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Abstract: In tropical countries, such as Thailand, the variation of tree moisture content can be
significant based on seasonal variations in rainfall. Pulp mill operation optimization accounting
for wood moisture variation was used to determine optimal operation conditions and minimize
production cost. The optimization models were built using empirical modeling techniques with
simulated data from the IDEAS software package. Three case studies were performed. First, a base
case of nominal annual operation at a fixed production rate was used to calculate production cost
that varies with wood moisture content. The second case is annual optimization where production
was allowed to vary monthly over an annual cycle to minimize production cost. For the third case,
real-time optimization (RTO) was used to determine optimal production rate with the wood moisture
content varying every 3 days. The rolling horizon approach was used to schedule production to keep
inventory levels within bounds and with a penalty applied to deviations from the annual expected
values of inventory. The advantage of RTO in accounting for moisture content variation was confirmed
by annual production costs results simulated for 20 years. These results statistically demonstrated
that the overall cost was reduced compared to the second case of monthly production targets.

Keywords: real-time optimization; pulp mill modeling; rolling horizon approach; moisture content
of wood variation

1. Introduction

The pulp and paper industry is an important and growing sector in the forest industry of Thailand
for which the majority of fiber inputs are produced domestically. The pulp and paper sector is energy
and raw materials intensive and faces several challenges that include rising feedstock and energy prices
and increased concern for environmental impact. Reducing cost is the main objective for the operation
of a pulp and paper mill and there is a drive toward efficiency to maximize the profit rate of the whole
plant [1]. Optimization models can significantly improve pulp and paper mill operation and many
of them focus on overall amount of operating consumptions as raw material, water, and energy [2].
In this paper, a process integration model was developed to improve operation and minimize operating
cost, and sub-models of different mill operations were developed to support optimization of plant
performance [3].

In process operations involving natural inputs, there is a variability that affects physical properties
of raw material, product quality, and operating cost; therefore, on-line optimization can be an important
contributor to overall plant efficiency. Specifically, real-time optimization (RTO) is an approach used in
various industrial continuous processes and can be applied to the pulp and paper industries. RTO is a
methodology to support decisions based on optimizing an economic objective and plant operating
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constraints to respond to changes in the operating environment happening at similar timescales [4].
RTO has been applied to pulp and paper processes by other authors. For example, a pulp mill
benchmark problem was studied for economic optimization base on RTO and used to interface with
pulp mill control system for on-line optimization to save operating cost [5]. A simulation of an
industrial continuous pulping process was used to run several performance studies base on real-time
dynamic optimization (DRTO) for analysis [6] and improving product quality control in chemical
process [7].

Pulp production modeling is complicated due to the pulping process having many variables that
impact performance and the difficulty of first-principles modeling to find the relationships between
them. There have been many research studies that present several approaches to modeling the
pulping process. A mathematical program is developed and used to evaluate profitability in pulp and
paper industry while considering associated economic risk [8]. There are three important modeling
techniques that have been applied to pulp process modeling, white-box, black-box, and grey-box
models [9]. A white-box model is based on physical first-principles modeling with fitted parameters.
This tries to match the phenomena within the process but often the complexity of identifying, measuring,
and modeling these phenomena is prohibitively expensive within a real operating plant environment. A
black-box model requires measuring data for the input and output variables and fitting a mathematical
function to these data such that the outputs are predicted at different input values. Its disadvantage is
poor generalization and extrapolation to parts of the input space that have not been sampled due to
neglecting system physics. Therefore, grey-box modeling was developed by considering a balance
between black- and white-box models [10] that use some mathematical structure based on principles
such as mass and energy balances and measured data to estimate the parameters of the models so that
higher accuracy is obtained. Grey-box modeling is used for parameter estimation based on maximum
likelihood [11] and used to improve performance of estimates for nonlinear systems and provide more
accuracy of estimated parameters.

The important pulping variables associated with wood chips are the moisture content in wood,
density of wood, strength properties, bark content, chemical composition, length of storage, chip
dimensions, and wood species [12]. In this work, the moisture content relative to dry wood weight is
the focus due to its influence on the energy requirement and amount of chemical applied to the wood
material in digestion, which are cost variables in the economic optimization of a pulp mill. From the
perspective of real-time operation, the moisture content of the raw wood changes seasonally, but also
from one wood lot to another, which affects the operating conditions required to make a given amount
of dry pulp, in particular the required feed material and utilities.

This work proposes the economic optimization of pulp mill using an RTO technique to account
for the variation of moisture content of wood because of seasonal effects in Thailand. The optimization
uses straightforward mathematical programming formulations for the pulping process and minimizes
total operating cost. A grey-box model is used to represent the pulping process and is constructed by
using data from the IDEAS software used to simulate the pulping process. The moisture content of the
wood was considered to have variations at the monthly and yearly level. Therefore, the case study of
this work consists of comparing three approaches, first normal optimization by fixing production rate,
second the annual optimization considering only seasonal variation in the average moisture content,
and lastly monthly optimization with rolling horizon estimation of the moisture content. The cost
benefits of the advanced strategies are calculated relative to the nominal case.

2. Materials and Methods

2.1. Pulp Mill Modeling Approach

Pulp mill processes consist of six main operations: white liquor preparation, digestion, washing,
evaporation, chemical recovery, power production, and pulp drying. A block diagram flowsheet of
pulping process is shown in Figure 1. These operations are relatively complex and so models for
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their operation have significant data requirements and involve a number of assumptions. The IDEAS
software program of ANDRITZ Inc. is a pulp mill simulator used by the pulp manufacturing industry
to simulate their processes. In this work, the IDEAS software program was used to simulate the
steady-state pulping process and generate the data necessary to fit empirical models that could be
used in optimization.
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Figure 1. Flowsheet of pulping process.

Various levels of empirical modeling are used to model the whole pulping process. We term
each of these levels as white-, black-, and grey-box models. A white-box model for pulp modeling
consists of mass and energy balances of sub-models with parameters to represent the performance of
equipment [13], such as washing efficiency that is used to calculate water flow for washing and black
liquor content in evaporation and to calculate amount of steam to evaporate. This is still an empirical
model because the parameters are estimated from data or assumed to take values found in previous
studies. This is the type of model built in IDEAS and will serve as the starting point for other empirical
models that are cheaper to evaluate and more explicitly link the degrees of freedom for optimization
with the variables in the objective function and constraints.

A black-box model predicts output variable from input variable values and uses no details from
within the process it is modeling. In this work, the black-box technique is used to build a sub-process
model of pulp mill unit operations. While the building of mathematical models of pulping unit
operations, a polynomial function was used in modeling that includes three types of terms, linear,
quadratic, and cubic, as shown in Equation (1). The final model structure, the β values, is determined
from the observed values of variables in process, output variable (Y), and input variables (x) and is a
subset of the terms in Equation (1). The specific variables for different operations are shown in Table 1
where coefficient value (β) of each term is from regression.

Y =
n∑

i=1

n∑
j=1

n∑
k=1

βi jkxix jxk +
n∑

i=1

n∑
j=1

βi jxix j +
n∑

i=1

βixi + β ∀i, j, k (1)
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Table 1. Input and output variables for modeling of pulp mill.

Operation Input Variable Output Variable

Digestion (D)

Din,1
Din,2
Din,3
Din,4

Wood chip
Steam for chip preheating

White liquors
Cold water

Do Steam release

Washing (W) Win Water for washing

Evaporation (E) Ein Steam for evaporation Eo,1
Eo,2

LP Steam
Condensate

Chemical Recovery
(CR)

CRin,1
CRin,2

Salt cake makeup
Water for steam generating CR Flue gas

White liquor
Preparation (WL)

WLin,1
WLin,2
WLin,3

Limestone for lime kiln
Fuel for lime kiln

Water for mud filter

WLo,1
WLo,2
WLo,3

Grits
Dregs

Exhaust gas

Power Production
(PP) PPin Water for cooling PPo,1

PPo,2

Recycled steam
Electrical power

Pulp Drying (PD) PDin Steam for drying PDo Pulp product

The model selection selects one model from the list of models in which the terms are significant.
We use a model selection criterion to find the best fitting model [14]. Hirotugu Akaike proposed the
Akaike Information Criterion (AIC) method to select the best approximate model [15]. The general
formulation of AIC is given in Equation (2).

AIC = −2ln(likelihood) + 2K (2)

where K refers to number of estimate parameters in the model, the optimal fitted model is identified by
the minimum value of AIC. Terms in Equation (1) were introduced sequentially from linear to cubic
and the minimum AIC selected.

In yearly operation, the season affects operating cost because the moisture content of wood
changes monthly. This affects the amount of chip, chemical, electrical, and water consumption to
produce a ton of pulp. A white-box model is used to calculate amounts of required input variables,
which are raw material costs and operating costs of pulping by using the IDEAS simulation that
depends on daily production rate (P). In addition, the moisture content (MC) was varied as an input
to the white-box model and then this study used an empirical black-box model for creating daily
operating cost (Ctotal) in function of moisture content and production rate; the model is shown in
Appendix A. The operating cost is directly related to production rate and is maximized at the highest
moisture content of the wood. Therefore, the daily operating cost equation is function of production
rate and moisture content of wood represented in Equation (3).

Ctotal = 137P + 236, 857MC2 + 263(MC)P− 48, 597 (3)

It was necessary to include a bi-linear term to represent the interaction between the moisture
content and the production rate. The equation was tested valid for the range of production rates
[1000, 2000] air dry metric tons(admt)/day with moisture content of 40–55% and returned errors less
than 1%. Extrapolations beyond these ranges for the specific pulp mill modeled should be done
with caution.

2.2. Inventory Balance Approach

Multi-period production is important degree of freedom for production and operation management
of businesses in which the period depends on machine’s performance, time, customer’s orders, etc.
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Effective inventory flow management is one factor for profitability due to enterprises requiring enough
inventory to satisfy customer demands [16]. On the other hand, too much inventory increases the cost
of inventory carrying [17].

In improving manufacturing, the pulp industry is faced with the challenge of producing products
at the right time and quantity at minimum costs. Inventory balance approach is a network flow analysis
to optimize production quantity for periods in planning process [18]. In any period, the supply for
process is the inventory from the prior period (It−1) plus the production in the period Pt. This supply
can be used to respond to the demand in the period Dt or held in inventory as It. The simplest form of
inventory balance is beginning inventory + production = ending inventory + goods sold, as shown in
Equation (4).

It−1 + Pt = Dt + It (4)

A series of these equations is used to represent the evolution of inventory over time in response to
demands and production decisions. The production decisions are optimized to meet demands while
minimizing inventory holding costs.

2.3. Real-Time Optimization with Rolling Horizon

The purpose of the optimization in this work is to determine the optimal production rate with
minimum total operating cost, under wood moisture content variation, when the variation is dependent
on seasonal changes. A discrete time RTO technique is used in optimization employing a rolling
horizon approach.

2.3.1. Real-Time Optimization

The plant profitability can be enhanced by optimization of operating conditions and is particularly
important in plants with high throughputs of material and energy. RTO is a technique to enable
business decisions in real time based on planning models. It involves the on-line calculation of optimal
process setpoints and allows the profits from the process to be maximized or costs to be minimized
while conforming to operating constraints [19,20]. Typically, the economic cost model of a plant
involves costs of raw materials, price of products, and operating cost, which are functions of operating
conditions in RTO. The optimization goal in this study is to minimize operating cost of pulping process.

The RTO was used to optimize the process operating conditions, and process set points were
updated to the control system. Figure 2 represents the structure of the RTO system. Disturbances such
as feedstock variations and other environmental variables related to economics are fed into the closed
loop and the RTO model is updated. The supply setpoint is recalculated at each iteration until the
minimum deviation between model variables and plant measurements occurs and this establishes the
optimal setpoints for operation. The disturbance used in this study is the moisture content of wood,
which cannot be measured but varies seasonally. The wood moisture content value is initialized as the
average moisture content of the wood, which is an input variable for the pulping process optimization.
In the optimization, the setpoints of overall operation that can be manipulated are the water shower in
washing, evaporation steam, makeup chemical as Na2SO4 and CaCO3, water shower in mud filter,
and white liquor flow (WL). The measured outputs of the process, specifically the production rate
and liquor flows, will be different given the variation of the wood moisture content from its average
value. A function was created that used these two outputs to estimate the moisture content, given
the other values of the setpoints. These setpoints were re-optimized using the estimated moisture
content of wood using the optimization formulation. This process was iterated until the results from
the optimization and simulation become equal.
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2.3.2. Moisture Content of Wood Variation

Production management becomes more complex when considering different uncertainty sources
in process operations. Types of uncertainty sources can be classified as external sources, such as
uncertainty in demand, prices, and availability of resources, and internal sources, such as fluctuations
in process parameters and other sources, such as errors of measurements [21]. Pulp mill operations
have several uncertainty sources, particularly the moisture content of wood varies in a seasonal pattern
with an overlying random variation from wood lot to lot. This affects production capacity of a pulp
mill. In this work, the moisture content of wood is represented by a pre-determined average that varies
month to month and an actual moisture content that is estimated by solving an optimization problem.
The average moisture content monthly depends on wet and dry season in Thailand and ranges from
40% to 55%. However, in day-to-day production, actual moisture content can vary from the average.
The optimal production rate is determined in real time due to moisture content variation. In this
work, the actual moisture content was assumed to follow a normal distribution about the mean where
the standard deviation of the distribution was specified as five percentage points from the average
moisture content of each month. The moisture content variation framework is illustrated in Figure 3.
The assumed actual moisture content is updated in every three days, which results in 10 periods in a
month, as depicted in Figure 3.
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2.3.3. Rolling Horizon Approach

The rolling horizon approach has been represented as an effective decomposition technique for
planning and scheduling problems and broadly used in control methods. The rolling horizon method
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decomposes sequentially the problem by dividing the time horizon and solving subproblems by fixing
the discrete variables of previous time periods [22].

In this work, a rolling horizon approach is used to schedule production, with constraints on
inventory levels, to reject disturbances introduced by the moisture content. The rolling horizon period
duration is 3 days. An estimate of the moisture content is calculated based on the deviation of the
measured production rate from the set point. The production set point is then adjusted to reflect
whether the moisture content is higher or lower than the monthly average. In general, production rate
will be increased if the moisture content is below the average but the overall optimization will balance
inventory holding with production costs over an extended horizon.

3. Results and Discussions

“fmincon”, a MATLAB function, is used as the function minimization routine to minimize
production cost and determine optimal pulp production rate. The results are divided into three
different optimizations at different time scales and with different levels of information.

3.1. Annual Optimization

The optimal monthly production rate of each month in a given year is goal of annual optimization
where the average moisture content of wood is known for each month and varies seasonally. The pulp
demand (D) for each month was specified as 1600 admt/day but could be varied as well. In normal
annual production, production cost is calculated by empirical Equation (3) with constant production
rates at 48,000 admt/month. The annual production cost is M$150.19, which is related to the moisture
content where the maximum production rate is in the months of low moisture content; these results
are represented in Figure 4.
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The objective function is to minimize annual production cost as the sum of monthly costs Cm, where
the monthly production cost is a function of monthly average moisture content MCm and production
rate Pm. An inventory balance is enforced where Im-1 and Im refer to the inventory levels, above the
safety stock, of the previous and current month. This leads to the following optimization formulation:

Minimize:
12∑

m=1

Cm
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Subject to:
Cm = 137Pm + 236, 857MCm

2 + 263(MCm)Pm − 48, 597
Im−1 + Pm = Dm + Im

Imin ≤ Im ≤ Imax

Imin ≥ 0

(5)

Optimization results are illustrated in Table 2. The optimal production and inventory levels in low
moisture content months are greater than the high moisture months of May and June. Production cost
results of annual optimization can be reduced by $0.44M when compared to operation at a constant
production rate of 48,000 admt, a 0.3% reduction in cost.

Table 2. Comparison between normal and optimized annual results.

Month MC (%)
Production Rate (admt/Month) Inventory

(admt)
Cost (Million$)

Normal Optimized Normal Optimized

Jan 40

48,000

53,222 5222 11.61 12.87
Feb 40 50,870 8092 11.61 12.30
Mar 40 51,108 11,200 11.61 12.36
Apr 45 48,000 11,200 12.25 12.25
May 50 48,000 11,200 12.89 12.89
Jun 55 44,874 8074 13.54 12.66
Jul 55 45,550 5624 13.54 12.85

Aug 55 42,376 0 13.54 11.95
Sep 50 48,000 0 12.89 12.89
Oct 45 51,914 3914 12.25 13.25
Nov 45 47,853 3767 12.25 12.21
Dec 45 44,233 0 12.25 11.29

Total 576,000 576,000 150.19 149.75

3.2. RTO with Moisture Content Variation

The RTO uses the updated actual moisture content of wood that is considered to vary in 3-day
subperiods within a month. This variation affects pulp production rates and costs. Inventory
constraints are imposed using a rolling horizon approach with actual moisture content variations in
which inventory and production rate results from optimization are updated and used in next period.

The objective function minimizes production cost in 10 periods over a given month and includes
a penalty term to reduce errors from inventory changing with moisture content variation where
coefficient (α) of this term is weighting inventory cost against production cost; in this study, it was
specified as 0.1%. This percentage value is a tuning parameter of the algorithm, but its value reflects
the relative size of the inventory compared to the production rate and the cost of storage relative
to the cost of production. Constraints of the RTO are different from annual optimization, inventory
constraints with moisture content variation are added, based on a rolling horizon formulation; the
details are as follow:

Minimize:
10∑

N=1

CN + α

[
∆Im(N)

10
− (I1 − I0)

]2

Subject to:
CN = 137PN + 236, 857MCN

2 + 263(MCN)PN − 48, 597
IN−1 + PN = DN + IN

Imin ≤ IN ≤ Imax

Imin ≥ 0
0.9 [Im + (N − 1)∆Im+1] ≤ I10 ≤ 1.1 [Im + (N − 1)∆Im+1]

−1.2
(

∆Im
N

)
≤ ∆IN ≤ 1.2

(
∆Im
N

)
(6)
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where ∆Im is the deviation of the inventory rate in the period of moisture content variation, N is number
of periods that vary moisture content, and I1 is inventory rate at current period for optimization. The
optimization problem consists of 10 periods where the first period has the estimated moisture content
of the wood for that period which, for purposes of the results in this paper, is drawn from a Gaussian
distribution with a mean equal to the monthly moisture content and with a standard deviation of
5% of the mean. The later periods’ moisture contents are fixed at their average MC value based on
the month in which they fall. In the simulation below, the month start optimization of this work is
June because the May inventory is neither maximum nor minimum level and also there is a different
moisture content of wood between these months. The results for other months are similar and shown
in Appendix A.

RTO results for the month of June are represented in Table 3. Although low moisture content
periods have higher production rates in general, sometimes the production rate is less than high
moisture content sub-periods, such as period 2 and 10. In overall production cost, RTO is slightly more
effective than the optimized annual case since it has costs lower by $10,000. Reduction of production
cost is not always guaranteed every month due to some months having low inventory rate from the
previous period and, therefore, must have an increased production rate to remain feasible. Therefore,
performance of the RTO should be considered on an annual basis as shown in Table 4.

Table 3. Real-time optimization (RTO) results in the month of June.

Period MC (%) Production
Rate (admt)

Inventory
(admt)

Cost (Million$)

Optimized Annual RTO

1 62.2 4458 10,581 1.39 1.38
2 50.6 4458 10,239 1.22 1.22
3 53.9 4458 9897 1.27 1.26
4 54.8 4458 9555 1.28 1.28
5 49.5 4516 9271 1.21 1.22
6 58.7 4458 8929 1.34 1.33
7 49.2 4605 8734 1.20 1.23
8 59.1 4458 8392 1.35 1.34
9 55.7 4487 8079 1.30 1.30
10 55.2 4507 7786 1.29 1.29

Total 44,864 12.85 12.84

Table 4. RTO results in one year.

Month
MC
(%)

Prod (admt) Inventory (admt) Cost (Million$) Reduced
Cost

(Million$)
Optimized

Annual RTO Optimized
Annual RTO Optimized

Annual RTO

Jan 40 53,222 52,706 5222 4873 12.81 12.68 0.13
Feb 40 50,870 50,942 8092 7815 12.23 12.24 −0.01
Mar 40 51,108 51,385 11,200 11,200 12.24 12.30 −0.06
Apr 45 48,000 47,997 11,200 11,197 12.22 12.19 0.02
May 50 48,000 47,726 11,200 10,923 12.98 12.90 0.09
Jun 55 44,874 44,864 8074 7786 12.85 12.84 0.01
Jul 55 45,550 46,100 5624 5885 13.04 13.19 −0.15

Aug 55 42,376 42,116 0 0 12.18 12.10 0.08
Sep 50 48,000 48,098 0 98 12.98 13.00 −0.02
Oct 45 51,914 51,140 3914 3238 13.28 13.06 0.22
Nov 45 47,853 48,498 3767 3738 12.22 12.36 −0.14
Dec 45 44,233 44,428 0 166 11.26 11.29 −0.03

Total 576,000 576,000 150.30 150.15 0.14
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Tables 3 and 4 demonstrate that the RTO reduces the monthly and annual cost relative to
the optimized monthly and annual approach, but the gain is small and could be due to random
variations in the 3-day period moisture content relative to the average for this particular sample of the
random variable.

3.3. Confirming the Importance of Moisture Content of Wood Variation

To confirm that the moisture content of wood variation is a significant factor for RTO, RTO results
over a 20-year horizon were generated in which the annual production cost found from the rolling
horizon RTO is compared with results of the annual optimization case. The comparison results are
shown in Figure 5. This demonstrates that, for every year, the production costs of RTO are smaller.
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To provide more quantitative statistical confirmation, we propose two hypotheses:

Hypothesis 1 (H1). Mean of annual production cost of RTO equals annual algorithm

Hypothesis 2 (H2). Mean of annual production cost of RTO is less than annual algorithm

where H1 and H2 refer to null and alternative hypotheses. The t-test hypothesis result in Table 5
can identify that the mean of production cost of RTO is less than annual algorithm with 95% confidence
because the t-stat is not inside the region of the null hypothesis and the p-value is less than 0.05.

Table 5. Data results from t-test hypothesis.

Statistics RTO Algorithm Annual Algorithm

Sample size 20 20
Mean 150.20 150.33

Standard deviation 0.15467 0.16523

t-stat −11.3218
t-critical −1.7291
p-value 3.44 × 10−10
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4. Conclusions

In this work, a surrogate model was developed for pulp mill modeling and optimization in which
the production cost variation with the wood moisture content and production rate is empirically
determined using data from an IDEAS simulation of pulping operations. The model was used
for optimization to minimize production cost and determine optimal production rate at different
time scales.

The monthly variation in wood moisture content arises from seasonal patterns of rainfall and
growth and can be predicted on average. The production rate is increased during low moisture content
periods to reduce the production cost in high moisture content periods with inventory used to buffer
the system operation. The annual production cost can reduce to 0.3% when compared with case
without inventory balance.

For real-time optimization, production is scheduled using a rolling horizon approach where the
actual wood moisture content varies every 3 days during the month. RTO with moisture content
variation reduces the annual production cost each year over a twenty-year horizon compared to an
annual optimization approach. The results support the conclusion that the moisture content of wood
can be a significant factor in the economic operation of pulp mills in Thailand.
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Appendix A.

Appendix A.1. Pulp Process Model

To generate the black-box model used in this paper, a polynomial superstructure and least squares
fitting was used along with the Aike Information Criterion (AIC) method to determine the final
structure of model that balanced the accuracy of the fitting with the model complexity as measured
by the number of terms in the polynomial. In the polynomial superstructure, all input variables of
each operation were considered to predict output variable. Models were constructed by retaining
subsets of terms of variables and combinations of variables in quadratic or ternary form. A p-value
(less than 0.05) criterion was used to assess whether the model terms were considered a fit, where the
least square errors of the model results from the simulation (IDEAS) results were used as the objective
function of the fitting procedure. The minimum AIC was used to select the best model. The optimal
model includes significant terms, lowest AIC, and percentage error with simulated result comparison.
An example of selecting the best model of daily operating cost is shown in Table A1.

Table A1. Results for model selection.

Model
p-Value

% Error AIC
P MC (MC)P P2 MC2

1 2.3 × 10−24 7.9 × 10−16 − − − 1.061223 −230.05
2 0.01395 0.15494 0.00009 0.61065 0.04096 − −

3 0.00004 − 0.00012 − 0.01504 0.803419 −248.28
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As result, model 3 is the optimal model to predict daily operating cost (Ctotal) as shown in
Equation (A1), the same as Equation (3) of the paper.

Ctotal = 137P + 236, 857MC2 + 263(MC)P− 48, 597 (A1)

Appendix A.2. Annual RTO Result

The result of RTO with moisture content variation in one year, as shown in Table A2.

Table A2. RTO results monthly for one year.

Period MC (%) Production
Rate (admt)

Inventory
(admt)

Cost (Million$)

Optimized Annual RTO

January (average MC = 40%)
1 39.7 5318 684 1.27 1.27
2 42.4 5211 1095 1.32 1.29
3 41.4 5250 1545 1.30 1.28
4 32.9 5407 2152 1.17 1.18
5 42.2 5219 2571 1.31 1.29
6 35.4 5407 3178 1.21 1.22
7 39.4 5329 3707 1.27 1.27
8 43.2 5180 4087 1.33 1.29
9 42.2 5219 4506 1.31 1.29

10 43.5 5167 4873 1.33 1.29
Total 52,706 12.81 12.68

February (average MC = 40%)
1 42.9 5007 5080 1.26 1.25
2 37.8 5186 5466 1.19 1.21
3 39.1 5157 5823 1.21 1.22
4 43.1 5000 6023 1.27 1.25
5 37.7 5186 6409 1.18 1.21
6 42.9 5007 6616 1.26 1.25
7 40.1 5118 6934 1.22 1.23
8 36.3 5186 7320 1.16 1.19
9 36.5 5186 7706 1.17 1.19

10 45.4 4909 7815 1.30 1.26
Total 50,942 12.23 12.24

March (average MC = 40%)
1 37.2 5206 8221 1.18 1.21
2 41.3 5087 8508 1.25 1.24
3 39.9 5143 8851 1.22 1.23
4 38.6 5194 9245 1.20 1.22
5 38.1 5206 9651 1.20 1.22
6 46.1 4898 9749 1.32 1.27
7 37.7 5206 10,155 1.19 1.21
8 39.3 5166 10,521 1.22 1.23
9 39.9 5142 10,863 1.22 1.23
10 40.3 5137 11,200 1.23 1.24

Total 51,385 12.24 12.30
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Table A2. Cont.

Period MC (%) Production
Rate (admt)

Inventory
(admt)

Cost (Million$)

Optimized Annual RTO

April (average MC = 45%)
1 36.6 4800 11,200 1.10 1.10
2 49.4 4626 11,026 1.29 1.24
3 49.4 4626 10,852 1.29 1.24
4 50.6 4579 10,631 1.31 1.25
5 40.3 4986 10,817 1.16 1.20
6 43.4 4863 10,880 1.20 1.22
7 42.6 4895 10,975 1.19 1.21
8 47.6 4697 10,872 1.26 1.24
9 50.5 4628 10,700 1.31 1.26

10 37.4 5297 11,197 1.11 1.23
Total 47,997 12.22 12.19

May (average MC = 50%)
1 45.9 4803 11,200 1.24 1.24
2 45.8 4800 11,200 1.24 1.24
3 51.4 4745 11,145 1.32 1.30
4 49.9 4804 11,149 1.30 1.30
5 44.2 4851 11,200 1.21 1.23
6 59.4 4429 10,829 1.44 1.33
7 55.8 4667 10,696 1.39 1.35
8 48.3 4867 10,763 1.27 1.29
9 45.0 4998 10,961 1.22 1.27

10 53.8 4762 10,923 1.36 1.35
Total 47,726 12.98 12.90

June (average MC = 55%)
1 62.2 4458 10,581 1.39 1.38
2 50.6 4458 10,239 1.22 1.22
3 53.9 4458 9897 1.27 1.26
4 54.8 4458 9555 1.28 1.28
5 49.5 4516 9271 1.21 1.22
6 58.7 4458 8929 1.34 1.33
7 49.2 4605 8734 1.20 1.23
8 59.1 4458 8392 1.35 1.34
9 55.7 4487 8079 1.30 1.30

10 55.2 4507 7786 1.29 1.29
Total 44,864 12.85 12.84

July (average MC = 55%)
1 54.0 4541 7527 1.29 1.29
2 58.8 4541 7268 1.36 1.36
3 48.8 4744 7212 1.22 1.27
4 55.7 4556 6968 1.32 1.32
5 53.4 4647 6815 1.28 1.31
6 54.2 4615 6630 1.29 1.31
7 50.0 4781 6611 1.23 1.29
8 54.8 4592 6403 1.30 1.31
9 60.1 4541 6144 1.38 1.38

10 59.1 4541 5885 1.37 1.36
Total 46,100 13.04 13.19
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Table A2. Cont.

Period MC (%) Production
Rate (admt)

Inventory
(admt)

Cost (Million$)

Optimized Annual RTO

August (average MC = 55%)
1 49.2 4234 5319 1.14 1.14
2 48.3 4476 4995 1.12 1.19
3 59.1 4094 4289 1.27 1.23
4 61.7 4094 3583 1.31 1.27
5 51.8 4338 3121 1.17 1.20
6 54.5 4231 2552 1.21 1.21
7 56.5 4152 1904 1.24 1.21
8 59.9 4094 1198 1.28 1.24
9 57.4 4117 515 1.25 1.21

10 53.1 4285 0 1.19 1.20
Total 42,116 12.18 12.10

September (average MC = 50%)
1 51.5 4800 0 1.32 1.32
2 49.1 4836 36 1.28 1.29
3 52.3 4764 0 1.33 1.32
4 50.5 4800 0 1.31 1.31
5 53.6 4800 0 1.35 1.35
6 46.2 4950 150 1.24 1.28
7 46.3 4946 296 1.24 1.28
8 44.4 5021 517 1.22 1.27
9 54.6 4618 335 1.37 1.32

10 51.0 4563 98 1.31 1.25
Total 48,098 12.98 13.00

October (average MC = 45%)
1 47.3 5091 389 1.36 1.33
2 52.6 4881 470 1.44 1.36
3 43.7 5233 903 1.30 1.31
4 41.1 5258 1361 1.26 1.28
5 55.3 4775 1336 1.49 1.37
6 33.0 5258 1794 1.14 1.15
7 44.1 5217 2211 1.31 1.32
8 48.6 5039 2450 1.38 1.34
9 40.3 5258 2908 1.25 1.27

10 46.3 5130 3238 1.34 1.33
Total 51,140 13.28 13.06

November (average MC = 45%)
1 47.4 4758 3196 1.26 1.25
2 54.5 4478 2874 1.36 1.28
3 47.1 4770 2844 1.25 1.25
4 46.6 4790 2834 1.24 1.25
5 34.2 5280 3314 1.06 1.18
6 42.8 4940 3454 1.19 1.23
7 44.5 4873 3527 1.21 1.24
8 48.5 4715 3442 1.27 1.25
9 46.2 4806 3448 1.24 1.24

10 39.0 5090 3738 1.13 1.21
Total 48,498 12.22 12.36
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Table A2. Cont.

Period MC (%) Production
Rate (admt)

Inventory
(admt)

Cost (Million$)

Optimized Annual RTO

December (average MC = 45%)
1 42.1 4541 3479 1.09 1.12
2 34.2 4853 3532 0.98 1.08
3 43.0 4411 3143 1.10 1.10
4 48.6 4351 2694 1.18 1.16
5 46.7 4351 2245 1.15 1.13
6 37.7 4517 1962 1.03 1.05
7 52.8 4351 1513 1.24 1.22
8 43.1 4351 1064 1.10 1.08
9 48.9 4351 615 1.18 1.16

10 51.1 4351 166 1.21 1.19
Total 44,428 11.26 11.29
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