 15% and 17% higher, respectively, than 20F. In terms of
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PHB yield (calculated as the ratio between the carbon in PHB and the carbon in glycerol), there was no
significant difference between the two experiments (0.351 for 20F, and 0.358 for 30F). Compared to 30F,
the 20F culture produced more organic acids in the first 60 h. Consequently, the re-assimilation of the
excreted acids was observed in 20F and not in the other experiments. This was due to the depletion of
glycerol in the medium, which forced cells to seek other suboptimal carbon sources.Processes 2020, 8, x FOR PEER REVIEW 8 of 27 
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Figure 2. Measured experimental data (*) and smooth concentration profiles (line) of glycerol,
poly(3-hydroxybutyric acid) (PHB), non-PHB biomass, acetic acid and malic acid for experiment 20F,
30F, 30B and 60B.

In the bioreactor, the negative impact of glycerol concentration on cell growth was more
pronounced. The maximum cell growth rate reached 0.056 gDCW/(L·h) in 30B, but this value
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dropped to 0.05 gDCW/(L·h) in 60B. The total amount of glycerol consumed in the first 60 h was also
higher when less glycerol was used. Despite these advantages, 30B did not accumulate more PHB than
60B in the first 60 h. And after this point, metabolite production in 30B was gradually surpassed by
that in 60B. Eventually, 60B produced 5.1 g/L of PHB and 1.11 g/L of acids, 30% and 22% higher than
30B, while consuming approximately the same amount of glycerol. As a result, 60B had a higher PHB
yield (0.450) than 30B (0.328).

The bioreactor experiments differ from the flask ones mainly in terms of their aeration
configurations and aeration rates: in flask experiments, aeration was supplied by the shaking of the
culture flasks on an orbital shaker at 220 rpm; whereas, in the bioreactor experiments, cell cultures
were aerated at a rate of 1 v.v.m, with an agitation speed of 220 rpm. Although we have not been able
to measure the kLa in our shake flasks due to equipment limitations, the kLa in a flask with a similar
experimental set-up (250 mL flask, 2.5 air-to-liquid ratio, 250 rpm) has been reported to be around
0.5 min−1 [72], which is much higher than that achieved in the bioreactor (0.11 min−1, as described
in the supplementary file ‘File S1.docx’. This, combined with the fact that bioreactor culture (30B)
showed poorer performance than the flask one (30F) in terms of cell growth, glycerol uptake and
PHB productivity, means the aeration condition employed in flasks is likely to be more favourable for
metabolism, while in bioreactors the aeration condition seems to be suboptimal, demanding further
improvement. This hypothesis is verified in further bioreactor experiments employing different
combinations of aeration rates and agitation speeds.

With an overall duration of 90 h, each experiment can be divided into four different physiological
phases to facilitate illustration of results:

• Phase I (0–t1): Growth phase. The phase ends when carbon split ratios of PHB and biomass
are equal.

• Phase II (t1–t2): Co-production of biomass and PHB phase. The phase ends when the carbon split
ratio of PHB is 10 times that of biomass.

• Phase III (t2–t3): PHB production phase. The phase ends when cells accumulate more than 80% of
the total amount of PHB at 90 h.

• Phase IV (t3–90 h): Post PHB production phase with attenuated metabolic activity

3.1. TFBE

TFBE is computationally expensive due to the presence of non-linear thermodynamic constraints
and thus is not suitable for estimating dynamic flux distributions. As a trade-off between computational
cost and model predictive capabilities, the thermodynamic constraints were decoupled from the linear
constraints of DFBA (i.e., time-series extracellular fluxes). Instead, TBFE was performed with sampled
extracellular fluxes from 20F and 30F. Three sets of extracellular fluxes were sampled from t1, t2,
and t3 h to cover the behaviour of cells over the fermentation. The objectives of performing TBFE are
to identify infeasible reactions/pathways present in the proposed network and determine which of
the reactions are reversible. The results should allow us to impose more appropriate bounds to the
intracellular fluxes in the following DFBA runs.

The maximum and minimum allowable intracellular fluxes calculated by TBFE are indicative of
the directionality of biochemical reactions. A reaction is considered reversible if its flux has a positive
maximum and a negative minimum; otherwise, it is irreversible. Moreover, if the absolute value of
flux is close to zero (i.e., <0.001), the corresponding reaction is assumed to be in equilibrium.

Thermodynamically Feasible Flux Range over Time

Compared to FVA, which is purely based on mass balance constraints, TBFE allows for a more
precise flux estimation by further limiting cellular behaviour with thermodynamic rules. This can be
seen from the narrower solutions space predicted by TBFE using data from both 20F and 30F (Figure 3).
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The improvement on the precision of prediction is particularly obvious for central metabolic pathways,
including glycolysis, Entner–Doudoroff (ED) pathway, TCA cycle and PHB synthesis.
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(FVA) (grey line) using sampled extracellular fluxes from t1, t2 and t3 (20F and 30F).

Moreover, thermodynamic constraints impact the reversibility of the system. FVA predicted
10 reactions (r2, r3, r19, r20, r24, r25, r32, r33, r35, r36) to be strictly irreversible over the target duration
of the fermentation, while TBFE predicted 11 additional irreversible reactions (r9, r21–r23, r37–r40).
These irreversible reactions are those tasked with uptaking nutrients, generating energy and synthesising
PHB. As for the remaining central metabolic pathways (ED) and anaplerotic pathways, their importance
lies in distributing the precursor metabolites to both catabolic and anabolic pathways and maintaining
a fine balance between the two. So they remained reversible throughout the fermentation to allow
flexible allocation of resources.

According to TBFE results, the lower bounds of irreversible reactions were adjusted to zero,
while the bounds of reversible ones remained unchanged. An exception, however, was made
for the bounds of PPP. Reactions in PPP were predicted to be irreversible by FVA, but somewhat
reversible by TBFE. This could be due to the nature of non-linear programming models, which are
subject to the issue of convergence to local rather than global extrema. As such, tightening existing
constraints or implementing additional constraints would sometimes direct the solver’s search to
other optimisation solutions, leading to wider solution space. Considering the fluxes through these
pathways, which generally have very small mean values, their lower and upper bounds were adjusted
to −1 and 1 mmol/(h·gDCW), respectively.

3.2. Evaluation of Objective Functions

The mean Euclidean distance between the predicted and the experimental data series depicted a
comprehensive picture of the goodness of fit of different objective functions (Figure 4). The predicted
concentration profiles are presented in ‘File S2.xlsx’ in the supplementary materials.

The metabolic network of C. necator behaves differently in response to different objectives.
For PHB synthesis, the ‘maximisation of ATP yield per flux unit’ is the best predictor, followed by the
‘minimisation of all fluxes’. PHB concentration profiles predicted by these objectives deviate from the
experimental data by less than 1 g/L (i.e., 33%), except for fermentation 30B. Meanwhile, the rest of
the objective functions provide a less accurate description for PHB synthesis: the ‘maximisation of
PHB’ overpredicted PHB production profiles by 0.6–1.6 g/L (i.e., 28% to 81%), while ‘MOMA’ and the
‘maximisation of ATP yield’ severely underestimated the synthesis of PHB in call cases.
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For by-product formation, the optimisation studies are less successful in finding a satisfactory
metabolic regime. Both the ‘maximisation of ATP yield per flux unit’ and the ‘minimisation of all
fluxes’ leads to the overestimation of the production of malate by 0.6–0.8 g/L. This could indicate that
the synthesis of malate is likely backed by other cellular objectives, such as MOMA, which generates
better prediction of malate concentration profile. In addition, the synthesis of acetate is ignored by
most of the objectives tested, especially the ‘maximisation of PHB synthesis’ and the ‘minimisation of
all fluxes’. The ‘maximisation of ATP yield per flux unit’ is the only objective that captures the trend of
continuous production of acetate during fermentation, but leads to 1.5–2-fold overestimation of the
final concentration of acetate.

In general, some objective functions can generate a quantitative prediction for particular
extracellular metabolite profiles using carbon and nitrogen extracellular fluxes as inputs,
which, to some extent, reflects the metabolic operation shaped and optimised by evolution [65].
Due to the inherent complexity of the regulation of dynamic metabolism in response to external
stimuli, however, these objectives have not been able to closely predict the production of all the three
metabolites simultaneously. There are always metabolic states that one objective function cannot
account for, leading to errors in the predicted fluxes and, subsequently, the concentration profiles.
That said, considering the fact that PHB synthesis is the primary carbon-consuming metabolic activity,
an objective that can better approximate its production dynamics is likely a more realistic description
of metabolic behaviour. Therefore, the ‘maximisation of ATP yield per flux unit’ is chosen for the
following DFBA study as it can predict PHB profiles with reasonable accuracy, while reflecting the
synthesis of both acids to some extent. In biological terms, this objective function demands a metabolic
network to minimise its enzyme usage under growth-limited conditions while maintaining the energy
need for maintenance, so that the generation of ATP via a shorter pathway is favoured [71].

In the present study, DFBA was performed by assuming that a single objective function is in play.
Nevertheless, microorganisms are known for their ability to survive in ever-changing environments,
so it is likely that evolution has driven the cells to optimise metabolic operations towards not only
a particular objective but many. Therefore, it would be helpful in the future to construct a model
employing an objective function comprising of multiple objectives, with their relative contribution
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to the overall phenotype indicated by weight factors (i.e., coefficients of importance). These factors,
serving the purpose of representing regulatory events, can be adjusted according to environmental
factors, such as PHB content and nitrogen availability. Additional constraints such as maintenance
cost, P/O ratio or oxygen uptake rates may also be incorporated to improve predictions [65]. However,
the limitation is also obvious. The predictive ability of such an objective function would depend,
in large part, on the expressions used to adjust the weight factors. Namely, the objective function could
not predict phenotypic changes caused by the perturbation of certain environmental factors if they are
not involved in the calculation of the weight factors in the first place. In future studies, additional
experimental data should be obtained to allow more regulatory factors to be considered in the hybrid
objective function so that the model can yield better prediction and insights.

3.3. DFBA

DFBA was performed twice, using the upper limits (vext + δvext) and the lower limits of the
measured fluxes (vext − δvext) as extracellular constraints, respectively. This resulted in a filled interval
plot (metabolic flux (mmol/(h·gDCW) vs. time (h)) with an upper and a lower bound for every flux
(as shown in Figures 5 and 6). Although the estimated upper and lower bounds may not represent
the ‘best’ and the ‘worse’ scenario in flux distribution, the inherent uncertainties in the fluxes due to
errors of experimental measurements can be reasonably accounted for by the shaded area. The four
phases of every flux profile are divided by vertical lines. The uncertainty of estimated fluxes was
larger in the early time points because the values of DCW were smaller, so the profiles start from the
10th hour onwards.Processes 2020, 8, x FOR PEER REVIEW 13 of 27 
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3.3.1. Biomass Synthesis and PHB Production

As can be seen from Figure 5, cell growth slowed down as the nitrogen source was consumed.
However, before cell growth totally ceased, PHB synthesis had already started. In all cases, we observed
a clear growth transition in Phase II, where the decrease in biomass production flux was accompanied
by the increase in PHB synthesis flux, suggesting that the production of PHB in C. necator is actually
partially growth associated. Yet, the initiation of growth-associated PHB synthesis was not entirely
correlated with nitrogen availability. Figure 7 shows the change of the flux split ratio ‘vbiomass/(vbiomass

+ vPHB)’ on a per carbon basis versus the quantity of nitrogen source left in the media. In 60B, PHB
synthesis was initiated more promptly than in the other cultures and the flux split ratio reached a
max of below 0.5 when there was still over 100 mg/L of nitrogen in the medium; meanwhile, in flask
cultures, the flux split ratio was well above 0.8. In other words, cells in 60B enter the transition phase
much earlier than cells in flasks cultures for the same nitrogen availability.

If we couple this with the fact that the cell growth in 60B is the most inhibited amongst the four
experiments, we can hypothesise that PHB synthesis is triggered when cells encounter unfavourable
growth conditions, which is contributed not only by nitrogen limitation but also by the growth-inhibitory
effect of a high glycerol concentration.

The slower the culture grows, the longer growth-PHB transition phase it experiences. On top of
this, cells accumulate a greater proportion of PHB as growth associated due to the initiation of PHB
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synthesis at higher nitrogen availability. For instance, as shown in Table 3, the transition in 60B took
21 h, while contributing to the production of nearly 40% of total PHB. In contrast, the 7-h Phase II in
30F only contributed to the production of less than 20% of total PHB.Processes 2020, 8, x FOR PEER REVIEW 15 of 27 
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concentration of nitrogen in the medium.

Table 3. Duration of Phase II and growth phase, percentage of total PHB produced in Phase II, PHB
productivity in Phase II and Phase III.

Duration
of Phase
II (Hour)

Duration of Growth
Phase (Phase I + II)

(Hour)

Percentage (wt.%)
of PHB Produced

in Phase II

PHB Productivity
in Phase II (g/L/h)

PHB Productivity
in Phase III (g/L/h)

20F 9 22 20.4 0.045 0.085

30F 7 23 17.1 0.042 0.137

30B 12 37 27.9 0.029 0.092

60B 21 46 39.2 0.043 0.083

The growth-associated PHB productivity (Phase II) is typically 2–3 times lower than the
non-growth-associated PHB productivity (Phase III), hence it is undesirable to have a prolonged
growth-PHB transition phase, which will only lead to reduced overall productivity. Therefore, in the
batch fermentation, it is a favourable strategy to optimise the cell growth conditions to restrict the
duration of the overall growth phase (Phase I + II), so that cells can enter efficient PHB production in
Phase III sooner.

3.3.2. Acid Production

Given that cells have limited carbon availability and physical volume (i.e., PHB accumulation
capacity), PHB fluxes started to decline gradually since the beginning of Phase III. Almost at the same
time, acid secretion fluxes started to increase (Figure 5) and peaked near the end of Phase III. The
production of organic acid during the non-growth phases (i.e., Phase III and IV) coincided with the
cellular requirement to reserve energy. Like PHB, the excreted acids can be seen as extracellular energy
reserves, which can be re-assimilated when extracellular glycerol level is low, as observed in 20F during
Phase IV.

Despite showing poorer fermentation performance, bioreactor cultures appear to be more
‘resource-efficient’, as higher proportions of glycerol consumed were converted to PHB and acids
during Phase III and IV. For instance, in 60B, 52.8% and 12.5% of the glycerol consumed was converted
to PHB and acids, respectively, which are the highest amongst the four experiments. High glycerol
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levels also seemed to promote the conversion ratios of PHB and organic acids, as can be seen by
comparing the data for 30B and 60B. Nevertheless, fermentation strategies to optimise PHB synthesis
by minimising the production of the organic acids remain elusive, due to the connection between the
two metabolic activities.

3.3.3. Glycolysis and TCA Cycle

Glycerol is oxidised by ATP-driven glycerol kinase glpK to form sn-glycerol-3P (GL3P),
which is subsequently converted to dihydroxyacetone phosphate (T3P2) by dehydrogenase glpD.
Stoichiometrically, T3P2 can be metabolised to pyruvate via both glycolysis and ED pathway. Flux
profiles suggest the use of the former pathway by the metabolic network throughout the fermentation,
since it allows for the conversion of T3P2 to generate ATP with less enzyme usage, which is favoured
by the modelling objective function used (Figure 6).

The TCA cycle serves as the energy-yielding process for metabolism, meanwhile providing
necessary precursors for cell building blocks. Thus, the flow of metabolites through the TCA cycle was
comparatively high in Phase I and II, and positively correlated with biomass flux, as can be seen from
all the plots in Figure 6. As PHB synthesis became increasingly predominant, TCA activity dropped to
a minimum as these two pathways diverge from the lower part of glycolysis and are competing for
a mutual substrate, acetyl-CoA. The decline in TCA activity is often attributed to the accumulation
of the reducing equivalents, which, in turn, inhibits the dehydrogenation steps in the TCA cycle by
allosterically affecting the relevant enzymes [73].

Minimal TCA flux signifies a phase of efficient production of PHB, which begins right at the end
of Phase II and lasts from 5 to 30 h depending on the experimental conditions. Compared to flask
cultures, bioreactor cultures kept TCA activity at a lower level for the entirety of Phase III. The fact that
60B achieved higher PHB productivity than 30B can be linked to the longer ‘Minimal TCA phase’ 60B
experienced. This phase was apparently shorter in flask cultures, where TCA flux started increasing
shortly after reaching the minimum. Given that cells possess the potential to divert most carbon flux
towards PHB metabolism, it is reasonable to envisage optimisation approaches, in which the duration
of the ‘minimal TCA phase’ could be extended by imposing suitable fermentation conditions.

TCA fluxes started increasing again during late phase III and early phase IV, along with the
increased production of acids. This seemingly wasteful use of carbon source may be an attempt to
dispose of upstream glycerol overflow when PHB accumulation capacity has been reached.

3.3.4. NADPH and NADH

The oxidative form of NADH is mainly involved in catabolic reactions, while NADPH is
the primary electron donor for the synthesis of cellular substances such as proteins, nucleic
acids and PHB [74]. NADH can be regenerated from NAD+ by glycolysis reactions and the
TCA cycle, while NADPH is supplied mainly through isocitrate dehydrogenation (E.C. 1.1.1.42).
In addition, the production of the two cofactor species can be mediated by two enzymes operating
in parallel: a membrane-bound, proton-translocating transhydrogenase (E.C. 7.1.1.1) and a soluble,
energy-independent transhydrogenase (E.C. 1.6.1.2) [75]. Since the constraint-based flux analysis is
unable to resolve fluxes of parallel routes when they are not coupled to any measurable variables, the two
transhydrogenation reactions were merged and treated as a single pathway for the current model.
According to TBFE, the transhydrogenation reaction is reversible, so that its flux was loosely constrained
between −30 and 30 mmol/(gDCW·h) to allow free interchange between NADPH and NADH.
Thus, NADPH-NADPH transhydrogenation flux can be seen as an indicator of catabolism-anabolism
balance. As can be seen from Figure 6, the transhydrogenation flux is on a decreasing trend in the
early phase of cell growth (Phase I) as anabolic processes become dominant. The flux stays mostly
negative throughout Phase II and Phase III, meaning isocitrate dehydrogenase alone can no longer
generate enough NADPH to fuel the conversion of acetoacetyl-CoA to 3-hydroxybutyrate, so that an
extra source of NADPH must be supplied by transhydrogenation.
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Previous studies [75,76] have suggested a straightforward approach of overexpressing the
structural genes associated with NADPH replenishment to increase its availability, thereby enhancing
PHB production. However, this may not be as effective as expected, since the redox potential does not
simply depend on the level of a single reducing equivalent, but on the relative quantity of oxidised and
reduced form of both species (i.e., NADPH/NADP+ and NADH/NAD+) maintained at an appropriate
level [74]. Moreover, cofactor engineering not only exposes the PHB synthesis machinery but also the
entire enzymatic system to an altered redox condition, leading to a more complex scenario. In order to
achieve desired cellular improvements using cofactor engineering, further knowledge on the control of
reducing power generation through enzyme regulation is required.

3.3.5. ATP Hydrolysis and Energy Status

Cells are known to switch between metabolic end-products to adjust the rate of ATP hydrolysis in
order to meet the specific energy demand in different states [77]. From an energy conservation point of
view, synthesising PHB is favoured as it only generates 3.196 mol of ATP for each mole of glycerol
consumed, while the complete oxidation of one mole of glycerol would generate up to 33.633 mol of
ATP. Moreover, when the stoichiometric model is constrained to produce non-PHB biomass as the only
product, 0.12 mol of ATP is formed per mole of glycerol consumed. The overall ATP yield of C. necator
culture generally varied between 4 to 15 mol ATP/mol glycerol (GLY), depending on the fermentation
phases (Figure 6). In phase I, the ATP yield can reach up to 14 mol ATP/mol GLY, which is far greater
than the ATP yield associated with biomass formation. In other words, during the growth phase,
cells produce far more energy from glycerol than is actually needed for fuelling biomass synthesis.

Initially, the excess energy released during Phase I was thought to be used for purely cell
maintenance. However, we then noticed that ATP hydrolysis flux is somewhat positively correlated
with biomass synthesis flux (Figure 8). This is not in line with the maintenance energy model proposed
by Pirt [78], which postulates that, at a higher specific growth rate, the cellular metabolism should be
operating at greater efficiency so that the maintenance energy (mmol ATP/(h·gDCW)) should be lower.
Namely, if cells truly expend the energy released from ATP hydrolysis in maintenance, we should
expect a downward trend for the ATP yield profiles, which is clearly not the case.Processes 2020, 8, x FOR PEER REVIEW 18 of 27 
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Hence, there is likely energy expenditure due to other means such as respiration uncoupling
(i.e., cells fail to meet the theoretical energy yield), and energy spillage via futile cycles [77,79]. Although
the energy spillage sacrifices some carbon utilisation efficiency, it guarantees growth potential against
being inhibited by energy deficiency, according to Neijssel and Tempest (1976). Furthermore, it has been
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reported that an energy-dependent futile cycle (i.e., cyclic NH3/NH4
+ retention) can occur concomitantly

with NH3 assimilation by glutamine synthesis in order to maintain the intracellular NH4
+ pool [80].

Nevertheless, a quantitative description of the relative contribution of these components to the overall
energy expenditure remains elusive.

When cell growth came to an end due to nitrogen depletion by the end of Phase II, ATP yields
reached a plateau with values between 4 and 6 mol ATP/mol GLY (Figure 6). This benchmarks the
minimal energy requirement for the cell to carry out efficient PHB synthesis in the presence of excessive
carbon source, regardless of fermentation conditions. After this point, the energy demand started to
increase once again, conforming with the observation in TCA fluxes. Yet, in bioreactor cultures, the ATP
yield remained mostly constant during Phase III. As a result, the ATP yield in the flask was noticeably
higher, reflecting better respiration and aeration. Interestingly, the comparison between 30B and 60B
revealed that the energetic efficiency of microbial activity was significantly reduced in cells growing in
lower glycerol concentration, and the ATP yield was also higher. Increased glycerol transport cost
at lower extracellular glycerol concentration is not a plausible explanation because glycerol enters
cell membrane via facilitated diffusion that requires no metabolic energy [33]. On the other hand,
low glycerol concentration may lead to a low concentration gradient across the cell membrane, thus
limiting the rate of facilitated diffusion of glycerol [81]. Under such a carbon-limited environment, it is
speculated that cells boost this seemingly wasteful energy expenditure to stimulate the consumption
of glycerol, thereby conferring growth advantage upon themselves.

3.3.6. Flux Split Ratio

Flux split ratio, calculated as ‘moles of metabolite produced/total moles of glycerol consumed’,
indicates the efficiency of substrate utilisation for the production of desired metabolites. One important
motivation of metabolic engineering is to overexpress or knockout particular pathways using plasmids
and heterologous enzymes in the hope of redirecting metabolic fluxes towards desired pathways.
To enhance the carbon split ratio to PHB, one straightforward approach is naturally overexpressing the
PHB synthesis pathway by increasing the copy number of the operon phaCAB. While the modification
of other pathways may also serve this purpose, knowledge into the relative distribution of carbon
flux in central carbon metabolism is needed. To this end, we plotted the split ratio profiles of four
major carbon-consuming metabolic activities during Phase III and IV (Figure 9) only as these two
phases contributed most to PHB synthesis (i.e., 60%–80% of PHB accumulation). The split ratios were
calculated on a per carbon basis.
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During the two phases, PHB synthesis competes for carbon flux with three other activities,
which are the TCA cycle, acids (malic and acetic acid) production and pyruvate dehydrogenation.
Manipulating pyruvate dehydrogenase can be ruled out first because the action of the enzyme to syphon
one carbon atom off for each molecule of glycerol metabolised is unavoidable. From a reductionist
point of view, the suppression/knockout of the reactions related to the formation of acetate and malate,
as well as the TCA cycle can reduce the wasted carbon flux to the metabolic by-products, thus leading
to an improved flux split ratio of PHB synthesis.

For the TCA cycle, the activity of the pathway could be subject to fine-tuning by devising
suitable promoter systems. Such systems can be applied to the genetic engineering of one or more
pathways to allow for induction of environment-dependent effects on gene expressions [82]. Apart
from genetic engineering means, the regulation of the pathway can be conducted at the process
level. The maintenance of high glycerol level during PHB growth phase (i.e., Phase III and IV) is
a probable strategy, based on the comparison between the flux split profiles of 30B and 60B, which
shows a substantial down-regulation of the fluxes through the TCA cycle by relatively high glycerol
concentration. The addition of chemical reagents such as malonic acid (succinate dehydrogenase
inhibitor) or tartaric acid (fumarase inhibitor) may as well serve the purpose but would be less
economically viable for fermentation on a larger scale. In addition, TCA cycle activity can be effectively
limited by lowering the oxygen supply, since the cycle forms the core of aerobic respiration. Ideally,
if the carbon flux through TCA cycle during Phase III and IV were fully redirected towards PHB
synthesis, we would observe a 49% increase in PHB productivity in 30B, 47% increase in 20F and 50%
increase in 30F.

Like the TCA cycle, acid production cannot be readily avoided by deleting genes in acid formation
pathways either. An attempt can be made to block acetate excretion by modifying the acetyl-CoA
hydrolase catalysing the formation of acetate. Whereas malate is an intermediate in the TCA cycle,
blocking its formation would naturally mean blocking the individual steps in the TCA cycle, which is
also infeasible.

Overall, there are potential strategies to improve the flux split ratio of PHB synthesis by lowering
the flux split ratio of the synthesis of byproducts. It cannot be predicted a priori, however, to which
extent these modifications would cause the flux of PHB synthesis to rise. This is because the magnitude
of the PHB synthesis flux depends not only on the PHB flux split ratio but also on the upstream
glycerol supply, which may also be affected by the pathway modification. For instance, with TCA
activity suppressed, cellular metabolism would operate with less energy supply, meanwhile producing
less carbon dioxide. This was intended to improve the glycerol carbon conversion efficiency in PHB
production. On the other hand, if the rising TCA activity during Phase III and IV (as observed in
20F, 30F and 30B) is due to inelastic cellular energy demand (e.g., the energy required to maintain
transmembrane glycerol concentration to facilitate glycerol uptake), failing to meet such demand due
to repressed TCA activity would instead compromise the rate of glycerol supply, leading to an overall
reduction in PHB flux.

3.3.7. Further Experimental Tests

Based on the experimental and DFBA results obtained, aeration should be maintained at a high
level during Phase I and II to boost cell growth, and properly moderated during Phase III and IV to
repress the TCA activity in order to channel more carbon flux towards PHB. Accordingly, we performed
further bioreactor experimental tests to evaluate the effectiveness of this hybrid strategy to PHB
synthesis. Two 90-h batch experiments (30B2 and 30B3) were conducted under the same culture
conditions as 30B but with different aeration strategies, as shown in Table 4. The raw data and
methods for the estimation of oxygen mass transfer coefficients (kLa) are detailed in File S1.docx in the
supplementary material.
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Table 4. Aeration conditions and corresponding oxygen mass transfer coefficients used in 30B, 30B2
and 30B3.

Name 30B 30B2 30B3

Aeration (0–24 h)
220 rpm + 1 vvm

aeration
(kLa: 0.110 min−1)

300 rpm + 0.6 vvm
aeration

(kLa: 0.823 min−1)

300 rpm + 0.6 vvm
aeration

(kLa: 0.823 min−1)

Aeration (24–90 h)
220 rpm + 1 vvm

aeration
(kLa: 0.110 min−1)

300 rpm + 0.4 vvm
aeration

(kLa: 0.350 min−1)

300 rpm + 0.6 vvm
aeration

(kLa: 0.823 min−1)

Both 30B2 and 30B3 passed the cell growth phase in 24 h, with almost identical time profiles of
active biomass concentration (Figure 10). After this point, the aeration rate in 30B2 was reduced from
0.6 to 0.4 vvm. This adjustment only slightly affected the acid production and glycerol consumption,
but significantly improved the PHB production. In total, 26.25 g/L of glycerol was consumed and
7.60 g/L of PHB was produced in 30B2. The final PHB yield on a per carbon basis in 30B2 was 0.413,
around 20% higher than in 30B3 (0.345), which conforms to our expectations.Processes 2020, 8, x FOR PEER REVIEW 21 of 27 
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Through comparing 30B2/30B3 and 30B, the positive impact of aeration on cell growth is confirmed,
as the duration of the growth phase in 30B was almost twice as long as in 30B2/30B3. On the other
hand, the PHB productivity in 30B (0.092g/(h·L)) at Phase III was significantly lower than 30B2
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(0.156g/(h·L)) and 30B3 (0.142g/(h·L)), which contradicted our expectation. To investigate the cause of
such contradiction, DFBA was performed with the experimental data of 30B2 and 30B3.

As discussed, the original intention of lowering the degree of aeration during PHB production
phases was to increase the flux split ratio of the PHB pathway, in the hope that this can also improve
the overall PHB productivity. This strategy has been partially validated, in that the glycerol split
ratios in the three experiments were indeed in the order of ‘30B > 30B2 > 30B3′, which was the same
as the order of the values of kLa, and opposite to the orders of TCA flux split ratios and ATP yields
(Figure 10). The difference between the flux split ratios directly resulted in 30B3 achieving less PHB
accumulation than 30B2.

However, comparing the performance of 30B and 30B2 produces a different scenario. It is true
that the lowest degree of aeration has granted 30B the highest energy efficiency amongst the three
experiments. Yet, it also severely hampered the glycerol uptake rate insomuch that the advantages of
the flux split ratio was totally offset, leading to inferior results.

Through comparing the results of three experiments in terms of the ATP yield and PHB
accumulation, conclusions are not clear-cut. This implies the existence of a respiration/energy-
dependent regulating mechanism of glycerol uptake, which has not yet been verified and taken
into account by the current stoichiometric model. The actual bottleneck of cellular performance in
30B appeared to be the rigid energy demand rather than the TCA flux split ratio. Hence, in this
case, optimisation should be in the direction of promoting energy generation via respiration, rather
than limiting it. The inclusion of associated regulatory and signalling information in the model
would grant us more accurate insights into cellular behaviour and into the impact of genetic and
environmental perturbations.

4. Conclusions

In this work, we have applied a dynamic flux balance analysis (DFBA) framework to examine the
shift of metabolic states during bacterial fermentation. By upgrading the information contained in the
experimental measurements, DFBA enables a graphical and intuitive presentation of the evolution of
intracellular flux distribution resulting from cellular adaptation to dynamic extracellular environments.
To facilitate illustration, the cell metabolism was divided into different phases, which feature microbial
growth (Phase I), the co-production of biomass and PHB (Phase II), PHB synthesis (Phase III) and
post-PHB synthesis (Phase IV).

Prior to the analysis, a thermodynamic-based flux estimation method was first used to check the
directionality of biochemical reactions in the proposed network, and the mass balance constraints were
adjusted accordingly. Then, five FBA objective functions were evaluated based on their capability to
predict the three product concentration profiles (PHB, acetic acid and malic acid), when the model
was only constrained by time-series substrate uptake fluxes. Although none of the objectives was
able to generate an accurate prediction for all the three metabolites simultaneously, ‘minimisation
of all fluxes’ was chosen as it allowed the model to generate the closest match for PHB production.
Then, DFBA was performed with experimental results from batch fermentations with different initial
glycerol concentration and aeration conditions.

Despite that fact that biomass synthesis per se is a highly anabolic process with minimal net
energy yield, the overall metabolic state during growth phases, especially Phase I, was biased towards
catabolism, possibly due to unknown, growth-associated energy expenditure. Moreover, metabolism
appears less energetically efficient at faster growth rate, as cells require more maintenance energy
(indicated by ATP hydrolysis flux).

The initiation of PHB synthesis is linked with growth stress, which can be elicited by nitrogen
limitation as well as other factors, such as aeration limitation and substrate inhibition. Suboptimal
conditions not only lead to slower cell growth but also cause cells to initiate PHB synthesis when more
nitrogen source is available. To avoid inefficient growth-associated PHB synthesis in Phase II, culture
conditions that can maximise cell growth rate should be employed.
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As soon as growth ceased due to nitrogen depletion, cells entered Phase III and PHB production
flux reached the maximum. Organic acids were also produced concomitantly. During this phase,
cells exhibited the potential to achieve a state of efficient PHB production featuring minimum TCA flux
split ratio and low ATP yield. It was thus postulated that the minimisation of TCA cycle activity after
cell growth phase through modifying environmental factors, such as the degree of aeration, could be a
strategy to improve PHB production.

FBA can reveal the distribution of material flow within the metabolic network such that we can
identify the major metabolic activities competing for carbon source with PHB metabolism. Nonetheless,
as a reductionist approach, FBA has its limitation in demonstrating how PHB metabolism is kept
in balance with these activities. It remains elusive whether the TCA cycle, the main competitor for
PHB production, is always the rate-limiting factor of PHB productivity. This uncertainty was further
explained with additional experiments, where reduced TCA activity showed a positive effect on PHB
productivity (Phase III and IV) under highly aerated conditions, whereas the opposite effect was
observed when the cell culture received less aeration. The misprediction by FBA partially arises from
the missing regulatory link between the level of oxygen and the kinetics of the whole glycerol uptake
system. This can be compensated by the use of a holistic model framework, such as metabolic control
analysis, which can describe the control structure of the system and quantify the relative strength of
the control based on FBA.
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