
Election Algorithm for Random k Satisfiability in the Hopfield Neural
Network

Authors:

Saratha Sathasivam, Mohd. Asyraf Mansor, Mohd Shareduwan Mohd Kasihmuddin, Hamza Abubakar

Date Submitted: 2020-07-17

Keywords: exhaustive search, Genetic Algorithm, random k satisfiability, election algorithm, Hopfield neural network

Abstract:

Election Algorithm (EA) is a novel variant of the socio-political metaheuristic algorithm, inspired by the presidential election model
conducted globally. In this research, we will investigate the effect of Bipolar EA in enhancing the learning processes of a Hopfield
Neural Network (HNN) to generate global solutions for Random k Satisfiability (RANkSAT) logical representation. Specifically, this
paper utilizes a bipolar EA incorporated with the HNN in optimizing RANkSAT representation. The main goal of the learning processes
in our study is to ensure the cost function of RANkSAT converges to zero, indicating the logic function is satisfied. The effective
learning phase will affect the final states of RANkSAT and determine whether the final energy is a global minimum or local minimum.
The comparison will be made by adopting the same network and logical rule with the conventional learning algorithm, namely,
exhaustive search (ES) and genetic algorithm (GA), respectively. Performance evaluation analysis is conducted on our proposed
hybrid model and the existing models based on the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Sum of Squared
Error (SSE), and Mean Absolute Error (MAPE). The result demonstrates the capability of EA in terms of accuracy and effectiveness as
the learning algorithm in HNN for RANkSAT with a different number of neurons compared to ES and GA.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2020.0837
Citation (this specific file, latest version): LAPSE:2020.0837-1
Citation (this specific file, this version): LAPSE:2020.0837-1v1

DOI of Published Version: https://doi.org/10.3390/pr8050568

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

processes

Article

Election Algorithm for Random k Satisfiability in the
Hopfield Neural Network

Saratha Sathasivam 1,*, Mohd. Asyraf Mansor 2 , Mohd Shareduwan Mohd Kasihmuddin 1

and Hamza Abubakar 1

1 School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia;
shareduwan@usm.my (M.S.M.K.); zeeham4u2c@yahoo.com (H.A.)

2 School of Distance Education, Universiti Sains Malaysia, Penang 11800 USM, Malaysia; asyrafman@usm.my
* Correspondence: saratha@usm.my; Tel.: +604-6532428

Received: 29 January 2020; Accepted: 7 April 2020; Published: 11 May 2020
����������
�������

Abstract: Election Algorithm (EA) is a novel variant of the socio-political metaheuristic algorithm,
inspired by the presidential election model conducted globally. In this research, we will investigate
the effect of Bipolar EA in enhancing the learning processes of a Hopfield Neural Network
(HNN) to generate global solutions for Random k Satisfiability (RANkSAT) logical representation.
Specifically, this paper utilizes a bipolar EA incorporated with the HNN in optimizing RANkSAT
representation. The main goal of the learning processes in our study is to ensure the cost function of
RANkSAT converges to zero, indicating the logic function is satisfied. The effective learning phase
will affect the final states of RANkSAT and determine whether the final energy is a global minimum
or local minimum. The comparison will be made by adopting the same network and logical rule
with the conventional learning algorithm, namely, exhaustive search (ES) and genetic algorithm (GA),
respectively. Performance evaluation analysis is conducted on our proposed hybrid model and the
existing models based on the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Sum of
Squared Error (SSE), and Mean Absolute Error (MAPE). The result demonstrates the capability of
EA in terms of accuracy and effectiveness as the learning algorithm in HNN for RANkSAT with a
different number of neurons compared to ES and GA.

Keywords: Hopfield neural network; election algorithm; random k satisfiability; genetic algorithm;
exhaustive search

1. Introduction

Artificial Neural Networks (ANNs) have emerged as a powerful computational model, developed
by modelling the biological brain processing information into systematic procedures of mathematical
formulation. ANNs are extensively applied in various computational and prediction tasks such as in
pandemic diseases analysis [1], pattern recognition [2], logic extraction [3], function approximation [4],
and complex analysis [5]. Over the years, researchers have utilized ANN to solve complex optimization
problems suitable to an ANN’s capability to provide alternative ways to perform computation and
understand information compared to conventional statistical methods.

Hopfield and Tank formulated Hopfield Neural Network (HNN) in 1985 to provide a network for
solving combinatorial problems [6]. HNN is a variant of ANN, which demonstrates the structure of
feedback and recurrent interconnected neurons with no existence of hidden layers. HNNs exhibit great
performance in pattern recognition [7], fault detection [8], and clustering tasks [9]. Several distinctive
features of HNNs include Content Addressable Memory (CAM), Minimization of Energy as the
neuron state changed, and fault tolerance [10]. Conjointly, HNN complies with the discrete structure
of the problem and solves it by minimizing the energy function that corresponds to the solution of

Processes 2020, 8, 568; doi:10.3390/pr8050568 www.mdpi.com/journal/processes

Processes 2020, 8, 568 2 of 19

the problem. One of the most relevant challenges faced by the HNN is the output representation
produced in solving and learning the intended problem. This argument leads to the introduction of
a symbolic rule that governs the information embedded in the HNN. One of the earliest pursuits in
representing ANN in terms of logical rules was coined by Abdullah [11]. This work implemented a
logical rule into the standard HNN by utilizing the relationship of the cost function and the energy
function. In pursuing the argument of this paradigm, one may ask: what type of logical rule can
be represented in an ANN? Sathasivam [12] proposed Horn Satisfiability (HornSAT) in HNN by
implementing nonoscillatory synaptic weight. From this perspective, Kasihmuddin et al. [10] proposed
2 Satisfiability (2SAT) representation in HNN. The proposed network achieved more than 90% of global
minimum solutions during the retrieval phase of HNN. Similar observations were made in [13] as
3 Satisfiability (3-SAT) was implemented as the logical rule in HNN. As an extension of k Satisfiability
representation, Maximum Satisfiability [14] became the first unsatisfiable logical rule that has been
implemented in HNN. Although the cost function obtained is not zero, the performance metric showed
that most of the retrieved states achieved global minimum energy. Since the introduction of these
logical rules, [15] initiated a hybrid HNN model by implementing 2SAT to verify the properties of
the Bezier Curve model. In addition, a work by [16] used an HNN with 3-SAT to optimize pattern
satisfiability (Pattern-SAT). The proposed work showed that information embedded in 3SAT yielded a
better result for Pattern-SAT. The work by [17] utilized 3SAT integrated with an HNN to configure
a Very Large-Scale Integrated (VLSI) circuit. The proposed hybrid network achieved more that 90%
accuracy in terms of circuit verification. In another development, Hamadneh et al. [18] proposed logic
programming in a Radial Basis Function Neural Network (RBFNN). Logic programming is embedded
in RBFNN by calculating the width and the centre of the hidden layer. These studies were extended by
Alzaeemi et al. [19] and Mansor et al. [20] where they proposed 2 Satisfiability in RBFNN. The proposed
logical rule reduced the complexity of the network by fixing the value of the parameters involved in the
RBFNN. Note that, the common denominator in these studies is the implementation of the systematic
logical rule in the ANN. There is no recent effort to implement a nonsystematic logical rule in an ANN.

From a computational intelligence point of view, metaheuristics algorithms are interesting for
several reasons. First, the computation via metaheuristics can be implemented with a minimum level
of bias. The algorithm can search for the optimal solution without complex mathematical derivation.
For instance, Genetic Algorithm (GA) can screen the whole search space without compromising any
possible optimal search space. This is due to the capability of the metaheuristics algorithm to utilize
both local search and global search mechanisms to find the optimal solution. Second, metaheuristics
algorithms are commonly used to reduce the computational complexity of another intelligence system.
As the number of constraints grow, standard standalone ANN will be computationally burdening and
tend to be trapped in a suboptimal solution. In several studies [21–23], metaheuristics algorithms were
reported to compliment ANN in solving optimization problems. Extensive empirical studies have been
conducted to investigate the effect of metaheuristics in optimizing HNN. Kasihmuddin et al. [10,24]
proposed GA and Artificial Bee Colony (ABC) for optimizing 2SAT in HNN. The proposed hybrid
HNN minimizes the cost function of the 2SAT in the HNN. In another development, Mansor et al. [13]
proposed the use of the Artificial Immune System (AIS) in optimizing 3SAT integrated in HNN.
The proposed AIS is later implemented in Maximum Satisfiability [25]. The main challenge in finding
a suitable metaheuristic for Satisfiability representation is the structure of the logical rule. In this case,
the first order logical rule coupled with different logical order is difficult to satisfy compared to higher
systematic order logical rules.

In practice, an optimal metaheuristics algorithm must be able to cover a wide range of
solutions and create several independent computations. Election Algorithm (EA) is a class of
socio-political metaheuristics [26], which combines the mechanisms of evolutionary algorithm and
swarm optimization. It was coined by [27], in which the algorithm was developed by modelling the
presidential election process. The algorithm involves multiple layers of optimization, namely, positive
advertisement, negative advertisement, and coalition, which are suitable for use by the learning

Processes 2020, 8, 568 3 of 19

algorithm. Similar to other metaheuristics algorithms such as GA and ABC, EA can be used in both
continuous and discrete optimizations. The whole process is governed by the campaign process by
improving the eligibility of the candidates (solutions of the constrained optimization problem) [28].
This algorithm combines the capability of the local search in a partitioned search space. Due to its
unique way of improving the current solution, clinical iterative improvement for EA is reported
to reduce the probability of the solution to achieve a nonimproving solution (suboptimal solution).
The capacity of the EA in searching the optimal solution for constrained optimization has led to a
more robust EA, such as Chaotic EA. In current development, [29] proposed a novel Chaotic Election
Algorithm for function optimization by using the standard boundary-constrained benchmark function.
Although chaotic EA has been reported as a tremendous success in finding the optimal solution,
the capacity of the basic EA is worth investigating. In this study, we will adopt EA as the learning
algorithm in an HNN to generate global minimum solutions for Random k Satisfiability (RANkSAT).

The contributions of the present paper are: (1) New logical rule;RAN2SAT is proposed by
considering first and second order logic (k ≤ 2). (2) We implemented RAN2SAT in the HNN by
minimizing the cost function and Lyapunov Energy Function. (3) A new EA is proposed to optimize the
learning phase of HNN by incorporating RAN2SAT. The effectiveness of the EA using RAN2SAT will
be compared to the state-of-the-art GA. By constructing an effective HNN work model, the proposed
learning method will be beneficial for logic mining [3] and other variants of HNN [30]. The rest of this
paper is organized in the following way. The new Random k Satisfiability representation is formally
described in Section 2. In Section 3, the proposed RAN2SAT is embedded into HNN. The structure of
the cost function and the energy function for RAN2SAT will be explained in detail. Section 4 presents
the proposed EA and the existing work of GA using RAN2SAT. Section 5 reports the experimental
setup, the performance metrics involved, and the general implementation of the network. The results
and discussion are reported in Section 6. Finally, Section 7 concludes the paper with future directions.

2. The Proposed Random k Satisfiability (RANkSAT)

Random k Satisfiability (RANkSAT) is a class of nonsystematic Boolean logic representation.
It consists of random number of literals (can be the negated literals) per clause. RANkSAT is
represented in Conjunctive Normal Form (CNF), where each clause contains random number of
variables connected by an OR operator. The fundamental structure of RANkSAT is not restricted
compared to conventional kSAT [17] logical representation. Hence, the general formulation for
RANkSAT is given as

PRANkSAT =
n
∧

i=0
C(2)

i

m
∧

i=0
C(1)

i (1)

where n ∈ , n > 0 and m ∈, m > 0. Therefore, the clause in PRANkSAT is defined as

C(k)
i =

{
(Ai ∨ Bi) , k = 2

Di , k = 1
(2)

where Ai ∈ {Ai,¬Ai} , Bi ∈ {Bi,¬Bi}, and Di ∈ {Di,¬Di}. In particular, the first and second order clause
are denoted as C(1)

i and C(2)
i , respectively. In this study, Fr is a Conjunctive Normal Form (CNF) formula

where the clauses are chosen uniformly, independently without replacement among all 2r
(

m + n
v

)
nontrivial clause of length r. Note that, Ai exists in the C(k)

i , if the C(k)
i contains either Ai or ¬Ai and the

mapping of V(Fr)→ {−1, 1} is called logical interpretation. According to [3], the Boolean value for
the mapping is expressed as 1 (TRUE) and −1 (FALSE). In theory, the example of RANkSAT formula
for k ≤ 2 is given as

PRAN2SAT = (A1 ∨¬B1)∧ (¬A2 ∨ B2)∧¬D1 (3)

Processes 2020, 8, 568 4 of 19

According to Equation (3), PRANkSAT comprises of C(2)
1 = (A1 ∨¬B1), C(2)

2 = (¬A2 ∨ B2),

and C(1)
1 = ¬D1. Therefore, the outcome of Equation (3) is PRANkSAT = −1 if (A1, A2, B1, B2, D1) =

(1, 1, 1, 1, 1) with two clauses satisfied
(
C(2)

1 , C(1)
2

)
. In this study, we investigated the RAN2SAT for the

case of k ≤ 2.

3. RAN2SAT in a Hopfield Neural Network

The fundamental architecture and structure of a Hopfield Neural Network (HNN) consists of
discrete interconnected bipolar neurons without any hidden neurons [31]. The synaptic weights
are strictly symmetrical in manner, without self-mapping among the interconnected neurons.
Hence, the Content Addressable Memory (CAM) is studied as a dynamic storage system for the
synaptic weights [12]. Given an initial vector that is mapped to the neuron state Si = (S1, S2, S3, . . . , Sn)

and without any noise intervention, the HNN will converge to the equilibrium that corresponds to the
minimum value of Hp [32]. Henceforth, the final state of the HNN corresponds to the solution of the
combinatorial problem. The neurons in HNN are represented in bipolar form, Si ∈ (−1, 1) conform to
the dynamics Si → sgn(hi) . The general asynchronous updating rule of the HNN is given by:

Si(t + 1) =

 1 , i f
N∑
j

Wi jS j(t) + β

−1 , otherwise
(4)

where Wi j describes the synaptic weight matrix of HNN, which establishes the strength of the
connections from neuron j to i with predetermined bias β. In this study, the HNN is implemented as
the central network in training the PRAN2SAT. The formalism of logic programming in HNN does not
impose any restriction on the accepted type of clauses as long as the proposed propositional logic is
satisfiable [33]. PRAN2SAT can be embedded into the HNN by assigning each variable with neurons
Di to the defined cost function. Furthermore, the generalized cost function EPRAN2SAT that governs the
combinations of HNN and PRAN2SAT is given as

EPRAN2SAT =
NC∑
i=1

m+n∏
j=1

Ti j (5)

where NC and m + n are the number of clauses and the number variables in PRAN2SAT, respectively.
Note that the inconsistency of PRAN2SAT is given as:

Ti j =

{ 1
2 (1− SA) , i f ¬A
1
2 (1 + SA) , otherwise

(6)

The value of EPRAN2SAT is proportional to the number of “inconsistencies” of the clause
(
Ck

i = −1
)
.

The more Ck
i that is unsatisfied, the higher the value of EPRAN2SAT . Minimum EPRAN2SAT corresponds to

the “most consistent” selection of Si. Hence, the updating rule for PRAN2SAT in HNN is defined as:

h(t) =
m+n∑

j=1,i, j

W(2)
i j S j(t) + W(1)

i (7)

Si(t + 1) =

1 ,

m+n∑
j=1,i, j

W(2)
i j S j(t) + W(1)

i ≥ 0

−1 ,
m+n∑

j=1,i, j
W(2)

i j S j(t) + W(1)
i < 0

(8)

Processes 2020, 8, 568 5 of 19

where W(2)
i j and W(1)

i are second and first order synaptic weights of the embedded PRAN2SAT.
Equations (7) and (8) are important to ensure the neurons Si will always converge to ERAN2SAT → 0 .
The quality of the retrieved Si can be evaluated by employing the Lyapunov energy function, HPRAN2SAT ,
defined as:

HPRAN2SAT
= −

1
2

m+n∑
i=1,i, j

m+n∑
j=1,i, j

W(2)
i j SiS j −

m+n∑
i=1,i, j

W(1)
i S j (9)

The structure of Equation (9) is valid for RAN2SAT logical representation for the case of k ≤ 2.
Equation (7) describes that the energy portrayed from the PRAN2SAT always decreases monotonically.
The value of HPRAN2SAT indicates the value of the energy with respect to the absolute final energy
Hmin

PRAN2SAT
attained from PRAN2SAT [11]. Hence, the value of Hmin

PRAN2SAT
can be further computed by using

the following formula:

Hmin
PRAN2SAT

= −

(
θ+ 2η

4

)
(10)

where θ = n
(
C(2)

i

)
and η = n

(
C(1)

i

)
that corresponds to PRAN2SAT. Hence, the quality of the final

neuron state can be properly examined by checking the following condition:∣∣∣∣HPRAN2SAT −Hmin
PRAN2SAT

∣∣∣∣ ≤ ξ (11)

where ξ is the predetermined tolerance value. Note that, if the embedded PRAN2SAT does not satisfy
Equation (11), the final state attained will be trapped in a local minimum solution. It should be
mentioned that, W(2)

i j and W(1)
i can be effectively obtained by using the Wan Abdullah method [11].

Hebbian learning was reported to produce an oscillating neuron state that will result in a suboptimal
value of HPRAN2SAT . In this paper, the implementation of PRAN2SAT in HNN is denoted as the
HNN-RAN2SAT model.

4. Learning Model for HNN-RAN2SAT

4.1. Election Algorithm (EA)

Election Algorithm (EA) is a metaheuristics algorithm inspired by the socio-political phenomenon
of presidential elections conducted by a majority of the countries in the world. This algorithm was
introduced by [27] for finding solutions for function approximation. Inspired by other evolutionary
algorithm such as GA, EA relies on an intelligent search by implementing three iterative operators, i.e.,
positive advertisement, negative advertisement, and coalition. Each of the operators comprises an
individual that can be effectively divided into candidates and voters, similar to the actual electoral
system where a candidate must be initially selected from the party and the best candidate will end
up with the most votes. In this situation, the candidate will assert dominance and influence their
supporters (voter) and increase the chances of the candidate winning the election. Interestingly, this
algorithm provides partitions in a solution space where each partition is represented by a party and is
coordinated by one candidate. Each party will optimize both voters and candidates until the election
day. In this paper, we utilize EA to find the optimal assignment for RAN2SAT that minimizes the cost
function during the learning phase of the HNN. The basic motivation for choosing EA was due to the
structure of RAN2SAT, consisting of first and second order logic. In [12], the complexity of the logic
programming in the HNN increased sharply because the probability of getting EPRAN2SAT = 0 for the
first order clause is small. This limitation requires an algorithm that can effectively flip the neuron state
based on the previous improved solution with a wide solution space. In general, the fitness function or
eligibility value for the candidate L j in EA is given by

fL j =
m∑

i=0

C(2)
i +

n∑
i=0

C(1)
i (12)

Processes 2020, 8, 568 6 of 19

where C(2)
i and C(1)

i are second and first order RAN2SAT clauses, respectively, and are given as

C(2)
i =

{
1 , Satis f ied
0 , otherwise

(13)

C(1)
i =

{
1 , Satis f ied
0 , otherwise

(14)

Each neuron string in the HNN represents the assignment that corresponds RAN2SAT instances.
Similar to the other fitness functions of the general metaheuristics in [10,34], the objective function of
our proposed EA is to maximize the eligibility of the candidate (neuron string):

max
[

fL j

]
(15)

In the basic EA proposed by [27], each individual in the search space will be optimized so
that it can satisfy the continuous function. The implementation of EA in HNN is abbreviated as
HNN-RAN2SATEA. The stages involved in HNN-RAN2SATEA are as follows:

4.1.1. Initialization

A random population NPOP of individuals consisting of voters and candidates (RAN2SAT
assignment) Si ∈ [S1, S2, S3, . . . , SN], Si = {−1, 1} is initialized. The state of each individual is given as 1
(TRUE) and −1 (FALSE), which corresponds to the possible assignment for RAN2SAT.

4.1.2. Forming Initial Parties

In this stage, the solution space is divided into Nparty parties. The fraction of voters in each party
is given as follows:

N j =
NPOP
Nparty

, j = 1, 2, 3, 4 (16)

where Nparty is the number of party j that is predefined earlier. The eligibility of each individual
(voters or potential candidate) is evaluated based on Equation (12). The individual that has the highest
eligibility value for party j will be elected as a candidate L j. The rest of the individuals are regarded

as voters v j
i for that candidate. The similarity of belief between the candidate L j and the voter v j

i is
represented in the form of distance:

dist
(

fL j , f
v j

i

)
= fL j − f

v j
i

(17)

where fL j
and f

v j
i

are the eligibility of the candidate and voters, respectively.

4.1.3. Positive Advertisement

In this stage, the candidate will expose their plans and try to influence the voting decisions made
by the voters. Hence the number of voters that will be influenced by the candidate is given as follows

NS j = σpN j, j = 1, 2, 3, 4 (18)

where σp is a positive advertisement rate, σp
∈ [0, 0.5]. The reasonable effect from the candidate to the

voter is defined as the eligibility distance coefficient ω
v j

i
given by:

ω
v j

i
=

1

dist
(

fL j , f
v j

i

)
+ 1

(19)

Processes 2020, 8, 568 7 of 19

Hence, the updating (state flipping) of each voter is based on the following equation:

S
v j

i
= N j ωv j

i
(20)

where N j = m + n, a sum of first and second order of RAN2SAT. The eligibility for each voter and
candidate will be evaluated based on Equation (12). In this stage, there is a possibility that the voter
will replace the current candidate if the eligibility of the voter is higher than the present candidate.

4.1.4. Negative Advertisement

In this stage, the candidate will try to attract voters from other parties that are not in party j.
Negative advertisements will lead to an increase in popularity of the candidate from different parties.
The number of voters that are influenced from the negative advertisement is as follows:

Nv∗i
= σn

(
1−

N j

Nparty

)
(21)

where v∗i is voters from other parties and σn is a negative advertisement rate, σn
∈ [0, 0.5]. The similarity

of beliefs between the candidate L j and voter v∗i is defined as follows

dist
(

fL j , fv∗i
)
= fL j − fv∗i (22)

The reasonable effect from the candidate to the voter from another party is defined based on the
eligibility distance coefficient ωv∗i

.

ωv∗i
=

1

dist
(

fL j , fv∗i
)
+ 1

(23)

Sv ∗i
= Nv∗i

ωv ∗i
(24)

where N j = m + n. The eligibility of each voter and candidate is evaluated based on Equation (12).
In this stage, there is a possibility that the voter will replace the current candidate.

4.1.5. Coalition

Similar to the process of candidate coalition, the candidate will form a partnership with an
individual (voter and candidate) from another party. In this case, the parties will exist codependently
with each other. The effect of both candidates from both parties within the same coalition is computed
based on Equation (23).

4.1.6. Election Day

If the termination criteria for Stages 3–5 are satisfied, the election will be conducted to evaluate
the final eligibility of all the candidate. If fL j

= m + n, the candidate will be elected, otherwise stages
3–5 are repeated until the specified number of iterations is reached. In this paper, the maximum
iteration Ir is considered as the stopping criteria of the proposed algorithm. Algorithm 1 shows the
detailed procedure of the proposed HNN-RAN2SATEA.

Processes 2020, 8, 568 8 of 19

Algorithm 1 Detailed Procedure of the Proposed HNN-RAN2SATEA

1 Initialize the population NPOP consisting Si ∈
[
S1, S2, S3, . . . , SNPOP

]
;

2 while (g ≤ Ir) or fL j = fm+n

3 Forming Initial Parties by using Equation (16);
4 for j ∈

{
1, 2, 3, . . . , Nparty

}
do

5 Calculate the similarity between the voter and the candidate by using Equation (17);
6 end
7 {Positive Advertisement}
8 for Si ∈

{
1, 2, 3, . . . , NS j

}
do

9 Evaluate the number of voters NS j Equation (18);

10 Evaluate the reasonable effect from the candidate ωv j
i

by using Equation (19);

11 Update the neuron state according to Equation (20);

12 if fv j
i
> fL j

13 Assign v j
i as new L j;

14 else
15 Remain L j
16 end
17 {Negative Advertisement}
18 for Si ∈

{
1, 2, 3, . . . , Nv∗i

}
do

19
Evaluate the similarity between the voter from other party and the candidate by using
Equation (22);

20 Evaluate the reasonable effect from the candidate ωv∗i by using Equation (23);
21 Update the neuron state according to Equation (24);
22 if fv∗i > fL j

23 Assign v∗i as new L j;
24 else
25 Remain L j
26 end
27 {Coalition}
28 for Si ∈

{
1, 2, 3, . . . , Nv∗i

}
do

29
Evaluate the similarity between the voter from other party and the candidate by using
(22);

30 Evaluate the reasonable effect from the candidate ωv∗i by using Equation (23);
31 Update the neuron state according to Equation (24);
32 if fv∗i > fL j

33 Assign v∗i as new L j
34 else
35 Remain L j
36 end
37 end while
38 return Output the final neuron state

4.2. Genetic Algorithm (GA)

Genetic Algorithm (GA) is a variant of a random-based evolutionary algorithm, utilized as an
effective searching technique or as a learning algorithm. The pioneering work of [35] developed the
idea of the nonfit solutions being improved with each iteration by employing genetic operators. It was
formally described as Messy GA in [36], which functions as a learning algorithm. Kasihmuddin et al. [10]
proposed GA for performing kSAT logical representation during the learning phase of HNN. In their
work, neurons in the HNN were represented as information that made up the chromosomes. We adapted

Processes 2020, 8, 568 9 of 19

the same structure for GA for performing RANkSAT. The possible assignment of RAN2SAT in GA is
represented as chromosomes Si. The fitness function fSi of each Si is given by:

fSi =
m∑

i=0

C(2)
i +

n∑
i=0

C(1)
i (25)

where C(2)
i and C(1)

i are second and first order RAN2SAT clause, respectively, and were given as

C(2)
i =

{
1 , Satis f ied
0 , otherwise

(26)

C(1)
i =

{
1 , Satis f ied
0 , otherwise

(27)

Each neuron string in the HNN represents an assignment that corresponds to RAN2SAT instances.
The objective function of proposed GA is to maximize the fitness of the Si (neuron string):

max
[

fSi

]
(28)

Note that the proposed GA is the state-of-the-art, and the fitness function is tailored to RAN2SAT
representation. The implementation of GA in HNN is abbreviated as HNN-RAN2SATGA. The stages
involved in HNN-RAN2SATGA are as follows:

4.2.1. Initialization

Initialize NPOP chromosome Si where Si ∈
{
S1, S2, . . . , SNPOP

}
. The state of neuron in each Si is

represented by 1 (TRUE) and −1 (FALSE).

4.2.2. Fitness Evaluation

The fitness fSi of each Si is evaluated based on Equation (25). In this case, the proposed model only
accommodates fSi ∈. Note that the maximum fitness of Si is fSi = fm+n and if fSi reaches maximum
fitness, the algorithm will be terminated.

4.2.3. Selection

ND chromosomes that acquire a high value of fSi will be selected. The selection of the chromosomes
is based on the following equation:

ND = λNPOP (29)

where λ is the selection rate of the chromosomes, ranging to λ ∈ [0, 1]. This stage is vital because lower
values of fSi will not be included in the next stage.

4.2.4. Crossover

The genetic diversification of the Si occurs during this stage. Crossover involves exchange of
two substructures from both Si. Note that the location of the crossover is determined randomly.
The following process illustrates crossover between S1 and S2:

Processes 2020, 8, 568 10 of 19

Before Crossover

S1 −1 1 1 −1 1 1
S2 1 −1 1 1 1 −1

After Crossover

S1 1 1 −1 −1 1 1
S2 1 −1 1 −1 1 1

4.2.5. Mutation

The mutation operator performs state flipping from 1 to −1 or vice versa. The mutation will
theoretically enhance the average fitness of the Si. Note that there is a chance that the fSi will reduce if
the wrong state is flipped during this stage. Stages 1 to 5 are repeated a predetermined number of
times if generation gen is reached. Algorithm 2 shows the detailed procedure of HNN-RAN2SATGA.

Algorithm 2 Detailed Procedure of the Proposed HNN-RAN2SATGA

1 Initialize the NPOP chromosomes population consisting Si ∈
[
S1, S2, . . . , SNPOP

]
;

2 while g ≤ Gen or fSi = fm+n

3 Initialize NPOP −ND random Si;
4 {Selection}
5 for i ∈ {1, 2, 3, . . . , NPOP} do
6 Calculate the fitness of each Si by using Equation (25);
7 Evaluate ND by using Equation (29);
8 end
9 {Crossover}
10 for Si ∈ {1, 2, 3, . . . , ND} do
11 Exchange the states of the selected two Si at a random point.
12 end
13 {Mutation}
14 for Si ∈ {1, 2, 3, . . . , ND} do
15 Flipping states from of Si the random location;
16 Evaluate the fitness of the Si according to Equation (25);
17 end
18 end while
19 return Output the final Si state.

5. HNN Model Experimental Setup

In this study, EA has been incorporated into an HNN in the search for an optimal solution for
RAN2SAT logic representation. The proposed hybrid computational model will be compared with the
existing HNN-RAN2SATES [37] and HNN-RAN2SATGA [10] models. Both HNN models employ
simulated datasets to establish RAN2SAT logical clauses. To achieve a meaningful comparison between
the existing HNN models, all source code was formulated based on the simulation program developed
in Dev C++ release version 5.11 running on a device with an Intel ® Celeron® CPU B800@2GHz
processor with 4 GB RAM utilizing Windows 8.1. Tables 1–3 indicate the appropriate parameters
during each HNN model execution.

Processes 2020, 8, 568 11 of 19

Table 1. List of parameters used in Hopfield Neural Network-Random 2 Satisfiability Exhaustive
Search (HNN-RAN2SATES) [37].

Parameter Value

Neuron Combination 100
Number of Trials 100

Tolerance Value (ξ) 0.001
Number of Strings 100
Selection Rate (λ) 0.1

Table 2. List of parameters used in Hopfield Neural Network-Random 2 Satisfiability Genetic Algorithm
(HNN-RAN2SATGA) [10].

Parameter Value

Neuron Combination 100
Number of Trials 100

Tolerance Value (ξ) 0.001
Number of Generations (Gen) 1000

Number of Chromosomes (NPOP) 120
Selection Rate (λ) 0.1

Crossover Rate 0.9
Mutation Rate 0.01

Table 3. List of parameters used in Hopfield Neural Network-Random 2 Satisfiability Election
Algorithm (HNN-RAN2SATEA).

Parameter Value

Neuron Combination 100
Number of Trials 100

Tolerance Value (ξ) 0.001
Number of Learning 100

Number of Candidates (NPOP) 120
Number of Parties

(
Nparty

)
4

Positive Advertisement Rate (σp) 0.5
Negative Advertisement Rate (σn) 0.5

Maximum Iterations (Ir) 100

5.1. Performance Metric for HNN-RAN2SAT Models

In this study, the training phase of the HNN-RAN2SATEA model is compared against the other
existing HNN models. To prove the efficacy of the HNN-RAN2SATEA model, we compared the proposed
algorithm with HNN-RAN2SATES and HNN-RAN2SATGA to find the root mean square error (RMSE),
mean absolute error (MAE), sum of squared error (SSE), and mean absolute percentage error (MAPE).

5.1.1. Root Mean Square Error (RMSE)

RMSE is used to provide information on a model’s short-term results by reporting the real discrepancy
between the expected value and the calculated value [38]. When introducing RMSE, the fundamental
presumption is that the mistakes are rational and meet a normal distribution [39]. Therefore, RMSE gives a
clear description of the distribution of errors. The RMSE formula takes the following equation:

Processes 2020, 8, 568 12 of 19

RMSE =
n∑

i=1

√
1
n
(f NC − f i)

2 (30)

where f NC is highest fitness achieved in the network based on the HNN-RAN2SAT model, f i fitness
computed by the network and n is the number of iteration before f NC = f i.

5.1.2. Mean Absolute Error (MAE)

MAE is described as the average difference between the expected value and the calculated value
in the solution space of the given data. The work by [40] stated that MAE is comparatively easy to
compute, and it is the most appropriate indicator of average magnitude of error. MAE is ideal for a
model with uniform distribution [41]. The MAE equation can be expressed as:

MAE =
n∑

i=1

1
n

∣∣∣ f NC − f i
∣∣∣ (31)

5.1.3. Sum of Squared Error (SSE)

In learning neural networks, the sum of squared errors between the expected value and the actual
value is commonly minimized. This criterion’s success is attributed in part to the presence of solvable
algorithms for their minimization [42]. The SSE formula is as follows:

SSE =
n∑

i=1

(f NC − f i)
2 (32)

5.1.4. Mean Absolute Percentage Error (MAPE)

MAPE calculates the size of error by percentage. It has been argued that the MAPE is strongly
suited for forecasting applications, especially in situations where adequate data is accessible [43,44].
One of the key factors for its popularity is its simplicity of interpretation and understanding [45].
The MAPE formula can be computed as:

MAPE =
n∑

i=1

100
n

∣∣∣ f NC − f i
∣∣∣∣∣∣ f i

∣∣∣ (33)

5.2. Implementation of HNN-RAN2SAT Models

The HNN-RAN2SAT models were implemented in a systematic procedure, as shown in Figure 1,
where the difference is the learning algorithm deployed during the learning phase. Both variables and
clauses were initially randomized. The executions of these models were carried out based on Figure 1.

Processes 2020, 8, 568 13 of 19

Processes 2020, 8, x FOR PEER REVIEW 14 of 20

and clauses were initially randomized. The executions of these models were carried out based on
Figure 1.

Figure 1. Implementation of different HNN-RAN2SAT models.

Figure 1. Implementation of different HNN-RAN2SAT models.

6. Results and Discussion

Figures 2–5 demonstrate the performance of HNN-RAN2SAT in terms of RMSE, MAE, SSE,
and MAPE, respectively. Based on Figures 2 and 5, the general trend of the RMSE, MAE, SSE, and MAPE
values for HNN-RAN2SAT increased with the increase of the number of neurons. The increment in the
error evaluations portrays the complexities of the neuron states of RAN2SAT. Based on the RMSE and
MAE evaluation during the learning phase, the proposed method, HNN-RAN2SATEA, manages to
achieve EpRAN2SAT = 0, 1200% lower than HNN-RAN2SATGA. The main reason is that the optimization
layers in EA have a better partition in solution spaces, meaning EpRAN2SAT = 0 can be achieved in fewer
iterations. According to SSE analysis, it was reported that HNN-RAN2SATEA recorded a lower SSE,
about 2150% lower than HNN-RAN2SATGA. This demonstrates the capability of ES in reducing the
sensitivity of the model towards error by minimizing the iterations.

Processes 2020, 8, 568 14 of 19

Processes 2020, 8, x FOR PEER REVIEW 16 of 20

The systematic solution space partition in HNN-RAN2SATEA improves the global and local
search process for obtaining global solutions. The partition of the solution space allows the model to
effectively find the solution in all defined spaces. Specifically, the solution spaces for HNN-
RAN2SATEA are given as four spaces. On the contrary, HNN-RAN2SATGA adopted one partition
of the overall solution space, which results in nonfit solutions during early stages of the model. On
the same note, HNN-RAN2SATGA assimilated only one solution space, and the searching process
utilized the trial and error mechanism, which requires more iterations to obtain the global solution.

EA was only implemented as the learning algorithm, without direct intervention in the retrieval
phase. A different approach can be employed for optimizing the retrieval phase of HNN-
RAN2SATEA. Different types of Hopfield Neural Networks, such as Mutation Hopfield Neural
Network [30], Mean Field Theory Hopfield Network [46], Boltzman Hopfield [47], and Kernel
Hopfield Network [48], drive the local minimum solution to the global minimum solution in different
ways. More performance metrics can be investigated to authenticate our results. Similarity indices,
such as Jaccard’s Index [49], Sokhal-Sneath2 Index [50], and Variation Index [50], can be employed to
assess the similarity between the final states obtained by the model. In addition, we adopt Symmetric
Mean Absolute Percentage Error (SMAPE) [51], Median Absolute Percentage Error [48], Fitness
energy landscape [52], computation time [53], and specificity analysis [54].

Figure 2. Root mean square error (RMSE) evaluation of various HNN-RAN2SAT models.

Figure 3. Mean absolute error (MAE) evaluation of various HNN-RAN2SAT models.

Figure 2. Root mean square error (RMSE) evaluation of various HNN-RAN2SAT models.

Processes 2020, 8, x FOR PEER REVIEW 16 of 20

The systematic solution space partition in HNN-RAN2SATEA improves the global and local
search process for obtaining global solutions. The partition of the solution space allows the model to
effectively find the solution in all defined spaces. Specifically, the solution spaces for HNN-
RAN2SATEA are given as four spaces. On the contrary, HNN-RAN2SATGA adopted one partition
of the overall solution space, which results in nonfit solutions during early stages of the model. On
the same note, HNN-RAN2SATGA assimilated only one solution space, and the searching process
utilized the trial and error mechanism, which requires more iterations to obtain the global solution.

EA was only implemented as the learning algorithm, without direct intervention in the retrieval
phase. A different approach can be employed for optimizing the retrieval phase of HNN-
RAN2SATEA. Different types of Hopfield Neural Networks, such as Mutation Hopfield Neural
Network [30], Mean Field Theory Hopfield Network [46], Boltzman Hopfield [47], and Kernel
Hopfield Network [48], drive the local minimum solution to the global minimum solution in different
ways. More performance metrics can be investigated to authenticate our results. Similarity indices,
such as Jaccard’s Index [49], Sokhal-Sneath2 Index [50], and Variation Index [50], can be employed to
assess the similarity between the final states obtained by the model. In addition, we adopt Symmetric
Mean Absolute Percentage Error (SMAPE) [51], Median Absolute Percentage Error [48], Fitness
energy landscape [52], computation time [53], and specificity analysis [54].

Figure 2. Root mean square error (RMSE) evaluation of various HNN-RAN2SAT models.

Figure 3. Mean absolute error (MAE) evaluation of various HNN-RAN2SAT models.
Figure 3. Mean absolute error (MAE) evaluation of various HNN-RAN2SAT models.Processes 2020, 8, x FOR PEER REVIEW 17 of 20

Figure 4. Sum of squared error (SSE) evaluation of various HNN-RAN2SAT models.

Figure 5. Mean absolute percentage error (MAPE) evaluation of various HNN-RAN2SAT models.

7. Conclusions

Firstly, EA has been proposed as a learning algorithm during the learning phase of the first order
and second order clauses of RAN2SAT. Thus, the capability of EA is determined by the systematic
optimization layers, positive advertisement, negative advertisement, and the coalition operator,
which successfully minimize the error evaluations towards the global solution. Secondly, we
compared the effectiveness of EA in the learning phase with the existing algorithm, GA, and ES while
manipulating the number of neurons. The findings showed that HNN-RAN2SATEA outperformed
the other two models, HNN-RAN2SATES and HNN-RAN2SATGA, due to its effective learning
mechanism, especially in partitioning the solution spaces to reduce complexity. The effective
partitioning of the search space in EA allowed the searching process to be more accurate without
undergoing intensive processes. It was found that HNN-RAN2SATES experienced neuron
oscillations when NN ≥ 45, indicating the weakness of ES as the learning mechanism. This work has
successfully highlighted the capability of EA and RAN2SAT during the learning phase for generating
more diversified interpretations that lead to global minimum solutions. Extending from our study,
different classes of Hopfield Neural Networks can be adopted, such as Mutation Hopfield Neural

Figure 4. Sum of squared error (SSE) evaluation of various HNN-RAN2SAT models.

Processes 2020, 8, 568 15 of 19

Processes 2020, 8, x FOR PEER REVIEW 17 of 20

Figure 4. Sum of squared error (SSE) evaluation of various HNN-RAN2SAT models.

Figure 5. Mean absolute percentage error (MAPE) evaluation of various HNN-RAN2SAT models.

7. Conclusions

Firstly, EA has been proposed as a learning algorithm during the learning phase of the first order
and second order clauses of RAN2SAT. Thus, the capability of EA is determined by the systematic
optimization layers, positive advertisement, negative advertisement, and the coalition operator,
which successfully minimize the error evaluations towards the global solution. Secondly, we
compared the effectiveness of EA in the learning phase with the existing algorithm, GA, and ES while
manipulating the number of neurons. The findings showed that HNN-RAN2SATEA outperformed
the other two models, HNN-RAN2SATES and HNN-RAN2SATGA, due to its effective learning
mechanism, especially in partitioning the solution spaces to reduce complexity. The effective
partitioning of the search space in EA allowed the searching process to be more accurate without
undergoing intensive processes. It was found that HNN-RAN2SATES experienced neuron
oscillations when NN ≥ 45, indicating the weakness of ES as the learning mechanism. This work has
successfully highlighted the capability of EA and RAN2SAT during the learning phase for generating
more diversified interpretations that lead to global minimum solutions. Extending from our study,
different classes of Hopfield Neural Networks can be adopted, such as Mutation Hopfield Neural

Figure 5. Mean absolute percentage error (MAPE) evaluation of various HNN-RAN2SAT models.

In addition, the MAPE for HNN-RAN2SATEA is 26% lower than that of HNN-RAN2SATGA.
Based on MAPE, we can observe the percentage of error of the models. To sum up, based on
Figures 2–5, HNN-RAN2SATEA can retrieve a more accurate final state that than HNN-RAN2SATGA
and HNN-RAN2SATES. Meanwhile, the ES employed the ‘exhaustive’ trial and error searching
technique, and only functions until NN = 45. This is due to the nature of ES, which suffers from neuron
oscillation and computational burden, especially in the case of inconsistent interpretation ¬PRAN2SAT as
the number of neuron increases. Thus, RMSE, MAE, SSE, and MAPE analysis are stopped at NN = 45
for HNN-RAN2SATES due to the ineffectiveness of the learning algorithm. The solutions were trapped
at the local minima due to neuron oscillations. From Figures 2–5, it is clear that HNN-RAN2SATEA
outperformed the other two models, HNN-RAN2SATGA and HNN-RAN2SATES, in optimizing the
global minimum solutions based on RAN2SAT logical representation.

The effectiveness of HNN-RAN2SATEA can be seen from the perspective of the logical
representation, RAN2SAT, and EA. The randomized structure of RAN2SAT diversifies the logical
structure during the learning phase. Thus, the structure indicates the diversification of the final states
produced by the model. Hence, dynamic exchanges of solutions occur in EA, where the chance of
attaining diversified PRAN2SAT solutions is much higher. Hence, HNN-RAN2SATEA will generate
more variation of PRAN2SAT clauses that can attain EpRAN2SAT = 0. On the contrary, the nature of
ES in HNN-RAN2SATES will cause problems for the case of inconsistent interpretation ¬PRAN2SAT.
Additionally, the mechanism of GA will create lower diversification of PRAN2SAT as the early solutions
are typically nonfit and require optimization operators such as cloning, crossover, and mutation before
achieving EpRAN2SAT = 0. The utilization of EA deals effectively with the higher learning complexity of
PRAN2SAT as the number of neurons increases during the simulation. This indicates the robustness of
the global and local search procedures in HNN-RAN2SATEA.

The capability of HNN-RAN2SATEA to generate the global solution is related to the effectiveness
of the global search and local search EA, which act as the learning algorithm. The local search in EA is
promising during the early stage compared to GA and ES. This implies that the better optimization
operators in EA facilitate the learning process for PRAN2SAT logical representation. Leader selection
(candidate eligibility) requires an optimization operator that accelerates the process of obtaining the
best leader (solution).

HNN-RAN2SATEA employs a more diversified optimization layer consisting of three layers in order
to improve the solution in a particular partition of the solution space [27]. The first optimization layer,
known as positive advertisement, will create the optimization among the party. Secondly, the negative

Processes 2020, 8, 568 16 of 19

advertisement allows the other party to take the voters from a specific part. Thirdly, coalitions provide a
tremendous optimization impact in obtaining the most voters (more solutions), as our case is in attaining
global solutions. The coalition process will form a unified party with greater eligibility within a shorter
timeframe [28]. These features in EA lead HNN-RAN2SAT to reduce the iterations needed during the
learning phase, ensuring minimum error evaluation at the end of the simulations.

The systematic solution space partition in HNN-RAN2SATEA improves the global and local search
process for obtaining global solutions. The partition of the solution space allows the model to effectively
find the solution in all defined spaces. Specifically, the solution spaces for HNN-RAN2SATEA are
given as four spaces. On the contrary, HNN-RAN2SATGA adopted one partition of the overall
solution space, which results in nonfit solutions during early stages of the model. On the same note,
HNN-RAN2SATGA assimilated only one solution space, and the searching process utilized the trial
and error mechanism, which requires more iterations to obtain the global solution.

EA was only implemented as the learning algorithm, without direct intervention in the retrieval
phase. A different approach can be employed for optimizing the retrieval phase of HNN-RAN2SATEA.
Different types of Hopfield Neural Networks, such as Mutation Hopfield Neural Network [30], Mean
Field Theory Hopfield Network [46], Boltzman Hopfield [47], and Kernel Hopfield Network [48], drive
the local minimum solution to the global minimum solution in different ways. More performance
metrics can be investigated to authenticate our results. Similarity indices, such as Jaccard’s Index [49],
Sokhal-Sneath2 Index [50], and Variation Index [50], can be employed to assess the similarity between
the final states obtained by the model. In addition, we adopt Symmetric Mean Absolute Percentage
Error (SMAPE) [51], Median Absolute Percentage Error [48], Fitness energy landscape [52], computation
time [53], and specificity analysis [54].

7. Conclusions

Firstly, EA has been proposed as a learning algorithm during the learning phase of the first order
and second order clauses of RAN2SAT. Thus, the capability of EA is determined by the systematic
optimization layers, positive advertisement, negative advertisement, and the coalition operator, which
successfully minimize the error evaluations towards the global solution. Secondly, we compared the
effectiveness of EA in the learning phase with the existing algorithm, GA, and ES while manipulating the
number of neurons. The findings showed that HNN-RAN2SATEA outperformed the other two models,
HNN-RAN2SATES and HNN-RAN2SATGA, due to its effective learning mechanism, especially in
partitioning the solution spaces to reduce complexity. The effective partitioning of the search space in
EA allowed the searching process to be more accurate without undergoing intensive processes. It was
found that HNN-RAN2SATES experienced neuron oscillations when NN ≥ 45, indicating the weakness
of ES as the learning mechanism. This work has successfully highlighted the capability of EA and
RAN2SAT during the learning phase for generating more diversified interpretations that lead to global
minimum solutions. Extending from our study, different classes of Hopfield Neural Networks can be
adopted, such as Mutation Hopfield Neural Network [30], Mean Field Theory Hopfield network [46],
Boltzmann Hopfield [47], and Kernel Hopfield Network [48], in order to investigate the impact of the
retrieval phase. These works are currently in progress and will be reported in the future.

Author Contributions: Conceptualization, H.A. and S.S.; methodology, M.S.M.K.; software, S.S.; validation,
M.S.M.K. and M.A.M.; formal analysis, M.S.M.K.; investigation, M.A.M.; resources, S.S.; data curation,
H.A.; writing—original draft preparation, S.S.; writing—review and editing, M.S.M.K.; visualization, M.A.M.;
supervision, S.S.; project administration, H.A.; funding acquisition, S.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is supported by the Fundamental Research Grant Scheme by Ministry of Higher Education
Malaysia (203/PMATHS/6711689) and Universiti Sains Malaysia.

Acknowledgments: The authors would like to thank Miss Siti Zulaikha Mohd Jamaludin, Miss Nur Ezlin Zamri
and Miss Alyaa Alway for the support directly and indirectly throughout this research.

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2020, 8, 568 17 of 19

References

1. Zhu, X.; Fu, B.; Yang, Y.; Ma, Y.; Hao, J.; Chen, S.; Liao, Z. Attention-based recurrent neural network for
influenza epidemic prediction. BMC Bioinform. 2019, 20, 1–10. [CrossRef] [PubMed]

2. D’Addona, D.M.; Ullah, A.S.; Matarazzo, D. Tool-wear prediction and pattern-recognition using artificial
neural network and DNA-based computing. J. Intell. Manuf. 2017, 28, 1285–1301. [CrossRef]

3. Kho, L.C.; Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Logic mining in league of legends. Pertanika J.
Sci. Technol. 2020, 28, 211–225.

4. Pang, G.; Yang, L.; Karniadakis, G.E. Neural-net-induced Gaussian process regression for function
approximation and PDE solution. J. Comput. Phys. 2019, 384, 270–288. [CrossRef]

5. Kobayashi, M. Hopfield neural networks using Klein four-group. Neurocomputing 2020, 387, 123–128.
[CrossRef]

6. Hopfield, J.J.; Tank, D.W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985,
52, 141–152.

7. Fung, C.H.; Wong, M.S.; Chan, P.W. Spatio-temporal data fusion for satellite images using Hopfield neural
network. Remote Sens. 2019, 11, 2077. [CrossRef]

8. Pan, J.; Pottimurthy, Y.; Wang, D.; Hwang, S.; Patil, S.; Fan, L.S. Recurrent neural network based detection of
faults caused by particle attrition in chemical looping systems. Powder Technol. 2020, 367, 266–276. [CrossRef]

9. Tao, Q. Evaluation of scientific research ability in colleges and universities based on discrete Hopfield neural
network. Acad. J. Comput. Inf. Sci. 2019, 2, 1–8.

10. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Hybrid genetic algorithm in the Hopfield network for
logic satisfiability problem. Pertanika J. Sci. Technol. 2017, 25, 139–152.

11. Abdullah, W.A.T.W. Logic programming on a neural network. Int. J. Intell. Syst. 1992, 7, 513–519. [CrossRef]
12. Sathasivam, S. Upgrading logic programming in Hopfield network. Sains Malays. 2010, 39, 115–118.
13. Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S. Artificial immune system paradigm in the Hopfield

network for 3-satisfiability problem. Pertanika J. Sci. Technol. 2017, 25, 1173–1188.
14. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Discrete Hopfield Neural Network in Restricted

Maximum k-Satisfiability Logic Programming. Sains Malays. 2018, 47, 1327–1335. [CrossRef]
15. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Bezier curves satisfiability model in enhanced Hopfield

network. Int. J. Intell. Syst. Appl. 2016, 8, 9–17. [CrossRef]
16. Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S. Enhanced Hopfield network for pattern satisfiability

optimization. Int. J. Intell. Syst. Appl. 2016, 8, 27–33. [CrossRef]
17. Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S. VLSI circuit configuration using satisfiability logic in

Hopfield network. Int. J. Intell. Syst. Appl. 2016, 8, 22–29. [CrossRef]
18. Hamadneh, N.; Sathasivam, S.; Tilahun, S.L.; Choon, O.H. Learning logic programming in radial basis

function network via genetic algorithm. J. Appl. Sci. 2012, 12, 840–847. [CrossRef]
19. Alzaeemi, S.; Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S.; Mamat, M. Radial basis function neural

network for 2 satisfiability programming. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 459–469. [CrossRef]
20. Mansor, M.A.; Jamaludin, S.Z.M.; Kasihmuddin, M.S.M.; Alzaeemi, S.A.; Basir, M.F.M.; Sathasivam, S.

Systematic boolean satisfiability programming in radial basis function neural network. Processes 2020, 8, 214.
[CrossRef]

21. Zaji, A.H.; Bonakdari, H.; Khameneh, H.Z.; Khodashenas, S.R. Application of optimized Artificial and Radial
Basis neural networks by using modified Genetic Algorithm on discharge coefficient prediction of modified
labyrinth side weir with two and four cycles. Measurement 2020, 152, 107291. [CrossRef]

22. Bahiraei, M.; Nazari, S.; Moayedi, H.; Safarzadeh, H. Using neural network optimized by imperialist
competition method and genetic algorithm to predict water productivity of a nanofluid-based solar still
equipped with thermoelectric modules. Powder Technol. 2020, 366, 571–586. [CrossRef]

23. Prado, F.; Minutolo, M.C.; Kristjanpoller, W. Forecasting Based on an Ensemble Autoregressive Moving
Average-Adaptive Neuro-Fuzzy Inference System–Neural Network-Genetic Algorithm Framework. Energy
2020, 197, 117159. [CrossRef]

24. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Robust artificial bee colony in the Hopfield network for
2-satisfiability problem. Pertanika J. Sci. Technol. 2017, 25, 453–468.

Processes 2020, 8, 568 18 of 19

25. Mansor, M.A.B.; Kasihmuddin, M.S.B.M.; Sathasivam, S. Robust Artificial Immune System in the Hopfield
network for Maximum k-Satisfiability. Int. J. Interact. Multimed. Artif. Intell. 2017, 4, 63–71. [CrossRef]

26. Kumar, M.; Kulkarni, A.J. Socio-inspired optimization metaheuristics: A review. In Socio-Cultural Inspired
Metaheuristics; Singh, P., Satapathy, S., Kashan, A.H., Tai, K., Eds.; Springer: Singapore, 2019; Volume 828,
pp. 241–265.

27. Emami, H.; Derakhshan, F. Election algorithm: A new socio-politically inspired strategy. AI Commun. 2015,
28, 591–603. [CrossRef]

28. Lv, W.; He, C.; Li, D.; Cheng, S.; Luo, S.; Zhang, X. Election campaign optimization algorithm.
Procedia Comput. Sci. 2010, 1, 1377–1386. [CrossRef]

29. Emami, H. Chaotic election algorithm. Comput. Inf. 2020, 38, 1444–1478. [CrossRef]
30. Kasihmuddin, M.S.M.; Mansor, M.A.; Basir, M.F.M.; Sathasivam, S. Discrete mutation Hopfield neural

network in propositional satisfiability. Mathematics 2019, 7, 1133. [CrossRef]
31. Hopfield, J.J.; Tank, D.W. Computing with neural circuits: A model. Science 1986, 223, 625–633. [CrossRef]
32. Barra, A.; Beccaria, M.; Fachechi, A. A new mechanical approach to handle generalized Hopfield neural

networks. Neural Netw. 2018, 106, 205–222. [CrossRef] [PubMed]
33. Abdullah, W.A.T.W. Logic programming in neural networks. Malays. J. Comput. Sci. 1996, 9, 1–5. [CrossRef]
34. Kasihmuddin, M.S.B.M.; Mansor, M.A.B.; Sathasivam, S. Genetic algorithm for restricted maximum

k-satisfiability in the Hopfield network. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 52–60.
35. Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99.

[CrossRef]
36. Goldberg, D.E.; Korb, B.; Deb, K. Messy genetic algorithms: Motivation, analysis, and first results. Complex Syst.

1989, 3, 493–530.
37. Sathasivam, S. Learning in the Recurrent Hopfield Network. In Proceedings of the 2008 Fifth International

Conference on Computer Graphics, Imaging and Visualisation (IEEE), Penang, Malaysia, 26–28 August 2008;
p. 10234772.

38. Stone, R.J. Improved statistical procedure for the evaluation of solar radiation estimation models. Sol. Energy
1993, 51, 289–291. [CrossRef]

39. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against
avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

40. Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error
(RMSE) in assessing average model performance. Clim. Res. 2015, 30, 79–82. [CrossRef]

41. Zeng, B.; Neuvo, Y. Optimal parallel stack filtering under the mean absolute error criterion. IEEE Trans.
Image Process. 1994, 3, 324–327. [CrossRef]

42. Adeney, K.M.; Korenberg, M.J. Target Adaptation to Improve the Performance of Least-Squared Classifiers.
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.
Neural Computing: New Challenges and Perspectives for the New Millennium (IEEE), Como, Italy, 27 July
2000; pp. 100–105.

43. Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical
comparisons. Int. J. 1992, 8, 69–80. [CrossRef]

44. Sudha, K.; Kumar, N.; Khetarpal, P. GA-ANN hybrid approach for load forecasting. J. Stat. Manag. Syst.
2020, 23, 135–144. [CrossRef]

45. Lam, K.F.; Mui, H.W.; Yuen, H.K. A note on minimizing absolute percentage error in combined forecasts.
Comput. Oper. Res. 2001, 28, 1141–1147. [CrossRef]

46. Velavan, M.; Yahya, Z.R.; Halif, M.N.A.; Sathasivam, S. Mean field theory in doing logic programming using
Hopfield network. Mod. Appl. Sci. 2016, 10, 154–160. [CrossRef]

47. Sathasivam, S. Boltzmann machine and new activation function comparison. Appl. Math. Sci. 2011, 5,
3853–3860.

48. Alzaeemi, S.A.; Sathasivam, S. Linear Kernel Hopfield Neural Network approach in Horn Clause
Programming. In Proceedings of the 25th National Symposium on Mathematical Sciences (SKSM25):
Mathematical Sciences as the Core of Intellectual Excellence (AIP), Pahang, Malaysia, 27–29 August 2017;
p. 020107.

49. Bag, S.; Kumar, S.K.; Tiwari, M.K. An efficient recommendation generation using relevant Jaccard similarity.
Inf. Sci. 2019, 483, 53–64. [CrossRef]

Processes 2020, 8, 568 19 of 19

50. Kasihmuddin, M.S.M.; Mansor, M.A.; Alzaeemi, S.; Basir, M.F.M.; Sathasivam, S. Quality Solution of Logic
Programming in Hopfield Neural Network. In Proceedings of the 2nd International Conference on Applied
& Industrial Mathematics and Statistics, Pahang, Malaysia, 23–25 July 2019; IOP Publishing: Bristol, UK,
2019; p. 012094.

51. Goodwin, P.; Lawton, R. On the asymmetry of the symmetric MAPE. Int. J. 1999, 15, 405–408. [CrossRef]
52. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Artificial Bee Colony in the Hopfield Network for

Maximum k-Satisfiability Problem. J. Inform. Math. Sci. 2016, 8, 317–334.
53. Mansor, M.A.; Sathasivam, S.; Kasihmuddin, M.S.M. Artificial immune system algorithm with neural

network approach for social media performance. In Proceedings of the 25th National Symposium on
Mathematical Sciences (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence (AIP), Pahang,
Malaysia, 27–29 August 2017; p. 020072.

54. Goodman, J.S.; Wood, R.E.; Hendrickx, M. Feedback specificity, exploration, and learning. J. Appl. Psychol.
2004, 89, 248. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

