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Abstract: The dynamics of the 3-dimensional flow of magnetized Carreau fluid past a
paraboloid surface of revolution is studied through thermal radiation and mass transfer analysis.
The impacts of Brownian motion and chemical reaction rate are considered on the flow dynamics.
The system of nonlinear PDEs are converted to coupled ODEs by employing suitable transformation
relations. The developed ODEs are solved by applying the standard procedure of homotopy analysis
method (HAM). The impacts of various interesting parameters on the state variables of the Carreau
fluid (velocity components, temperature, concentration, and shear stress) are explained through
various graphs and tables. It is found that the horizontal velocity components augment with the
rising magnetic parameter and Grashof number values. The fluid temperature augments with the
higher values of the pertinent parameters except Prandtl number. The Nusselet number and fluid
concentration enhance with the augmenting Brownian motion parameter. The shear stress augments
with the rising Grashof number. The agreement of the obtained and published results validate the
accuracy of the employed technique.

Keywords: magnetite–carreau fluid; Brownian motion; mass transfer; thermal radiations; paraboloid
of revolution; chemical reaction; magnetic field; homotopy analysis method (HAM)

1. Introduction

Fluids (liquids and gases) are characterized by their ability to flow, as contrasted to solids which
possess definite shapes. For decades, the investigators of fluid mechanics have focused on the flow
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characteristics of Newtonian and power-law fluids. The main impetus behind this is the fact that
in many fluids, the stresses developed during the flow are directly proportional to the local strain.
On the other hand, a lot of research groups are working on the generalized Newtonian fluids flow.
In such type of fluids, the shear stress depends on the shear rate at a given time. In 1972, Pierre J.
Carreau [1,2] presented a model capable of describing the Newtonian fluids (power-law fluids) flow
at low (and high) shear rate. A few years later, Bush and Phan-Thien [3] used the Carreau viscosity
relation to find the drag force effect of a sphere in a fluid exhibiting shear-thinning as well as elastic
properties. Khellaf and Lauriat [4] explained the heat energy transfer flow between two cylinders,
in which the inside cylinder was rotatory while the other cylinder was static. The authors employed the
Carreau constitutive relation to examine the non-Newtonian shear-thinning model of viscosity. It was
concluded that the fluid motion becomes oscillatory with the decreasing flow index or with augmenting
Weissenberg number. The motion of the Carreau fluid at an extending wall and at free-stream was
analyzed by Khan et al. [5]. In this study, the fluid flow was characterized as shear-thickening (n > 1),
Newtonian (n = 1), and shear-thinning (0 < n < 1). The analysis implied that the Carreau fluid
shows the Newtonian fluid characteristics at low and power-law fluid characteristics at high shear
rates. Olajuwon [6] pointed out that Carreau fluid constitutive equation can describe fluids whose
viscosity varies with the increasing deformation rate. The Carreau fluid model gives a finite fluid
viscosity in the limit when the shear rate tends to zero in contrast to Ostwald-De Waele or power-law
models. Hsu et al. [7] calculated the drag coefficient of a rigid and isolated particle of cylindrical shape
flowing in a Carreau fluid. The analysis confirmed that the drag coefficient in this case is smaller due to
the Carreau fluid shear-thinning nature as compared to the Newtonian fluid. The study further reveals
the direct dependence of the index parameter in the drag coefficient on the relaxation time constant.

It is to be mentioned that the 3-dimensional Carreau fluid flow on complex surfaces like over an
upper portion of the aircraft, rocket upper surface, and on car bonnet, etc., has not been undertaken.
This may be due to the unavailability of suitable 3D flow solving techniques. The non-Newtonian
fluids, for example, structured as well as genetic liquid organisms, human blood, polymeric solutions,
and exotic liquids are ubiquitous in this industrialized world. A lot of research has been executed in
this direction. The peristaltic flow through a nonsymmetrical channel of a Carreau fluid was explained
by Ali and Hayat [8]. The induced magnetic field impact on the transport of Carreau fluid was
explained by Hayat et al. [9]. The Carreau fluid motion through an inclined and free surface was
analyzed by Tshehla [10]. Elahi et al. [11] discussed the 3D flow of Carreau fluid in a rectangular
duct. The investigation of fluid flow in the magnetic field presence to measure its various macroscopic
properties is called Magneto Hydro Dynamics (MHD). MHD flow finds its applications in different
disciplines like plasma and astrophysics, cooling of nuclear reactors, engineering and technology, and
so on. The transfer of heat energy during the MHD fluid flow over a vertical stretching surface was
examined by Nazar et al. [12]. He concluded that the rising magnetic field strength results in the
reduction of the heat energy loss and coefficient of local skin friction. Ishak et al. [13] discussed the
stagnation-point motion in the magnetic field presence towards a stretchable surface. Xu et al. [14]
examined analytically the 3D flow of magnetized fluid along with heat energy transfer on a stretchable
plate by using a series solution technique. Vajravelu et al. [15] analyzed the convective heat energy
transformation over a stretchable surface by applying B field. Pop and Na [16] investigated the MHD
flow on a stretching and porous surface. Gnaneswara Reddy et al. [17] analyzed the magnetic field and
Ohmic heating effects on the viscous nanofluid flow over a nonlinear permeable and extending surface.

The existence of gradients in physical quantities is necessary for the development of various
fluxes, which then results in different kinds of flow. The heat energy transfer is mainly associated with
the gradients in temperature, this effect is called the Soret effect. The gradients in concentration cause
mass transfer flow which gives rise to Dufour effect. These effects play an important role when density
differences exist in a system. The phenomena in which heat energy transport takes place, for example,
heat energy exchangers, manufacturing of steel, and other cooling processes, the convective heat energy
transformation plays a dominant role. The impact due to convective thermal energy transfer flow over
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a three-dimensional exponential stretching surface was discussed by Liu et al. [18]. Hayat et al. [19]
discussed the Carreau fluid flow of a boundary layer and showed that the rising suction parameter
augments (drops) the thickness range (velocity) of the fluid boundary layer. The analysis of thermal
energy radiations is of basic importance in solar energy systems, nuclear power reactors, combustion
engines and chambers, propulsion engines for high-velocity aircraft, and chemical activities at high
operating temperatures. The thermal radiation boundary layer MHD nanofluid flow over an extending
surface was examined by Gnaneswara Reddy [20]. Emad [21] examined the effects produced due to the
presence of radiation on the electrically conducting fluid motion on an extendable surface. Gnaneswara
Reddy [22] investigated the mixed convective magnetized layer slip flow through a permeable surface
in the existence of heat energy source and Ohmic effect by taking into account the impacts of radiation
energy and chemical reaction. The radiation impact on the convective heat energy transformation
in a current carrying fluid over an extendable surface having varying viscosity was investigated by
Abo-Eldahab and Elgendy [23]. Gnaneswara Reddy [24] examined the collective impact of Joule
heating, thermophoresis and dissipation on a steady magnetized fluid flow on an inclined isothermal
surface. The impact of thermal radiations on magnetized fluid motion is numerically investigated in
the references [25–27] by taking into account the presence of suction/injection. The mixed convective
MHD flow by considering the impacts of joule heating, temperature jump, slip, and viscous dissipation
was studied in the references [28,29]. The impact of varying viscosity on a porous plate heated
convectively in the presence of thermophoresis effect was considered by Makinde et al. [30]. The study
of nanofluid stagnation flow on a stretchable sheet by considering the varying viscosity effect was
performed by Khan et al.. Ibrahim and Makinde [31] further expanded their previous work to examine
the convective boundary value flow of Casson fluid. The mass and heat energy transformation
properties of Newtonian as well as non-Newtonian fluids by considering the thermal radiation impact
are discussed in the references [32–34]. The impact of chemical reaction and thermal radiations on the
MHD flow was considered by Hayat et al. [35]. Shehzad et al. [36] numerically examined the 3D Casson
fluid motion within a permeable medium by considering the effect of internal heat energy. The impacts
of radiation and chemically reactive components on a magnetized convection flow near a vertical
moving wall was examined by Gnaneswara Reddy [37]. The mass and heat energy transformation
properties of Newtonian as well as non-Newtonian fluids were investigated by Raju et al. [38,39] in
the existence of thermal radiation.

Motivated by the above studies, we want to analytically examine the 3D Carreau fluid MHD flow
over a horizontal paraboloid surface of revolution through thermal radiation and mass transfer analysis
by considering the chemical reaction and Brownian motion effects. The geometry and mathematical
modeling of the problem is given in Section 2. The solution methodology used is explained in Section 3.
The impacts of pertinent parameters on the various aspects of the Carreau fluid flow are explained
through graphs in Section 4. The comparison and calculations of Sherwood and Nuselt numbers as
well as the shear stresses are explained through different tables in Section 5. The work is concluded in
Section 6.

2. Formulation of the Problem

We analyze the 3D nonlinear and magnetized mixed convective Carreau fluid flow. The geometry
of the problem is selected such that the x−axis lies parallel to the surface. The B-field is applied normal
to the sheet, i.e., along the z−axis as shown Figure 1. The basic relation that governs the Carreau fluid
flow is [40,41]

τ =
[
η∞ + (η0 − η∞)

(
1 + (λγ.)2

) n−1
2
]
γ̇, (1)

where τ denotes the extra stress tensor, η∞ (η0) is the infinity shear rate (zero shear rate) viscosity, λ is
the time constant, n is the index of power-law, and γ̇ is given by [4]
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γ̇ =

√
1
2 ∑

i
∑

j
γ̇ijγ̇ji =

√
1
2 ∏, (2)

where ∏ is the second invariant of the strain-rate tensor. Assuming η∞ = 0, we have from Equation (1),

τ =
[
η0

(
1 + (λγ̇)2

) n−1
2
]
γ̇. (3)

Figure 1. Geoemtrical demonstrarion of the physical problem.

We assume that uw = U0(b + x + y)p, vw = 0, Z = d(l + x + y)
1−p

2 , p 6= 1, where d, l and b are
constants. The model equations that govern the dynamics of the magnetized Carreua fluid are

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (4)

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= ν
∂2u
∂z2

[
1 + Γ2

(∂u
∂z

)2] n−1
2

+ ν(n− 1)Γ2 ∂2u
∂z2

(∂u
∂z

)2[
1 + Γ2

(∂u
∂z

)2] n−3
2

+gβ
(m + 1

2

)
(T − T∞)−

σB2
0u

ρ
,

(5)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= ν
∂2v
∂z2

[
1 + Γ2

(∂v
∂z

)2] n−1
2

+ ν(n− 1)Γ2 ∂2v
∂z2

(∂v
∂z

)2[
1 + Γ2

(∂v
∂z

)2] n−3
2

+gβ
(m + 1

2

)
(T − T∞)−

σB2
0v

ρ
,

(6)

(ρCp)
[
u

∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

]
= κ

∂2T
∂z2 + Q0(Tw − T∞)exp

[
− qz

√
m + 1

2
U0

ν
(x + y + b)

m−1
2

]
+ q′′′ − ∂qr

∂z
, (7)

u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

= Dm
∂2C
∂z2 +

DT
T∞

∂2T
∂z2 − k̂(C− C∞). (8)

The boundary restrictions on the system are given by

u = Uw, v = Vw, w = 0, T = Tw, C = Cw, at z = A(b + x + y)
1−m

2 ,

u→ 0, v→ 0, T → T∞, C → C∞ at z→ ∞.
(9)

Here, u, v and w are the velocity Cartesian components, Γ is the time constant, ν (k) is the kinematic
fluid viscosity (thermal conductivity), k̂ is the dimensional parameter of the chemical reaction, Dm is
the mass diffusivity, C (C∞) is the fluid concentration (ambient fluid concentration), and Cp is the heat
capacity. The nonuniform heat source (q

′′′
) is given by [42]
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q′′′ =
kU0

ν(b + x + y)1−m

[
(Tw − T∞)Ã f ′ + (T − T∞)B̃

]
, (10)

where Ã > 0 and B̃ > 0 show the reflection, whereas −Ã > 0 and −B̃ > 0 show the heat absorption
inside the system. The radiation flux qr is defined as [6,42]

qr = −
4σs

3k1

∂T4

∂y
, (11)

where σs is the Stefan–Boltzmann constant and k1 is the average absorption coefficient. Taylor
expanding T4 about the fixed temperature T∞ and ignoring T4

∞ and higher order terms in Equation (11),
we get

∂qr

∂z
= −16σsT3

∞
3k1

∂2T
∂z2 . (12)

Assume the following transformations [42,43]:

ψ(x, y, z) =
√

2νU0

m + 1
(b + x + y)

m+1
2 f (η), ξ(x, y, z) =

√
2νU0

m + 1
(b + x + y)

m+1
2 g(η), (13)

u =
∂u
∂z

, v =
∂ξ

∂z
, w =

( ∂2ψ

∂z∂y
+

∂2ξ

∂z∂x

)
η = z(b + x + y)

m−1
2

√
(m + 1)U0

2ν
, (14)

Tw(x, y) = A(b + x + y)
1−m

2 , Cw(x, y) = A(b + x + y)
1−m

2 , θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C− C∞

Cw − C∞
. (15)

From Equations (13)–(15), we have

u = U0 f ′(b + x + y)m, v = U0g′(b + x + y)m,

w = −
√

2νU0

m + 1
(b + x + y)

m−1
2

[
( f (η) + g(η))

(1−m
2

)
+ η( f (η)′ + g(η)′)

(m− 1
2

)]
.

(16)

Using Equations (10) and (12) together with Equations (17) and (18) in Equations (4)–(8), we get

[
1 + nWe2( f ′′)2

][
1 + We2( f ′′)2

] n−3
2

f ′′′ −
(m− 1

m + 1

)
( f + g) f ′′ + Grθ −M f ′ = 0, (17)

[
1 + nWe2(g′′)2

][
1 + We2(g′′)2

] n−3
2

g′′′ −
(m− 1

m + 1

)
( f + g)g′′ + Grθ −Mg′ = 0, (18)

(
1 + Rd

)
θ′′ − Pr

(m− 1
m + 1

)
( f + g)θ′ +

2
m + 1

[
Prγe−qη + Ã f ′ + B̃θ

]
= 0, (19)

φ′′ − Sc
(m− 1

m + 1

)
( f + g)φ′ +

Nt
Nb

θ′′ +
2k̂

m + 1
Scφ = 0, (20)

where Equation (4) is satisfied identically.

Here, Pr =
νρCp

k denotes the Prandtl number, We =

√
Γ2(m+1)U3

0 (b+x+y)3m−1

2ν is the Weissenberg

number, Gr = gβ(Tw−T∞)(b+x+y)1−2m

U2
0

is the Grashof number, γ = Q0(b+x+y)1−m

(ρCp)U0
demonstrates the

internal heat source, Sc = ν
Dm is the Schmidt number, k̂ is the parameter of chemical reaction, Nt =

τDT T0
kT∞

is the thermoporesis parameter, Nb = τDwC0
kC∞

is the Brownian motion parameter, and Rd = 16σ∗T3
∞

3kke
is the radiation parameter. The boundary restrictions of the system are nondimensional, as discussed
in the references [44,45]. The boundary restrictions on the system must be set at z = 0 because the
exceeding of the zmin, but it is impossible in practice that all the restrictions be set at z = 0 at the
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parabolic upper horizontal surface. As a result, it is impossible to use z = 0 in the similarity variables.
Choosing z = (b + x + y)

1−m
2 at the slot starting point gives the minimum value of the similarity

variable η and is given by

Λ = A

√
(m + 1)U0

2ν
= η. (21)

Using Equations (13) and (15) in Equation (9), we get

d f
dΛ

= 1, f (Λ) = Λ
(1−m

1 + m

)
f (Λ)′,

dg
dΛ

= c, g(Λ) = Λ
(1−m

1 + m

)
g(Λ)′, θ(Λ) = 1, φ(Λ) = 1 at Λ = 0,

d f
dΛ
→ 0,

dg
dΛ
→ 0,

dθ

dΛ
→ 0,

dφ

dΛ
→ 0, at Λ = ∞.

(22)

It is to be noted here that the boundary restrictions in Equation (22) depend on Λ, while
Equations (17)–(20) depend on the independent variable η. For this, the domain [Λ, ∞] is transformed
to [0, ∞] as discussed by Abegunrin [45]. Therefore, assume that ς = −(Λ− η), then F(η − Λ) =

F(ς) = f (η), G(η − Λ) = G(ς) = g(η), Θ(η − Λ) = Θ(ς) = Θ(η), and Φ(η − Λ) = Φ(ς) = Φ(η).
From these assumptions, Equations (17)–(20) and Equation (22) are given by

[
1 + nWe2(F′′)2

][
1 + We2(F′′)2

] n−3
2

F′′′ −
(m− 1

m + 1

)
(F + G)F′′ + GrΘ−MF′ = 0, (23)

[
1 + nWe2(G′′)2

][
1 + We2(G′′)2

] n−3
2

G′′′ −
(m− 1

m + 1

)
(F + G)G′′ + GrΘ−MG′ = 0, (24)

(
1 + Rd

)
Θ′′ − Pr

(m− 1
m + 1

)
(F + G)Θ′ +

2
m + 1

[
Prγe−qς + ÃF′ + B̃Θ

]
= 0, (25)

Φ′′ − Sc
(m− 1

m + 1

)
(F + G)Φ′ +

Nt
Nb

Θ′′ +
2k̂

m + 1
ScΦ = 0, (26)

dF
dς

= 1, F(ς) = Λ
(1−m

1 + m

)
F(ς)′,

dG
dς

= c, G(ς) = Λ
(1−m

1 + m

)
G(ς)′, Θ(ς) = 1, Φ(ς) = 1 at ς = 0,

dF
dς
→ 0,

dG
dς
→ 0,

dΘ
dς
→ 0,

dΦ
dς
→ 0, at ς = ∞.

(27)

The engineering quantities of interest are given by

C f x =
τwxU2

w

ρ
√

m+1
2

, C f y =
τwyv2

w

ρ
√

m+1
2

,

Nux,y =
(b + x + y)qw

k(Tw − T∞)
√

m+1
2

, Shx =
(b + x + y) ∂C

∂z

(Cw − C∞)
√

m+1
2

,

(28)

where,

τwx =
(

µ
∂u
∂z

[
1 + Γ2

(∂u
∂z

)2])
z=U0(b+x+y)

1−m
2

, τwy =
(

µ
∂v
∂z

[
1 + Γ2

(∂v
∂z

)2])
z=U0(b+x+y)

1−m
2

,

qxy =
(
− k

∂T
∂z

)
z=U0(b+x+y)

1−m
2

.
(29)

From above, we can write

C f x(Re1/2) = F′′(0)
[
1 + We(F′′(0)2

] n−1
2

, C f y(Re1/2) = G′′(0)
[
1 + We(G′′(0)2

] n−1
2

,

Nuxy(Re)−1/2 = −Θ′(0), Shx(Re)−1/2 = −
√

m + 1
2

φ′(0).

(30)
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3. Analytical Solution

The basic mechanism of HAM is explained by Liao in his PhD thesis [46]. The advantages
and comparison of HAM are discussed in reference [47]. Liao used a topological concept known as
"Homotopy". He used two different continuous functions ζ1(x̂) and ζ2(x̂) defined over the two spaces
X̂ and Ŷ. The basic theory of the transformation is based on linking the closed unit interval with the
topological spaces defined, as given below:

Ψ̃ : X̂× [0, 1]→ Ŷ, (31)

where Ψ̃[x̂, 0] = ζ1(x̂) and Ψ̃[x̂, 1] = ζ2(x̂) holds ∀x̂ ∈ X̂. The transformation given in Equation (31)
is called homotopic transformation. The set of Equations (23)–(26), together with the boundary
restrictions (27) are solved with HAM [48], by choosing suitable initial guesses F0, G0, Θ0, and Φ0 with
the corresponding liner operators defined as

LF̄(F̄) = F̄′′′, LḠ(Ḡ) = Ḡ′′′ LΘ̄(Θ̄) = Θ̄′′, and LΦ̄(Φ̄) = Φ̄′′, (32)

that satisfies

LF̄(c1 + c2ς + c3ς2) = 0, LḠ(c4 + c5ς + c6ς2) = 0, LΘ̄(c7 + c8ς) = 0, andLΦ̄(c9 + c10ς) = 0. (33)

4. Results and Discussion

Here, we explain graphically the impacts due to the varying values of the associated parameters in
the state variables (velocity, shear stress, temperature, and concentration). We also explain the variation
of Sherwood and Nusselet numbers as well as the skin friction, respectively. Figures 2–17 show the
variation in the state variables, whereas Figures 18–20 represent the variation in the Sherwood number,
Nusselt number, and the skin friction with the changing associated parameters values.

We plotted the impact of the changing magnetic parameter (M) values over F
′
(ζ) and G

′
(ζ)

(horizontal velocity profiles), respectively, in Figure 2a,b. It is found that at a given M, both velocity
components vary inversely with higher values of ζ almost at the same manner. It is clear that the
increasing M drops the profiles of both these components. The drop in the profiles is prominent at the
smaller values of ζ. The increasing magnetic field produces higher Lorentz force which results in the
reduction of velocities.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

ζ

F
'(ζ

) M = 2.5

M = 2.0

M = 1.5

M = 1.0

1 2 3 4 5

0.0

0.2

0.4

0.6

ζ

G
(ζ
) M = 2.5

M = 2.0

M = 1.5

M = 1.0

(a) (b)

Figure 2. Impact of M on (a) F
′
(ζ) and (b) G

′
(ζ).

The dependence of the vertical components of velocity (F(ζ) and G(ζ)) on the stretching rate
ratio (c) is plotted in Figure 3a,b. It is clear that the component F(ζ) drops while the other component
G(ζ) rises with the increasing c values. The drop in F(ζ) is very minute and is visible beyond ζ = 1.2.
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The rising behavior of G(ζ) with the higher stretching rate ratio is more prominent, as can be seen in
Figure 3b.
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Figure 3. (a) Impact of c on F(ζ) and (b) G(ζ).

The dependence of F
′
(ζ) and G

′
(ζ) on the stretching rate ratio c is depicted in Figure 4a,b.

We observe that the component F
′
(ζ) drops while the other horizontal component G

′
(ζ) rises with

the augmenting c values. These dropping and enhancing behaviors are more obvious for the smaller
values of ζ, i.e., close to the wall.
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Figure 4. (a) Impact of c on F
′
(ζ) and (b) G

′
(ζ).

The variation of the shear stress profiles F
′′
(ζ) and G

′′
(ζ) with the varying values of stretching

rate ratio is explained in Figure 5a,b. We see from Figure 5a that up to about ζ = 1.0, the shear stress
F
′′
(ζ) drops; while beyond it rises with larger c values. The shear stress G

′′
(ζ) drops with higher

values of c, as is clear from Figure 5b. The rate at which G
′′
(ζ) drops is larger for smaller values of ζ.

As c is the ratio between two stretching velocities, if one component enhances, then the other must
drop with higher c values, as observed in all cases in which c is changing.

The influence of We (Weissenberg number) on the horizontal components of velocity is sketched
respectively in Figure 6a,b. It is seen from Figure 6a that the component F

′
(ζ) augments with the

increasing Weissenberg number values. This increase in F
′
(ζ) with We is dominant up to ζ = 03.

The rate at which F
′
(ζ) enhances is larger for higher We. A decreasing trend is observed for the

horizontal component G
′
(ζ) with increasing We, as can be seen from Figure 6b. Here, the rate at which

G
′
(ζ) drops is larger for smaller We values.
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Figure 5. Impact of c on the shear stresses (a) F
′′
(ζ) and (b) G

′′
(ζ).
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Figure 6. Impact of We on the horizontal velocity components (a) F
′
(ζ) and (b) G

′
(ζ).

The influence of Λ upon F(ζ) and G(ζ) (the vertical velocity profiles) is portrayed in Figure 7.
We observe that both the vertical components show almost similar increasing dependence with the
augmenting values of Λ.
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Figure 7. Impact of Λ on (a) F(ζ) and (b) G(ζ).

The influence of Λ upon F
′
(ζ) and G

′
(ζ) profiles is portrayed in Figure 8. We observe that both

these velocity components show decreasing behavior with the augmenting Λ values. The spacing
among the G

′
(ζ) curves is larger for higher Λ values as compared to the spacing between F

′
(ζ) curves.
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Figure 8. Impact of Λ on (a) F
′
(ζ) and (b) G

′
(ζ).

The dependence of the shear stress profiles F
′′
(ζ) and G

′′
(ζ) on Λ is portrayed in Figure 9. It is

obvious from the figures that both the shear stress components show almost the same rising behavior.
Initially, up to about ζ = 0.5, the shear stress profiles drop with higher Λ, while up to ζ = 4.0,
both these shear stress components augment with higher rate. Beyond ζ = 4.0, the profiles remain
almost constant.
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Figure 9. Impact of Λ on the shear stress profiles (a) F
′′
(ζ) and (b) G

′′
(ζ).

The impact of the Grashof number Gr (1.0, 3.0, 5.0, 7.0) on F(ζ) and G(ζ) profiles is plotted in
Figure 10. These graphs show that the velocity components display a similar rising trend with the
larger values of the Grashof number. The spacing between the curves for augmenting Gr values is
almost constant. This physically means that lager buoyancy forces (associated with higher Gr values)
augment the velocity components of the magnetic Carreau fluid.

The impact of the varying values of Grashof number Gr on the horizontal velocity profiles are
depicted in Figure 11. These graphs show that the velocity components follow similar increasing
tendency with the augmenting Grashof number. The augmenting trend in these components is more
obvious for the intermediate values of ζ. This again means that the larger buoyancy forces (high Gr
values) augment the Carreau fluid velocity components.
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Figure 10. Impact of Gr on (a) F(ζ) and (b) G(ζ).
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Figure 11. Impact of Gr on (a) F
′
(ζ) and (b) G

′
(ζ).

The variation of the shear stress components F
′′
(ζ) and G

′′
(ζ) with varying values of Gr is shown

in Figure 12. Both these components show a decreasing trend with higher Gr. The decreasing tendency
is more obvious for smaller values of ζ. The spacing between different F

′′
(ζ) curves is larger compared

to spacing between G
′′
(ζ) curves for varying Gr values. Thus, the increasing buoyancy forces with the

higher values of Gr result in depreciating the shear stresses.
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Figure 12. Impact of Gr on (a) F
′′
(ζ) and (b) G

′′
(ζ).

The temperature distributions of the magnetized Carreau fluid with the changing Prandtl number
(Pr) and radiation parameter (Rd) are plotted in Figure 13a,b, respectively. From Figure 13a, we see
that at a given value of Pr, the Carreau fluid temperature reduces with the larger ζ. The rate at which



Processes 2020, 8, 656 12 of 20

temperature drops decreases for larger ζ. The fluid temperature drops with the augmenting Pr values.
The drop in θ(ζ) is dominant for the intermediate ζ values. The reason for the temperature drop of
the Carreau fluid with the ascending Pr is due to the decreasing values of the Carreau fluid thermal
diffusivity. Figure 13b displays that the temperature enhances with higher radiation parameter Rd
values. The increase in the θ(ζ) profiles of the Carreau fluid with larger Rd is more obvious for the
smaller values of ζ.
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Figure 13. (a) Impact of Pr on θ(ζ) and (b) influence of Rd on θ(ζ).

The impacts of the internal heat source parameter γ and stretching rate ratio c on the temperature
distribution of the Carreau fluid are depicted in Figure 14a,b, respectively. It is obvious from
Figure 14a that the fluid temperature drops as we go away from the wall (at larger ζ). Furthermore,
the temperature rises with the rising γ values. The temperature of the fluid first rises, reaches maximum
value, then drops with increasing ζ at constant stretching rate ratio (c). The augmenting values of the
stretching rate ratio first drop the fluid temperature up to about ζ = 1.0 and then enhance it beyond
ζ = 1.0.
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Figure 14. Dependence of θ(ζ) on (a) γ and (b) c.

The influence of the internal source reflection terms Ã and B̃ on the Carreau fluid temperature θ(ζ)

are respectively displayed in Figure 15a,b. Both figures show that the increasing values of the reflection
terms Ã and B̃ cause an enhancement in the temperature. Both these terms have approximately the
same influence over the enhancement in θ(ζ). Thus, the positive values of the reflection terms augment
the Carreau fluid temperature.
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Figure 15. (a) Effect of Ã on (θ(ζ)) and (b) influence of B̃ on θ(ζ).

Figure 16a,b respectively show the impact of the variation of the thermoporesis and Brownian
motion parameters over the Carreau fluid concentration Φ(ζ). We observe that at a given value
of Nt, the fluid concentration drops as ζ increases. The rising Nt values cause an enhancement of
the fluid concentration. This increase in concentration is more dominant at the smaller values of ζ.
The increase in fluid concentration due to higher Nt may be associated with the existence of larger
concentration gradients. We also observe an increase in the fluid concentration with the ascending Nb
values. The increase in the fluid concentration is more drastic for the highest Nb. This enhancement of
fluid concentration may be due to the higher rate of random collisions between fluid particles.
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Figure 16. (a) Φ(ζ) dependence on Nt. (b) Φ(ζ) dependence on Nb.

The dependence of the Carreau fluid concentration Φ(ζ) on the changing Schmidt number Sc is
shown in Figure 17a, and k̂ (chemical reaction rate parameter) is pictured in Figure 17b. We can see
from Figure 17a that the ascending values of Sc raise the fluid concentration. The enhancement in Φ(ζ)

is more prominent for smaller ζ values. This physically means that the higher momentum diffusivity
causes enhancement in the fluid concentration. Figure 17b displays that the rising k̂ values drop the
fluid concentration. The reduction in the fluid concentration is more dominant at small ζ values.

The dependence of Sherwood number on Schmidt number (Sc) and reaction rate parameter (k̂)
is respectively displayed in Figure 18a,b. We see from Figure 18a that at a given Sc, the Sherwood
number drops with higher ζ. As the values of Sc are enhanced, the Sherwood number profiles drop.
This drop in Sherwood number is more drastic at higher values of ζ. Figure 18b depicts that Sherwood
number enhances with increasing values of thermal reaction rate parameter k̂.
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Figure 17. Impact of (a) Sc on Φ(ζ) and (b) k̂ on Φ(ζ).
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Figure 18. Dependence of Sherwood number on (a) Sc and (b) k̂.

The impact of increasing values of radiation and Brownian motion parameters (Rd and Nb) on
Nusselt number is plotted respectively in Figure 19a,b. It is clear from Figure 19a that the Nusselet
number varies inversely with higher values of ζ at a given value of Rd. The Nusselet number enhances
with higher values of Rd almost at the same rate. Figure 19b shows that the Nusselt number enhances
with rising Nb values. The spacing between different curves for varying Nb values decreases at the
intermediate values of ζ.
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Figure 19. Dependence of Nusselt number on (a) Rd and (b) Nb.

The impact of M (magnetic parameter) on the skin friction (C f x) along x-axis is shown in Figure 20a.
We observe that the C f x augments with rising values of ζ at fixed M. By increasing the magnetic field
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strength, C f x enhances with an almost uniform amount. Figure 20b is the graphical representation of
the skin friction C f y along y-axis with varying values of stretching rate ratio c. We see that C f y drops
with the augmenting values of c almost at the same rate.
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Figure 20. (a) The dependence of skin friction (C f x) on M. (b) The dependence of skin friction (C f y)
on c.

5. Tables Discussion

The engineering quantities of interest are explained in this section. Tables 1–3 show the impact
of varying values of various parameters over the Nusselt number, skin frictions, and Sherwood
number, respectively.

The comparison between the results achieved in this study and the already published results for
the computation of Nusselt number for the nonzero Schmidt number and Brownian motion parameter
is displayed in Table 1. We see an excellent agreement in both results.

Table 1. Impact of the variation of Pr on Nusselt number for the nonzero values of the Schmidth
number and the Brownian motion parameter.

Pr −Θ′(0) Present Results−Θ′(0)

0.07 0.065663 0.06566331
0.09 0.075853 0.07585343
1.00 0.231285 0.23128545
2.00 0.911489 0.91148934
7.00 1.89547 1.8954745

The skin frictions along the x-axis (C f x) and y-axis (C f x) are computed for varying values of ζ, Λ,
and We in Table 2.

Table 2. Different values of −F′′(0) and −G′′(0) for varying ς, Λ, and We.

ς Λ We -F′′(0) -G′′(0)

0.2 2.0 0.5 1.6712950 2.2421201
0.3 1.4316711 3.7195922
0.4 2.4720023 3.7195923
0.5 2.395264 2.8854775
0.2 2.8 2.2742042 2.6856884

3.0 2.1943074 2.6725891
3.5 1.6060401 2.2080583
2.0 0.8 1.8030313 2.0519016

0.9 1.8354931 2.5575852
1.0 2.0481525 3.4036193
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The Nusselt and Sherwood numbers are computed for various values of Nb, Rd, k̂, and Pr
in Table 3.

Table 3. Calculation of −Θ′(0) and −Φ′(0) for varying Nb, Rd, k̂, and Pr by keeping the remaining
parameters fixed.

Nb Rd k̂ Pr −Θ′(0) −Φ′(0)

0.1 0.4 0.5 0.72 0.3017291 1.2785483
0.3 0.2454834 1.3708325
0.5 0.1994182 1.3939463
0.7 0.1605945 1.4063601
0.1 0.5 0.2877691 1.3219014

0.6 0.2707055 1.3749094
0.7 0.2488083 1.4428653
0.4 0.4 0.3022361 1.2716452

0.2 0.3032192 1.2583444
0.1 0.30370646 1.251925
0.5 0.78 0.3146993 1.2617091

0.84 0.3278921 1.2434992
0.90 0.3413793 1.2236714

6. Conclusions

We examined the impact of chemical reaction rate and Brownian motion parameters on the MHD
Carreau fluid 3-dimensional flow by using thermal radiation and mass transfer analysis. A simplified
set of coupled second order ODEs is obtained through suitable transformation relations. These coupled
ODEs are solved by using the homotopy analysis method (HAM). The influence of magnetic filed,
stretching rate ratio, Weissenberg number, Grashof number, chemical reaction rate and Brownian
motion parameters, Schmidt number, and other parameters are explained through various graphs.
The agreement of achieved and published results confirms the accuracy of the employed procedure.
We concluded the following main points:

• The horizontal velocity components (F
′
(ζ) and G

′
(ζ)) drop with the ascending M.

• The enhancement in the stretching rate ratio drops the shear stress horizontal and vertical velocity
profiles (G

′′
(ζ), F

′
(ζ), F(ζ)) and enhances the (F

′′
(ζ), G

′
(ζ), G(ζ)) profiles.

• The horizontal and vertical velocity profiles ((F
′
(ζ), G

′
(ζ), F(ζ), G(ζ)) augment, while the shear

stress profiles (F
′′
(ζ), G

′′
(ζ)) drop with the ascending Grashof number values.

• The fluid temperature augments with the higher values of all pertinent parameters except
Prandtl number.

• The fluid concentration augments with the higher values of thermoporesis and Brownian motion
parameters, and Schmidt number, while drops with the higher values of the parameter of chemical
reaction rate.

• The Nusselt number augments with the increasing radiation and Brownian motion parameters.
• The skin friction C f x along x-axis augments with the augmenting magnetic parameter values, and

along the y-axis C f y drops with the rising stretching rate ratio.
• The agreement between obtained and published results confirms the accuracy of our employed

analytical technique.
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Abbrevations

The below mentioned parameters and abbreviations with their possible dimensions are used in
this article:

σ∗ Electrical conductivity S
m

B Uniform magnetic parameter strength T
Nux,y Nusslet number along x-axis and y-axis
Rex Local Reynolds number
C f x Skin friction along the x-axis
C f y Skin friction along the y-axis
Shx Sherwood number
Dm Mass diffusivity parameter
Pr Prandtl number
uw Constant Fluid velocity ( m

sec )
T Fluid temperature (K)
υ Kinematic viscosity m2

sec
ρ Density (

Kg
m3 )

µ Dynamic viscosity mPa
Cp Specific heat ( J

KgK )

Sc Schmidt number
f , g Dimensionless velocities
θ Dimensionless temperature
φ Dimensionless concentration
∞ Condition at infinity
0 Reference condition
x, y, and z Coordinates (m)

η Similarity variable
ψ Stream function
Nb Brownian motion parameter
Nt Thermophoresis parameter
t Time (sec)
n Power law index
M Magnetic field interaction parameter
τ Extra stress tensor
σs Stefan Boltzmann constant
F, G Restricted dimensionless velocity components along x and y-axis respectively.
Θ Restricted dimensionless temperature
Φ Restricted dimensionless concentration
qs Surface heat transfer
k̂ Chemical reaction parameter
Γ Time constant
k1 Average absorption coefficient
We Weissenberg number
Gr Grashof number
Ã, B̃ Internal heat generation parameters
γ Internal heat source and sink
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