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Abstract: This work is a review of scientific papers on the influence of temperature (T) on the
biosorption of various dyes from aqueous solutions and wastewaters. The dyeing process of textiles
is usually carried out at high temperatures, and therefore, the wastewater generated there when
entering the treatment plant may still be hot. Hence, depending on the climatic conditions of a
given region, the biosorption method used for their purification may occur at various temperatures.
Most of the papers clearly stated the positive influence of T on biosorption, generally indicating
the chemical nature of this process. At the same time, substantial number of authors confirmed the
positive effect of T on the biosorption with an initial T-rise from approximately 20 ◦C to about 30–40 ◦C
range; conversely, at higher temperatures, they indicated a decrease in the biosorption efficiency.
Additionally, many authors clearly implied the negative impact of T on the biosorption parameters.
They generally envisaged the physical nature of this process, but also indicated its limitation, as there
was only a 15%–50% reduction in biosorption efficiency with an increase in T. In addition, an attempt
was made to analyse the effect of temperature on the biosorption process, depending on the type of
dye. It could then be cautiously suggested that a moderate increase in the T parameter favourably
affected the biosorption of the red and reactive dyes.

Keywords: temperature; dye; wastewater; biosorption

1. Introduction

Figure 1 (consistent with the description of Chojnacka [1]), shows the use of the biosorption
process to eliminate (and also possibly to recover) heavy metal ions from wastewater. At the same
time, it illustrates its subsequent stages, i.e., migration and diffusion of an exemplary heavy metal
ion to the surface of the biosorbent, then its absorption (a kind of “bioabsorption”) and binding at the
centre of a specific unit, used in the biomass forming process. In this way, the “heavy metal” under
consideration is blocked in the biomass used, which could later be regenerated. Biosorption in water
purification can be defined as a total sorption process that includes both adsorption and absorption of
contaminants on a living or dead biosorbent. For a living biosorbent, this phenomenon is accompanied
by bioaccumulation and the metabolism of some pollutants in the living organism of the biosorbent [1].

It turns out that as much as 2% of the dyes produced are discharged directly into wastewater.
These dyes appear in the outflow from the treatment plants because the effectiveness of their
immobilization is often unsatisfactory [2]. In the treatment of dye-based wastewaters, adsorption
methods are often employed. The efficiency of these methods is usually determined using parameters
assessed from the well-known Langmuir and Freundlich isotherms.
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Figure 1. An example of bioaccumulation [1].

Immobilization of dyes occurs for the biosorption defined both in the area of surface phenomena [3]
and bioaccumulation [4], not excluding their metabolism in the “living” biosorbent. In practice,
biosorption often uses a variety of materials—biosorbents, such as fungi, yeast, moulds, aerobic
and anaerobic bacteria, algae, leaves, shells, nuts, almonds or rice, wood, sawdust, various plants,
agricultural waste or seafood and many others.

Temperature Effect on Dyes Sorption/Biosorption—Basic Considerations

Any climate is a result of the average temperature of all seasons. Therefore, determining the effect
of temperature on the biosorption of dyes is very important, particularly because the dyeing process is
typically carried out at high temperatures, which leads to the formation of hot textile sewage.

It is known that the temperature (T) effect on sorption depends on the nature and the process’
mechanism. In general, if the sorption is chemical, then the influence of T is positive; however, if
the sorption involves a physical process, then, the influence of T is mostly negative. Therefore, the
conclusion about the influence of T on the biosorption used in the treatment plants seems to be
questionable, and hence, there was a genesis to develop the presented-here review.

The influence of temperature on the rate of chemical reaction in the simplest way is determined
by the empirical rule of van’t Hoff’s. According to this rule, an increase in T by 10 K causes a 2–4 fold
increase in the reaction rate. Thus, an increase in T from 20 to 100 ◦C (∆T = 80 K) could shorten the
duration of the reaction, e.g., from 1 h to 1 min. In general, the reaction rate is experimentally measured
at several temperatures, after which the linear dependence of the Arrhenius equation is analysed:

ln k = ln A−
Ea

RT

where k is the rate constant, T is temperature in [K], Ea is activation energy, and A and R are
other constants.

This equation determines the activation energy Ea-value, characterizing the course of a given
reaction. For chemical statics and technology, the influence of temperature on the reaction equilibrium
constant is often essential. For this purpose, the heat of reaction Q should be determined at several
temperatures and the equilibrium constant, K, would be assessed (the van’t Hoff isobar) from the
relationship:

ln K = B−
Q
RT

where K is the equilibrium constant, T is temperature in [K], ∆Q is the heat of reaction at P = const,
and B and R are other constants.
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It should be stated that biosorption is sorption on the so-called “biosorbent”; hence,
two processes—physical, with a lower value of Qph (heat of physical adsorption), and the chemical,
with a higher value of Qch (heat of chemisorption) could be expected.

2. Temperature Effect on Dyes Biosorption from Aqueous Solutions and/or Wastewater—Review
and Discussion of Literature Data

Many papers have been published, where among others, the issues of the broadly understood
energy of dye biosorption processes from model wastewater (i.e., appropriate aqueous solutions),
as well as from real wastewater (e.g., textile) are considered and discussed in detail. Virtually every
such publication contains a scanning electron microscopy (SEM) micrograph (along with its detailed
description) of the surface used in biosorbent testing. Thus, in the publication by Monteiro et al. [5],
the surface structure of two efficient biosorbents is presented (Figure 2).
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According to Monteiro et al. [5], the SEM picture revealed that the morphology of both biosorbents
(A and B) is identical (Figure 2), presenting protuberances and microstructures in their surfaces.
The main inorganic component in both materials is calcium carbonate (CaCO3), but their crystalline
structures are different. The mineral identified in the clamshell was aragonite—an orthorhombic
crystal system. On the other hand, for the crab exoskeleton, it was calcite—a rhombohedral crystal
system of the calcium carbonate compound. Other elements, including aluminium, silicon, potassium
and sodium, were also detected in both materials. Additionally, in the calcium carbonate (CC)
powder, magnesium and phosphorous were also identified, thus indicating the existence of magnesium
carbonate (MgCO3) and phosphates (PO4

3−) in its composition. Carbon, oxygen and sulphur were
also detected in the EDS spectrum, since they are the main constituents of chitin and proteins—the
main components of the organic matrix of both materials.

A general question may arise as to whether the biosorption processes are efficient enough in
regions of the world that are characterized by both warm, as well as cold climates. In order to answer
the above question, a thorough review and analysis of a database on the influence of temperature on
the biosorption processes of dyes from aqueous solutions have been made.

Table 1 presents data and parameters describing the influence of temperature (T) on biosorption
(Bio) of dyes from aqueous solutions on fungal biomass (its Latin name is given in column 1). In most
cases, the biomass was dried and prepared in the laboratory by means of a dead biosorbent. In the
next column, the type of dye was specified. The range of T used is further indicated; red colour for the
positive effect of T (Pos) on biosorption and in blue for the negative (Neg). Column 4 contains selected
quantitative data characterizing the effect of T on biosorption (in red or blue), and finally, reference
papers are provided in column 5.
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Table 1. Data and parameters describing the influence of temperature (T) on biosorption (Bios) of dyes
from aqueous solutions on fungal biomass (its Latin name is in column 1).

Names of Biosorbent
(Mushrooms) Names of Biosorbate

T ◦C
Effect of T:
If + Bold
If − Italic

Removal
If in [mg/g]

Then no Unit
Ref

Aspergillus niger,
Aspergillus japonica, etc.

Reactive Black 8, Reactive Brown
9, Reactive Green 19, Reactive

Blue 38, Reactive Blue 3
20–40 90–99%, 54–86%,

mean = more than at 30◦ [6]

Aspergillus niger Synazol 15, 30, 45 11,14; 44,36; 14,10 [7]

Penicillium
restrictum biomass Reactive Black 5 20–50 from 100 to 112 [8]

Rhizopus arrhizus Gemazol Turquise Blue G 15–45 from 78 to 92 [9]

Cephalosporium aphidicola Acid Red 57 20, 30, 40, 50 109, 104, 99, 82 [10]

Saccharomyces cerev. Astrazone Blue 20, 30, 50 max: 59, 63,83 [11]

Lentinus sajur-caju Reactive Red 120 5, 15, 25, 35 max: 65 to 100
min: 20 to 22 [12]

Rhizopus arrhizus Remazol Black B 25, 35, 45, 55 76%, 85%, 73%, 61% [13]

Trametes versicolor Acid Blue 161 25, 35, 45 178, 193, 207 [14]

Aspergillus niger Direct Blue 199 25–45 approx. to 30% [15]

Phanerochaete chrysosporium Remazol Brilliant Blue R 20, 30, 40, 50 45,62; 54,73; 45,62; 43,58 [16]

Phanerochaete chrysosporium Reactive Blue 4 4–37 81–157 [17]

A number of different parameters were tested by the authors of the cited publications, including:
the effect of pH, temperature (T), biosorbent dose, dye concentration and time of biosorbent contact
with the dye-based solution on the effectiveness of the biosorption process. Kumar et al. [6] used the
following concentrations of dye solutions: 50, 100, 150 and 200 mg/L. The most effective biosorption
was obtained at the lowest dye concentration, which was 112–204 mg of dye per 1 g of biomass, at pH =

6. The results of their biosorption studies matched both adsorption isotherms, that is the Langmuir and
Freundlich models. A fresh mass of algae in an aqueous solution was pre-irradiated (γ) or subjected to
thermal treatment, according to Khalat et al. [7]. The thermal treatment of algae led to obtaining a
more effective biosorbent with a biomass content of 8 g/L, compared to their irradiation. Biosorbent
worked effectively three times, each time after 18 h of contact with the dye solution being at pH = 3.
Iscen et al. [8] determined the optimal biomass concentration as 0.4 g/L at pH = 1. They determined
the kinetic parameters of biosorption at the optimal biosorbent–adsorbate contact time of 75 min.
Their research showed that the process under review was a pseudo second order (PSO) reaction
(Ho [18]). Furthermore, Aksu et al. [9] passed a dye solution at a concentration of 812.6 mg/L through
the column, at a pH of 2 and a speed of 0.8 m/min. They attempted to fit the experimental database to
the Redlich–Peterson, Freundlich and Langmuir adsorption models, where the latter one proved to be
the most advantageous. They also stated that the studied biosorption process was the PSO reaction. In
addition, Kiran et al. [10] found that at pH = 1 and after 40 min of the continuing process, an equilibrium
of biosorbent (0.4 g/L) and adsorbate was obtained. Again, they referred to the process as being the
PSO reaction. They obtained positive results of testing all three adsorption models, namely: Langmuir,
Freundlich and Dubinin–Radushkevich, which also allowed determination of free energy, enthalpy
and entropy of the studied biosorption process. Then, Farah et al. [11] found a beneficial effect of pH
increase on the studied biosorption process. The determined biosorption of 70 mg/g dry biosorbent
mass was significantly higher than the adsorption of 18.5 mg of this adsorbate per 1 g of activated
carbon. Among the tested models—Freundlich, Temkin and Langmuir—the latter was considered
best suited for the recorded database. They stated that the process was chemical and endothermic.
Furthermore, Arica and Bayramoglu [12] obtained the best biosorption results at pH = 3 and 800 mg
of dye/L solution. This pre-treatment of biosorbent was found to be more advantageous than purely
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acidic, while natural biosorbent was indeed more effective than that prepared after imposition of an
alkaline treatment. Here, the Freundlich and Temkin models were better suited for the experimental
database than the Langmuir model. The authors considered the studied biosorption as the PSO reaction.
Aksu and Tezer [13] found the optimal dye concentration of 800 mg/L at pH = 2, and these were their
optimal parameters for the biosorption test. The experimental database fit better with the Freundlich
model than with the Langmuir one. They defined the examined process as chemical and the PSO.
The optimal concentration of dye at 500 mg/L and a pH of 3 were considered by Aksu et al. [14] as
optimal parameters of the biosorption test. Among the tested models—Redlich–Peterson, Langmuir
and Freundlich—the latter one was considered best suited to the produced database. The process they
defined was also the PSO chemical reaction and it was found to be endothermic. Then, Xiong et al. [15]
found an increase in biosorption along with a decrease in the system’s pH at a dye concentration of
400 mg/L. Both the Freundlich and Langmuir models fit the obtained database. The authors considered
the studied process to be an endothermic, PSO spontaneous reaction. Iqbal and Saeed [16] noted an
increase in biosorption with an increase in the concentration of an initial solution of the dye used.
An optimal pH was 2 and the Langmuir model better described the database than the Freundlich one.
Again, the studied biosorption turned out to be the PSO chemical process. Bayramoglu et al. [17]
obtained the best biosorption results at a pH of 3 from the solution with a concentration of 600 mg
dye/L and a continuous flow of 20 mL/h. Again, the above pre-treatment of the biosorbent was found
to be more advantageous than that carried out under acidic conditions, while natural biosorbent was
more effective than that after imposing an alkaline treatment. The Freundlich and Langmuir models
were better suited for the experimental database than the Temkin model, while the kinetics of the
process were best described by the Ritchie model.

Generally, in seven cases, the authors stated a positive T effect on the biosorption, twice the
negative effect and three times positive and then negative effect along with a further increase in the
T parameter. The positive T effect on the biosorption was most often interpreted as a result of the
increase in sorbate energy and surface energy of the biosorbent. In three cases, positive T effect was
attributed to an increase in the dye diffusion rate and two times to chemisorption. The negative T effect
on the biosorption was not clearly interpreted, as was the growth and decrease in biosorption with the
increase in T in Khalaf’s work [7], who mentioned the phenomenon of the so-called “acclimatization”
of the biosorbent. Aksu and Tezer [13] ignored an initial positive T effect on the biosorption at 35 ◦C,
which was then perceived as the negative effect (at higher T), being a result of the lowering surface
energy of the biosorbent used. In turn, Iqbal and Saeed [16] obtained an increase and then, a reduction
in the biosorption with the rising T parameter, interpreted as the effect of both physical adsorption
and chemisorption. On the other hand, Iscen et al. [8] and Iqbal, and Saeed [16], when analysing
the data from the “Removal” column, reported only a slight positive (+approx. 10%) and further
positive T effect on the biosorption. Kumari et al. [6] unambiguously indicated negative T effect on
the biosorption (reaching 40%–50%), while Farah et al. [11] and Xionga et al. [15] noted ca. 30%–40%
positive T effect on the biosorption. The pseudo second order reaction was recorded and proved in 8
out of 12 claimed research articles.

Table 2, constructed similarly to Table 1, presents data and parameters describing the influence of
temperature on the biosorption of dyes (from aqueous solutions) on bacteria and algae (their common
names and the corresponding Latin names are given in column 1). Static biosorption studies in a
wide range of dye concentrations (commencing from 50 mg/L) with the biosorbent concentration of
3 g/L were described by Gao et al. [19]. An optimal pH was 2 and the database was better suited
for the Temkin model than for the Langmuir or Freundlich ones. The process was spontaneous and
exothermic, being in line with the PSO equation. Such chemical groups as -NH2, -OH and -COOH
were responsible for dye binding in the biosorbent. Furthermore, Mezenner and Aicha [20] used a dye
solution with an initial concentration of 50 mg/L. They found a proportional increase in biosorption,
with an increase in the amount of biosorbent. The experimental database matched Freundlich and
Langmuir adsorption models. From a kinetic point of view, the process turned out to be the PSO
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reaction. Wang et al. [21] employed dye concentrations from 2 to 97 mg/L, with a biosorbent dose from 1
to 15 g/L. They examined the statics and kinetics of the process and found the most favourable matching
of the database to the Langmuir and Freundlich models (as well as to the kinetic equation of the PSO
reaction). The negative values of the Gibbs adsorption energy proved the exothermicity of the process
studied. The authors of this work estimated the value of biosorption activation energy at 6.59 kJ/mol.
Colak et al. [22] indicated the optimal pH of 1 for the biosorption test. They considered the process of
the PSO spontaneous reaction. Of all tested adsorption models (Temkin, Freundlich and Langmuir),
the latter best matched the obtained results. Sun et al. [23] at pH over 7 indicated that 60 min were
needed to achieve equilibrium at dye concentrations of 50 and 60 mg/L; however, for 120 min, the dye
concentration was about 70 to 80 mg/L. Here, biosorption was a chemical (monolayer) PSO process.
Of the tested Redlich–Peterson, Freundlich and Langmuir models, the latter one best described the
biosorption test. Determined ∆H > 0 and ∆G < 0 proved endothermicity and spontaneity of the
biosorption test. Mona et al. [24] investigated dye biosorption at a concentration of 100–500 mg/L,
at a pH range of 2 through 6. They obtained optimal results at a pH of 2 and the dye concentration
of 100 mg/L. On the biosorbent surface, they identified the following functional groups as being
responsible for the biosorption: -OH, -NH2, -COOH and -CH3. The process followed the kinetic
equation of the PSO reaction.

Table 2. Influence of temperature on the biosorption of dyes by bacteria and algae.

Names of Biosorbent:
(a) Bacteria
(b) Algae

Names of Biosorbate (Remarks)

T ◦C
Effect of T:
If+ Bold
If − Italic

Removal
If in[mg/g]

Then no Unit
Ref

a)

non-living aerobic
granular sludge Acid Yellow 17 20, 35, 50 13–32, 15–38, 12–30 [18]

streptomyces rimosus Methylene Blue 20–50 from 86% to 54% [19]

anaerobic sludge Rhodamine B, Eosin Y 20–60 from 6 to 4 [20]

Paenibacillus macerans Acid Blue 225, Acid Blue 062 25–55 from 109 to 86 [21]

aerobic granules Malachite Green 30–50 from 20 to 50 [22]

Nostoc linckia Reactive Red 198 25, 35, 45 50, 54, 35 [23]

Spirulina platensis red 40
acid blue 9 25–55 503–138

1951–163 [24]

Spirulina platensis tartrazine allura red 25–55 363–238
469–181 [25]

b)

Chlorella vulgaris Remazol Black B, Remazol Red
RR, Remazol Golden Yellow 25, 35, 45, 55 15–370, 16–416

14–284, 13–222 [26]

Enteromorpha prolifera, Acid Red 274 20, 25, 30, 35,
40, 50 238, 244, 231, 221, 203 [27]

Enteromorpha prolifera Acid Red 337
Acid Blue 324 20, 25, 30, 40, 50 33, 41; 66, 61; 53,67;

46,64; 36,45 [28]

Spirogyra rhizopus Acid Red 274 20, 25, 30, 35,
40, 50

240, 248, 249, 247
246, 242 [29]

Stoechospermum
marginatum

Acid Blue 25,
Acid Orange 7,

Acid Black 1
10–40

25–27 (at 30 mg/L)
20–22 (at 30 mg/L)
18–20 (at 30 mg/L)

[30]

Spirogyra sp.
Acid Orange 7,
Basic Red 46,
Basic Blue 3

15–45
50.2–54.3%
90.6–97%

80.5–91.4%
[31]
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Dotto et al. [25] used dye solutions with a concentration in the range of 100–1300 mg/L,
with a biosorbent concentration of 250 mg/L. As the pH increased from 4 to 8, the biosorption
capacity decreased. The database matched the multimolecular model of Sips. Based on the determined
values of ∆H, ∆S and ∆G functions, the authors considered the studied process as spontaneous, without
specifying the reaction order. Dotto et al. [26], for both biosorbed dyes, used the solution concentration
within the range 40 to 550 mg/L. They also kept the system’s pH at 4. The database best suited the
Sips model. Based on the determined values of ∆H, ∆S and ∆G, the authors considered the studied
process to be multimolecular and spontaneous. However, as in the previous work, no reaction order
was specified.

Aksu and Tezer [27] studied dye biosorption and obtained the most favourable results at their
maximum concentrations, for instance at 800 mg/L and a pH of 2. The recorded database was tested by
means of the Redlich–Peterson, Koble–Corrigan, Freundlich and Langmuir models, where the best
fit was obtained for the Langmuir model (and in accordance with the PSO equation). Ozer et al. [28]
found the optimal pH for the biosorption process to be around 2 to 3, where the biosorption results met
the Langmuir isotherm equation. The database fitted the kinetic equation of the PSO reaction and the
process turned out to be exothermic (and spontaneous), at the activation energy of Ea = −4.85 kJ/mol.
Furthermore, Ozer et al. [29] used a biosorbent dose of 0.5 g/L at pH range of 2–3. Of the tested
Freundlich, Langmuir and Redlich–Peterson models, the latter best described the biosorption test.
Again, the database was matched to the kinetic equation for the PSO reaction. Obtained activation
energy values were 31.5 and 19.87 kJ/mol. Based on the determined values of ∆H, ∆S and ∆G, the
process was considered exothermic. Ozer et al. [30] found pH = 3 and algae concentration of 0.5 g/L as
optimal conditions for the biosorption process described in their work. The amounts of dye removed
increased linearly with the increase in its initial concentration and fulfilled the equation of the linearized
Langmuir isotherm. The database was matched to the kinetic equation of the PSO reaction and the
process turned out to be exothermic. There was no suggestion there about the spontaneity of the
examined biosorption process. The authors stated that the algae used completely discoloured the
wastewater containing 25 mg of dye in 1 L.

On the other hand, Daneshvar et al. [31] used solutions of all dyes with concentrations of
10–50 mg/L. There, rising pH from 2 to 10, caused a reduction in the biosorption. The experimental
database best fitted the Freundlich isotherm equation and the PSO reaction kinetic equation. Based on
the determined values of ∆H, ∆S and ∆G parameters, the authors considered the studied biosorption
process to be spontaneous. They suggested that the functional groups of -OH and -NH2 are responsible
for the biosorption bonds. Dye solutions with concentration range: 5–45 mg/L at biosorbent doses
of 0.5–2.5 mg/L were used in their research by Khataee et al. [32]. Acid Orange was most effectively
biosorbed at pH = 4, whereas the other two dyes at pH = 10. Again, the experimental database best
fitted the Freundlich isotherm equation and the PSO reaction kinetic equation. Based on the determined
values of ∆H, ∆S and ∆G, the authors considered the studied biosorption process to be spontaneous.

In contrast to the results presented in Table 1, for five cases in Table 2, the authors claimed an
initial positive effect, with the further increase in T producing a negative T effect on the biosorption.
It can therefore be concluded that along with the increase in T (e.g., from 20 to 30 ◦C), the biosorption
grows and remains positive on the temperature augmentation. Moreover, five negative and three
positive T effects on the biosorption (sometimes interpreted as an increase in the adsorbate energy and
surface energy of the adsorbent) were noticed. Additionally, in a single case, it was impossible to figure
out what the effect of T on the biosorption actually was. The three negative T effects on the biosorption
were interpreted as the result of “physical” adsorption of the dye on the biosorbent used. Moreover,
Sun et al. [23] noticed at T = 50 ◦C that the recorded adsorption of Malachite Green was twice as high
on granular, aerobic activated sludge, as that recorded at T = 30 ◦C. In addition, Ozer et al. [29] found
that an increase in T from 20 to 25 ◦C approximately twice increased the biosorption, where a further
increase in temperature to 30, 40 and 50 ◦C finally caused reduction in the biosorption to reach values
only 10% higher than those produced at 20 ◦C. The described negative T effects caused the biosorption
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to be reduced by only 15%–30%. The pseudo second order reaction was observed and proven in 12 out
of 14 examined papers.

Table 3 summarizes the data and parameters describing the influence of T on the biosorption
of dyes on other types of biosorbents. Chowdhury et al. [33] obtained a maximum biosorption after
150 min contact of 5 g/L biosorbent with a dye-based solution. This was with a minimum concentration
of 50 mg/L, at a pH of 9. By means of the BET method, they determined the surface parameters of
the biosorbent used. Of the Freundlich, Dubinin–Radushkevich and Langmuir models, the latter best
matched the database. The authors determined the activation energy Ea = 45.79 kJ/mol of the examined
biosorption process and defined that this process was spontaneous and exothermic, also meeting the
PSO equation. Han et al. [34] found that a change in pH in the range of 4.5 to 10 did not affect the
efficiency of the biosorption studied. In fact, it did rise with increasing amount of the biosorbent,
but then kept reducing upon increasing amounts of salt in the system. The Langmuir model best
described the studied process and the determined values of ∆G, ∆H and ∆S thermodynamic functions
indicated the spontaneity and endothermicity of this biosorption process. Furthermore, Ho et al. [35]
stated that the biosorption increased upon biosorbent dispersion growth. The database did fit the
Langmuir model, whereas the calculated values of the ∆G, ∆H and ∆S functions indicated that the
studied process was spontaneous and endothermic. The specific surface area of the biosorbent particles
was 38–45 m2/g. This work lacks derivation of the kinetic parameters for the examined biosorption
process. For another work by Ponnusami et al. [36], both kinetic and thermodynamic data are missing.
The authors used dye solutions with concentrations from 50 to 250 mg/L and a biosorbent dose from
5 to 50 g/L. They found that increasing the pH from 2 to 7 significantly reduced the efficiency of the
biosorption test. Aksakal and Ucun [37] used dye solutions with concentrations of 50–200 mg/L and a
biosorbent dose of 5 to 40 g/L, at a pH of 1 to 6. In fact, a higher concentration (dose of biosorbent),
contact time of 180 min and acidic pH of 1 were the most favourable conditions for the biosorption test.
The database was fitted to the PSO kinetic equation and the Elovich equation describing chemisorption
on a heterogeneous surface. To describe the equilibrium of biosorption, the authors used the Langmuir
and Freundlich isotherm equations and the latter model best suited the database. They also calculated
the activation energy of 8.904 kJ/mol and the values of the ∆G, ∆H and ∆S functions, prompting them
to conclude that the biosorption test was endothermic. Akar et al. [38] used dye solutions with a
concentration range of 100–300 mg/L. Optimal discolouration of the solution was observed after 20 min
of stirring for a biosorbent dose of 1.6 g/L, at pH = 2.0. The database matched both Freundlich and
Langmuir models. Thermodynamic functions were determined, and the reaction was found to occur
spontaneously and exothermically in accordance with the PSO equation. According to Akkaya and
Ozer [39], optimum biosorption occurred for dye solution at the concentration of 700 mg/L, biosorbent
dose of 0.5 g/L and pH = 3. They tested the Freundlich, Temkin, Redlich–Peterson and Langmuir
adsorption models, where the latter one was best fitted to the database. The results of the kinetics
of the process matched the Weber–Morris model and the PSO reaction. The calculated ∆H and ∆S
values indicated that the studied biosorption was a reversible and exothermic process. As expected,
Barka et al. [40] implied that the biosorption increased with increasing dose and decreasing biosorbent
particle size along with higher dye concentrations. The maximum biosorption was recorded at pH = 6.8
for one dye and at pH = 3 for another one. The experimental database was fitted to the Langmuir,
Freundlich, Toth and Tempkin isotherms in order to give a maximum R2 of 0.99 for both the Toth and
Langmuir models. The results matched the PSO reaction and the studied biosorption was exothermic.
Akar et al. [41], after 40 min of continuing the process, obtained a maximum biosorption capacity at
pH = 2 and the concentration of the biosorbent at 3 g/L. Based on the course and adaptation of the
database to the Langmuir, Freundlich and Dubinin–Radushkevich isotherms, the authors suggested
mono-molecularity and homogeneity of the adsorption layer studied. Negative ∆G and positive
∆H values implied that the biosorption test was a chemical, spontaneous and endothermic process
satisfying the kinetic equation of the PSO reaction. According to Brito et al. [42], a specific surface
area of 7 m2/g proved to be sufficient for electrostatic attraction and adsorption of particles of the
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added dyes. Their biosorption resulted both from the polarization of dye molecules at the applied
pH of 6.57, as well as the process of their diffusion into the lignocellulosic surface of the biosorbent.
The authors suggested a physical (∆H < 0), spontaneous (∆S < 0) and exothermic character of the
biosorption process. Nevertheless, the database matched the Langmuir model and the PSO reaction
equation. Akar et al. [43] achieved the balance of the biosorption process after 50 min. The database
was analysed by means of the Langmuir, Freundlich, Dubinin and Radushkevich isotherm models
and the results from this analysis showed that the biosorption process occurred on the homogenous
surface of the biosorbent. Based on the calculated changes in the ∆G, ∆H and ∆S functions, the authors
stated the exothermicity and spontaneity of the examined biosorption process. In turn, the calculated
values of the reaction rate constants indicated the PSO kinetic model. Ofomaja and Ho [44] also fitted
their experimental data at pH > 7 to the Langmuir, Freundlich and Redlich–Peterson models (lowest
fit). The calculated values of the ∆G, ∆H and ∆S indicated spontaneity and endothermicity of the
examined process. However, the paper did not present the kinetic parameters of the biosorption
test. Desorption–regeneration of the biosorbent used could be carried out by means of HCl solution,
which, according to the authors, indicated in this case that ion exchange was the process responsible for
the biosorption. Kumar and Ahmad [45] considered intramolecular diffusion as the basic mechanism
of the studied biosorption. The adaptation of the database to the Langmuir model (more favourable
than Freundlich) indicated according to the authors, the formation of a monomolecular layer of the
adsorbate on the biosorbent surface. A positive ∆H value indicated the endothermic and spontaneous
nature of the studied process, which turned out to be the PSO reaction. The authors attempted to
regenerate the treated ginger waste using acetic acid as the eluent. The biosorption process generally
increased with increasing pH, where amine functional groups of the dye were mainly responsible for
the chemi-biosorption mechanism. Doğan et al. [46] determined the contact time needed to establish the
biosorbent–adsorbate equilibrium as 24 h at pH range 3–9, ionic strength up to 0.1 mol/L and biosorbent
particle size up to 200 µm. The Langmuir model best suited the obtained database, where the process
was monomolecular, endothermic and the dye showed high affinity for the biosorbent. Nevertheless,
the authors did not specify the kinetic parameters of this biosorption process.

Oguntimein [47] described the biosorption of synthetic direct dyes used for bleaching and dyeing
cotton fabrics. The optimal pH for this process was found to be in the range of 2.0–2.2. The calculated
values of ∆H > 0, ∆G > 0 and ∆S < 0 and the fact that the experimental database was best suited to
the Temkin model prompted the author to suggest the physical nature of this biosorption. Energy for
activating was determined at Ea = 8.79 kJ/mol; it was also found that this biosorption followed the
PSO equation. Additionally, Belala et al. [48] used dye solutions with a concentration of 70–700 mg/L.
They adjusted the pH to an optimal value of 6.3. Based on the Langmuir equation (optimal for the
database), they calculated a maximum biosorption of 39.5 mg/L. Thermodynamic data, i.e., ∆H, ∆G
and ∆S, proved the spontaneity of this process, which followed the PSO equation. Slimani et al. [49]
biosorbed the dye from solutions with concentration of 20–60 mg/L for optimal pH = 10. The calculated
values of ∆H and ∆S indicated the spontaneity of this biosorption, which was carried out in accordance
with the PSO equation. Guerrero-Coronilla used dye solutions with a concentration of 10–500 mg/L
with an optimal pH of the solution set at 1.5. The database best matched the Langmuir isotherm
equation. According to the authors, thermodynamic data, i.e., ∆H (>0) and ∆S (<0) indicated that the
process was not spontaneous. The experimental database fitted the PSO equation. Activation energies
of the studied biosorption were determined to rise with an increase in T from 19.8 to 34.8 kJ/mol.

In ten cases, the authors showed positive, and for seven other, negative T effects on the biosorption
parameters. Only for a single case, they first noticed the growth of the biosorption with the increase
in T, and then, the reduction in the biosorption parameters at higher T values. They interpreted
such a phenomenon by the reversibility of the tested biosorption process. The chemical nature of
the biosorption process resulted with positive T effect on the biosorption only in one case. Then, the
negative T for the biosorption effects was explained by the physical character of the biosorption process.
The record-breaking influence of T on the biosorption was observed by Kumar and Ahmad [45]. In their
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study, an increase in T from 30 to 40 ◦C caused over a 3-fold rise in the biosorption, while for temperature
rising from 30 to 50 ◦C, it was more than 4-fold. The negative T effect on the biosorption generally
reached a value of about dozen per cent. Additionally, very high fluctuations of the biosorption values
for T ranging from 20 to 60 ◦C were found by Akkaya and Ozer [39]. According to the results of their
research, an increase in T from 20 to 25 ◦C doubled the biosorption, while the T parameter rising from
20 to 30 ◦C resulted in the biosorption increasing by nearly 3-fold. Then, increasing T to 60 ◦C led to
the biosorption value 30% lower than that obtained at T = 20◦C. The pseudo second order reaction was
observed and proven in 13 out of 18 examined papers.

Table 3. Influence of temperature on the biosorption of dyes by other biosorbents.

Names of Biosorbent Names of Biosorbate

T ◦C
Effect of T:
If + Bold
If − Italic

Removal
If in [mg/g]

Then no Unit
Ref

ananas comosus
(pineapple) leaf powder Basic Green 4 25–45 49–42 [32]

fallen phoenix tree’s leaves Methylene Blue 22–50 81–90 [33]

tree fern Basic Red 13 10–40 0.7–0.9 [mmol/g] [34]

acid-treated rice husk Reactive red RGB 20–40 60–85% [35]

Pinus sylvestris L. Reactive Red 195 20–50 3.73–4.16 [36]

canned food plant Reactive Red 198 20–50 82–78.6 [37]

Dicranella varia Acid Red 274 20, 25, 30,
35, 40, 50, 60

65, 130, 191,
130, 84, 54, 43 [38]

Scolymus hispanicus L Methylene Blue
Eriochrome Black T 20–60 MB: 40%,

EB: 30% [39]

untreated olive pomace textile dye, RR198 20–50 8.2–5.5 [40]

Brazil nut shells methylene blue,
indygo carmine 20–60 MB: 72–67%

IC: 9.8–8.5% [41]

cone biomass
of Thuja orientalis Acid Blue 40 20–40 8.22–5.51 [42]

mansonia wood sawdust methyl violet 26–56 17.6–23.3 [43]

treated ginger crystal violet 30–50 65–277 [44]

waste

hazelnut Shells Methylene Blue 25–55 0.21–0.33 [mmol/g] [45]

sunflower seed hull wastewater from the textile industry 19–60 42–68 [%] [46]

palm-trees waste Methylene Blue 20–70 21–35 [47]

calcined eggshells basic yellow 28 15–45 9–4.5 [48]

water hyacinth leaves acid red 27 18–50 60–71 [49]

3. Summary

Textile wastewater is a specific group of high temperature sewage systems, where high temperature
might strongly affect the process of its purification. This context has inspired us to attempt to determine
the effect of temperature on a new and fully economically (and ecologically) justified biosorption
process. In fact, before commencing this literature review, one could not answer the question: “how
does temperature affect dye biosorption?” However, the authors of this manuscript expected that their
efforts could at least put new light into this issue and reveal general conditions within certain types of
biosorbents that govern the process. Hence, in this work, quite diverse databases related to biosorption
of various dyes on fungi, bacteria, algae and other natural materials have been analysed.

The dyes used in the tests and described can be grouped according to their colour, as well as based
on their chemical properties. In both cases, the structure of this organic compound molecule containing
chromophore, auxochrome and anti-auxochrome groups is decisive. Dye colour is determined by
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strong or weak chromophores, while auxochromes and anti-auxochromes strengthen or weaken the
colour, thus shifting the maximum absorption of a given dye towards shorter or longer wavelengths.
At the same time, auxochromes and anti-auxochromes largely determine dye properties and reactivity.
It should be mentioned here that dye-based wastewater primarily contains reactive pigments, then acidic
ones, and finally only a small number of basic pigments. In the described biosorption studies, acid,
reactive and basic dyes were used 17, 12 and 6 times, correspondingly. Hence, there is a complete
agreement between the nature of the dye and the most favourable pH of the system, where all acid
dyes were best biosorbed in an acid medium, just like all basic dyes in basic environment. This is
not a surprise, because e.g., acid dyes most effectively deposit their large anion on coloured textiles
at pH = 1–3. It can be assumed that the pH of the system may slightly block the dissociation of the
dye into the undissociated form, although it is well known that acid dyes remain dissociated in quite
wide pH ranges, from about 2 to 12. On the other hand, pH significantly creates the surface charge
of the biosorbent used, which provides effective exchange of: (a) a small anion from the biosorbent
surface with a large acid dye anion, or (b) a small cation from the biosorbent surface with a large
basic dye cation. All tested reactive dyes behaved similarly to acid pigments, which may indicate a
similar mechanism of the biosorption process. In addition to ion exchange, a number of other processes
and interactions (formation of ion pairs, hydrogen bonds, complexing, etc.,) determine the overall
biosorption of the dye on the biosorbent, and the pH of the biosorbent-dye system generates many
changes in the structure of other dye functional groups, as well as on the surface of the biosorbent.

Another important issue determining the biosorption process is the size and shape of the dye
molecule and its potential fit into active centres and other pores on the biosorbent surface. In this regard,
it is important to tailor the experimental database to the model adsorption isotherm, as expected, here
most often to Langmuir (25 times) and Freundlich (12 times) models. The aforementioned fitting of the
dye molecule to the active centres of the biosorbent surface, and thus, the mono-molecularity of the
adsorption layer, is expressed by the great compatibility of the database (in many works R2 approaches
0.99) with the Langmuir model.

The summary of the temperature effect on biosorption for the main group of dyes (for all the
tested biosorbents), does not give a clear indication, as the result positive-to-negative for the following
dyes: acid = 10:9; reactive = 6:7 and basic = 2:3. From the statistical obligation, it should be mentioned
that blue and violet dyes were used most frequently (21 times), whereas red and orange were employed
19 times. When leaving the sewage treatment plants, these dyes are seen as most unnatural in the
outflow (e.g., in rivers or lakes), while yellow, green or black dyes do not contrast so much with
colours in the natural environment. It is impossible to interpret the effect of T on the biosorption
depending on the colour of the biosorbed dye. However, as a curiosity you could provide such a
summary positive-to-negative for blue and purple = 12:8, and red and orange = 14:12. In this regard,
it is interesting to note that a small increase in the T parameter by “first” 10 degrees C (from 20 to 30 ◦C),
clearly has a positive effect on the biosorption of red, blue and, which is not surprising, reactive dyes.

For a vast majority of analysed works, the database from the biosorption process was successfully
fitted (high R2 value) to the pseudo second order (PSO) equation, regardless of the positive or negative
influence of T. Thus, the authors assumed that in the studied range of low dye concentrations, generally
from approximately 10–500 mg/L, during the first ca. 10 min, the biosorption process is efficient and
quick, and a further 60–180 min (or longer, even up to 24 h) lead to a dynamic equilibrium state,
which then determines the duration of the process. In most of the works, the last stage of completing
the database was the calculation of the thermodynamic data “set”: ∆H, ∆G and ∆S, from which the
authors determined exo- or endothermicity and possible spontaneity of the biosorption process.

Summing up the statistically determined effect of temperature on the biosorption of dyes, it should
be stated that the authors of 21 papers clearly indicated a positive effect, often interpreting it with the
chemical nature of the studied process. At the same time, the authors of 10 other papers confirmed the
positive effect of temperature on the biosorption with an initial increase in T from about 20 to about
30–40 ◦C, indicating that higher T values often caused a decrease in the capacity of biosorption. A
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radical, 3–4 times increase in the biosorption was found at an increase in T from 10 to 20 ◦C. The authors
of the remaining 13 papers clearly demonstrated the negative impact of T on the examined biosorption
processes, thus generally indicating the physical nature of this process.

4. Conclusions

In biosorption studies, acid and reactive dyes are most commonly used as sorbate, as these dyes
are frequently found in dye sludges; reactive dyes are most often biosorbed on bacteria and algae.
Biosorption is most often carried out at pH range 1–3, as it promotes the biosorption of acid and
reactive dyes. The experimental database on dye biosorption best fits the Langmuir isotherm equation,
which can statistically indicate the dominant chemical and monomolecular nature of this process.
The analysed papers do not indicate a clear effect of temperature on the biosorption depending on the
sorbate used—acid, reactive or basic dye. The examined works clearly showed: (a) the equation of the
pseudo second order reaction as a kinetic model of dye biosorption, (b) the spontaneity of this process.
The authors of 21 papers indicated the positive impact of temperature increase on the biosorption
efficiency, whereas those of 13 other papers implied the negative effect, which leads to the conclusion
that the increase in temperature raises the efficiency of this process. At the same time, the vast majority
of authors showed that a slight increase in T by “first” 10◦C (from 20–30 ◦C) positively affects the
efficiency of the biosorption process.
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