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Abstract: Alizarin red S (ARS) removal from wastewater using sheep wool as adsorbent was
investigated. The influence of contact time, pH, adsorbent dosage, initial ARS concentration and
temperature was studied. Optimum values were: pH = 2.0, contact time = 90 min, adsorbent dosage
= 8.0 g/L. Removal of ARS under these conditions was 93.2%. Adsorption data at 25.0 ◦C and 90 min
contact time were fitted to the Freundlich and Langmuir isotherms. R2 values were 0.9943 and
0.9662, respectively. Raising the temperature to 50.0 ◦C had no effect on ARS removal. Free wool and
wool loaded with ARS were characterized by Fourier Transform Infrared Spectroscopy (FTIR). ARS
loaded wool was used as adsorbent for removal of Cr(VI) from industrial wastewater. ARS adsorbed
on wool underwent oxidation, accompanied by a simultaneous reduction of Cr(VI) to Cr(III). The
results hold promise for wool as adsorbent of organic pollutants from wastewater, in addition to
substantial self-regeneration through reduction of toxic Cr(VI) to Cr(III). Sequential batch reactor
studies involving three cycles showed no significant decline in removal efficiencies of both chromium
and ARS.
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1. Introduction

Large amounts of dye-contaminated wastewaters are released yearly from leather, cosmetics,
as well as the pharmaceutical, plastics and textile industries. Most of these dyes are skin irritants,
mutagenic or carcinogenic [1,2]. Dye-polluted water decreases photosynthesis since light penetration
is inhibited [3]. These dyes have complex aromatic structures, which give them thermal, optical and
physicochemical stability, and thus, they could not be easily biodegraded by natural substances [4–6].
Alizarin red S (ARS) (Figure 1), or 1,2-dihydroxy-9,10-anthra-quinonesulfonic acid sodium salt, is a
water soluble anthraquinone dye originally derived from the root of the madder plant [7]. It has been
extensively employed since ancient times in dyeing textiles [8]. It is a strong oxidizing agent, and
hence, must be stored away from moisture and heat [9].
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A wide range of physical and chemical treatment technologies have been investigated for
removing dyes from wastewater. They include coagulation, precipitation, adsorption, membrane
filtration, electrochemical techniques and ozonation [10]. Among these, adsorption is the most widely
employed, due to its high efficiency, non-toxicity, readily available adsorbents, low cost, ease of
recovery and environmental sustainability [11–13]. Applicability largely depends on the cost and
efficiency of adsorbent. Currently, various potential adsorbents are used for removal of specific organic
compounds from wastewater. The adsorption of dyes transfers them from water effluent to solid phase,
thereby decreasing effluent volume. Native mustard husk has been used in ARS removal from aqueous
solutions, with thermodynamic studies indicating that the process is spontaneous and endothermic [14].
Pentaerythritol modified multi-walled carbon nanotubes (ox-MWCNT-PER) has been shown to be
highly efficient in ARS removal [15]. Removal of ARS from wastewater using alumina as adsorbent
has been investigated at optimum conditions [16]. Moreover, activated carbon is a good adsorbent for
removal of ARS from wastewater, as indicated by favorable thermodynamic parameters [17].

Heavy metals, including chromium, are widely distributed in the environment as a result
of numerous industrial applications. These include electroplating, chromate manufacture, wood
preservation, galvanization, steel industry, paint, textile production, oxidative dyeing, cooling water
towers, leather tanning, corrosion inhibitors and batteries [18]. As a result, heavy metals are found in
many industrial wastewaters [19–21]. Chromium is a metallic element listed by the Environmental
Protection Agency (EPA) as one of 129 priority pollutants [22,23]. It is found in the air, water and soil,
and occurs in several oxidation states ranging from Cr(II) to Cr(VI), with the trivalent and hexavalent
states being the most stable and common [1–3]. In natural waters, chromium is present in several
forms, the most common of which are Cr(0), Cr(III), and Cr(VI). Cr(III) has very low solubility and
is relatively stable, whereas Cr(VI) is environmentally mobile and highly toxic. Exposure to Cr(VI)
causes various health problems, including skin and stomach irritation, dermatitis, liver damage, kidney
circulation and nerve and tissue damage [24–26]. Numerous technologies have already been applied
in the removal of Cr(VI) from aqueous solutions. These include adsorption, biosorption, ion-exchange,
foam flotation, electrolysis, surface adsorption precipitation, reverse osmosis, sand filtration, chemical
reduction/oxidation, electrochemical precipitation, membrane filtration and solvent extraction [27–30].

In previous studies by our group, sheep wool has been found to be efficient in Cr(VI) removal,
with subsequent reduction to Cr(III) [31,32]. This study reports on the results of using sheep wool
for the removal of ARS from wastewater and the possibility of regenerating the contaminated wool.
The outcome of the research could be utilized in a sequential batch reactor for removal of the two
pollutants from wastewaters.
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2. Materials and Methods

2.1. Materials

All chemicals were of analytical grade and used without further purification. Solutions
were prepared using distilled deionized water (DDW) and their concentrations determined
spectrophotometrically. ARS was from BDH (Turkey). Potassium dichromate was from Riedel
De-Haen (Germany). Acetone and 5-di-phenyl carbazide were from Sigma Aldrich (USA). Sheep wool
(Sharjah animal market) was trimmed and riffled, then washed with water and detergent for two days.

2.2. Instrumentation

ARS and Cr(VI) concentrations were determined spectrophotometrically using Cary 50 (Varian,
Australia). Total chromium was determined using Spectra AA220FS (Varian, Australia). Samples were
shaken using Edmund Buhler shaker (KS-15/TH-15, Bodelshausen, Germany) at 25.0 ± 0.1 ◦C. pH was
measured on a Thermo-Orion 210A + pH meter (USA) equipped with a combined glass electrode. IR
spectra were obtained on a Spectrum One FTIR (Perkin Elmer, Waltham, MA, USA). ARS oxidation
byproducts were detected using HPLC (Shimadzu, LC-2040C, Kyoto, Japan).

2.3. Methods

2.3.1. Reagent Preparation

A 1000 mg/L stock ARS solution was prepared at pH 2.0 and used to prepare standard solutions
in the range 1–20 mg/L. Stock solutions containing 1000 mg/L Cr(VI) were prepared by dissolving
potassium dichromate in DDW. Stock ligand solutions were prepared by mixing 0.20 mL of 0.05% of
1,5 diphenyl carbazide (in acetone) with 2 drops of 6.0 M sulfuric acid and 0.10 mL of sample. Standard
Cr(VI) solutions were in the range 1–10 mg/L.

2.3.2. Determination of Cr ions Concentration

Total Cr concentration was determined by atomic absorption spectroscopy (AAS). The 1,5-diphenyl
carbazide method could not be used in the determination of Cr(VI) alone, because Cr(VI) removal by
wool-ARS complex was accompanied by formation of ARS oxidation by-products. ARS degradation
by oxidation involves the cleavage of dye-chromophore components [33,34]. FTIR analysis of residual
products from dye oxidation gave IR bands at 1717, 1623, 1387, 1105 and 1045 cm−1, attributed to
>C=O (carbonyl), >C=C< (alkenes),-C-C-C (alkanes), SO4

2− and –C-O-C- groups, respectively. These
by-products interfere with analysis of Cr(VI) by 1,5-diphenyl carbazide. Hence, only total Cr could be
analyzed by AAS. The highest removal of Cr(VI) was 93%, as detected by AAS. However, previous
studies by our group revealed that, at this short term contact, slight amounts of Cr(III) were released
into solution [31]. This process causes incomplete removal of Cr(VI).

2.3.3. Adsorption Studies

Batch adsorption studies were carried out in flasks containing 50 mL of test solutions at the
desired initial ARS concentrations. λmax for dye solutions was 261 nm. Batch adsorption studies were
then carried out. Wool loaded with ARS was placed in flasks containing the desired initial Cr(VI)
concentration and the contents shaken. Shaking conditions were: 1.5 h, 25.0 ◦C and 175 rpm. AAS was
used to measure total Cr concentrations. Oxidation by-products of ARS by Cr(VI) were detected using
HPLC under the following conditions: mobile phase 40:60% methanol:phosphate buffer, Pinnacle D8
C8 5 µm (RESTEK, Bellefonte, PA, USA), analytical wavelength 540 nm and 1.5 mL/min flow rate.

2.3.4. Regeneration In-Place Studies

Wool loaded with ARS was prepared by shaking wool with 100 mg/L ARS solution at optimum
conditions. The resulting wool-ARS was washed with DDW and dried. The remaining ARS solution
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was analyzed spectrophotometrically. ARS removal was 88%. Wool-ARS was shaken with 50 mg/L
Cr(VI) solution at optimum conditions for 4 days. Subsequently, the wool-ARS-Cr was collected,
washed with DDW and dried. The remaining Cr(VI) solution was analyzed by AAS, giving a removal
efficiency of 86.8%. The cycle was repeated three times.

3. Results and Discussion

3.1. Adsorption Studies

Removal of ARS was calculated using

% Removal = ((Co − Ce)/Co)∗100 (1)

where Co and Ce are initial and equilibrium ARS concentrations (mg/L), respectively.

3.1.1. Optimization Studies on ARS Removal by Wool

Effect of Contact Time

Figure 2 shows the effect of contact time on ARS removal. At all three pH values used, removal
increases with increasing contact time until a maximum is reached at ca. 90 min, selected as the
optimum time.

Processes 2019, 7, x FOR PEER REVIEW 4 of 14 

 

% Removal = ((Co-Ce)/Co)*100 (1) 

where Co and Ce are initial and equilibrium ARS concentrations (mg/L), respectively. 

3.1.1. Optimization Studies on ARS Removal by Wool 

Effect of Contact Time 

Figure 2 shows the effect of contact time on ARS removal. At all three pH values used, removal 
increases with increasing contact time until a maximum is reached at ca. 90 min, selected as the 
optimum time. 

  
Figure 2. Effect of contact time on ARS removal. Adsorbent dosage = 8.0 g/L, T = 25.0 °C, shaking 
speed = 175 rpm. 

Effect of pH  

ARS is employed as an indicator in acid-base titration, and changes color in the pH range 4.0 
(yellow)-6.0 (red) [35]. At pH < 4.6, the acidic form predominates, whereas at pH > 6.0, it is mostly in 
the the basic form. Figure 3 shows the effect of pH on ARS removal. As pH increases, removal 
decreases from 90% at pH 2.0 reaching a minimum of <20% at pH > 5.0. Hence the acidic form ARS 
is the one more favorably adsorbed by wool. pH 2.0 was thus selected as optimum in subsequent 
measurements. 

 
Figure 3. Effect of pH on ARS removal by wool. Adsorbent dosage = 8.0 g/L, initial [ALS] = 100 mg/L, 
T = 25.0 °C, contact time = 90 min, shaking speed = 175 rpm. 

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

%
 R

em
ov

al
 o

f A
RS

Time (min)

pH 2.0 pH 3.2 pH 5.7

0

20

40

60

80

100

2.0 3.0 4.0 5.0 6.0 7.0 8.0

%
 R

em
ov

al
 o

f A
RS

pH 

Figure 2. Effect of contact time on ARS removal. Adsorbent dosage = 8.0 g/L, T = 25.0 ◦C, shaking
speed = 175 rpm.

Effect of pH

ARS is employed as an indicator in acid-base titration, and changes color in the pH range 4.0
(yellow)-6.0 (red) [35]. At pH < 4.6, the acidic form predominates, whereas at pH > 6.0, it is mostly in
the the basic form. Figure 3 shows the effect of pH on ARS removal. As pH increases, removal decreases
from 90% at pH 2.0 reaching a minimum of <20% at pH > 5.0. Hence the acidic form ARS is the one
more favorably adsorbed by wool. pH 2.0 was thus selected as optimum in subsequent measurements.



Processes 2020, 8, 556 5 of 15

Processes 2019, 7, x FOR PEER REVIEW 4 of 14 

 

% Removal = ((Co-Ce)/Co)*100 (1) 

where Co and Ce are initial and equilibrium ARS concentrations (mg/L), respectively. 

3.1.1. Optimization Studies on ARS Removal by Wool 

Effect of Contact Time 

Figure 2 shows the effect of contact time on ARS removal. At all three pH values used, removal 
increases with increasing contact time until a maximum is reached at ca. 90 min, selected as the 
optimum time. 

  
Figure 2. Effect of contact time on ARS removal. Adsorbent dosage = 8.0 g/L, T = 25.0 °C, shaking 
speed = 175 rpm. 

Effect of pH  

ARS is employed as an indicator in acid-base titration, and changes color in the pH range 4.0 
(yellow)-6.0 (red) [35]. At pH < 4.6, the acidic form predominates, whereas at pH > 6.0, it is mostly in 
the the basic form. Figure 3 shows the effect of pH on ARS removal. As pH increases, removal 
decreases from 90% at pH 2.0 reaching a minimum of <20% at pH > 5.0. Hence the acidic form ARS 
is the one more favorably adsorbed by wool. pH 2.0 was thus selected as optimum in subsequent 
measurements. 

 
Figure 3. Effect of pH on ARS removal by wool. Adsorbent dosage = 8.0 g/L, initial [ALS] = 100 mg/L, 
T = 25.0 °C, contact time = 90 min, shaking speed = 175 rpm. 

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

%
 R

em
ov

al
 o

f A
RS

Time (min)

pH 2.0 pH 3.2 pH 5.7

0

20

40

60

80

100

2.0 3.0 4.0 5.0 6.0 7.0 8.0

%
 R

em
ov

al
 o

f A
RS

pH 

Figure 3. Effect of pH on ARS removal by wool. Adsorbent dosage = 8.0 g/L, initial [ALS] = 100 mg/L,
T = 25.0 ◦C, contact time = 90 min, shaking speed = 175 rpm.

Effect of Wool Dosage

Figure 4 shows the effect of wool dosage on ARS removal at optimum conditions. ARS removal
increases with increasing wool dosage until a maximum 8.0 g/L. This dosage was selected as optimal
and used in further experiments.
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Figure 4. Effect of adsorbent dosage on removal of ARS by wool at different wool dosages. Initial
[ARS] = 100 mg/L, pH = 2.0, contact time = 90 min, T = 25.0 ◦C, shaking speed = 175 rpm.

Effect of Temperature

For initial ARS concentrations of 60 mg/L, 80 mg/L and 100 mg/L, increasing the temperature from
25.0 to 50.0 ◦C has little effect on ARS removal (Figure 5). The temperature of 25.0 ◦C was selected as
optimal in adsorption isotherms.
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Figure 5. Effect of temperature and initial ARS concentration on removal of ARS by wool. Adsorbent
dosage = 8.0 g/L, contact time = 90 min, pH = 2.0, shaking speed = 175 rpm.

3.1.2. Adsorption Isotherms

The adsorption capacity (qe) for ARS removal was evaluated using

qe = (Co − Ce) × V/m (2)

where qe is the equilibrium adsorption capacity (mg adsorbate/g adsorbent), V is the volume of solution
(L) and m is the mass of adsorbent (g). At optimum adsorption parameters, qe was evaluated at several
initial concentrations and the results fitted to the linearized forms of the Langmuir (Equation (3)) and
Freundlich (Equation (4)) isotherms [36]. These are

Ce/qe = 1/Qb + Ce/Q (3)

qe = Kf Ce
1/n (4)

where Ce is the equilibrium concentration (mg/L), qe is the amount adsorbed at equilibrium, in mg/g
adsorbent, Q (mg/g) and b (L/mg) are the Langmuir constants, representing adsorption capacity and
energy, respectively. Kf and n are the Freundlich constants. The poor fit to the Langmuir isotherm
in Figure 6a indicates that adsorption does not follow this isotherm. This may be attributed to the
nonequivalence adsorption sites on wool. Figure 6b shows the data fitted to the Freundlich isotherm.
The good linearity of this plot clearly reveal that adsorption best fits the Freundlich isotherm, indicating
that adsorption sites are not equivalent. The Freundlich constants, Kf and n, were 3.38 and 1.70,
respectively.
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Figure 6. (a) Langmuir and (b) Freundlich plots for adsorption of ARS by wool. Adsorbent dosage =

8.0 g/L, T = 25.0 ◦C, contact time = 90 min, pH = 2.0, shaking speed = 175 rpm.

3.1.3. Adsorption Kinetics

The kinetics of adsorption of ARS by wool was studies at pH 2 and were fitted to both Lagergren
pseudo first order model (Equation (5)) and pseudo second order model (Equation (6)) [37,38].

ln (qe − qt) = ln qe − k t (5)

t
qt

=
1

k2qe2 +
t
qe

(6)

Our data was found to best fit the pseudo second order model with R2 = 1 yielding a value for the
second order rate constant (k2) of 0.134 g mg−1 min−1 at 25.0 ◦C.
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3.2. Removal of ARS by Wool and by Wool Loaded with Cr(VI)

3.2.1. FTIR Spectra

An earlier publication by our group reported on Electron dispersive X-ray spectroscopy (EDS) and
FTIR characterization of wool and wool loaded with Cr(VI) [31]. IR spectra of ARS were subsequently
reported [33]. In this work, FTIR was used to monitor removal of ARS by wool, In Figure 7a, the peak
at 3459 cm−1 is due to the –OH group, whereas peaks at 3094 cm−1 and 2926 cm−1 arise from =C-H
groups in aromatic rings. Peaks at 2400 cm−1, 1666 cm−1, 1634 cm−1 and 1588 cm−1 are characteristic of
anthraquinone molecules, whereas those at 1155 cm−1 and 728 cm−1 are for sulfonate groups. Figure 7b
shows spectra of free wool with features described earlier [31]. Upon complexation with ARS, changes
were observed (Figure 7c). Specifically, the broad peak at 4000–2800 cm−1 is sharpened, and a new
band at 2400 cm−1 appears. Changes in the broad peak between 1600–800 cm−1 are also observed.
These changes indicate that ARS is essentially taken up by wool. Adsorption of Cr(VI) by wool loaded
with ARS results in further FTIR changes (Figure 7d), primarily in the 1200–800 cm−1 range. This
observation indicates that ARS on wool undergoes oxidation by Cr(VI) to form aromatic byproducts.
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3.2.2. Oxidation Byproducts

Upon adsorption of Cr(VI) by wool loaded with ARS, oxidation by-products of ARS were formed
(Figure 8), indicating that adsorbed Cr(VI) undergoes reduction to Cr (III). These by-products interfere
with spectrophotometric determination of Cr(VI), with the result that concentrations of individual Cr
species could not be determined. AAS, which gives total Cr, was hence used to follow the uptake of
Cr(VI) by wool-ARS using short term contact time, so that Cr(III) has minimum interference [31]. The
effect of contact time, pH, dosage and temperature were studied and optimized.
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Figure 8. HPLC chromatogram of aqueous solutions in equilibrium with ARS at pH 2.0. (a) ARS at pH
2 (green), (b) Wool loaded with ARS (grey), (c) ARS + Cr(VI) without wool (blue), (d) wool loaded with
ARS after adsorption of Cr(VI) (yellow). Initial [ARS] = 1.0 mg/L, pH = 2.0; contact time 120 h, T =

25.0 ◦C, shaking speed = 175 rpm. Mobile phase is 40% methanol and 60% phosphate buffer, flow rate
= 1.5 mL/min.

High performance liquid chromatography (HPLC) was used to analyse solutions in contact with
wool, ARS or both, in presence or absence of Cr(VI). In Figure 8a (green), the ARS peak appears at
15 min retention time. Upon removal by wool, this peak disappears, due to ARS adsorption by wool
(Figure 8b (grey)). This peak also disappears upon mixing Cr(VI) with ARS in solution without wool, a
process that results in the appearance of a new peak at 4 min retention time, among other low intensity
peaks that are not apparent in this chromatogram at this scale (Figure 8c (blue)). However, exposing
wool loaded with ARS to Cr(VI) causes not only the disappearance of ARS peak at 15 min, but also the
appearance of otherwise low intensity peaks in ARS-Cr(VI) without wool (Figure 8c) at retention times
of 4.0, 4.4, 4.7, 5.5, 6.9 and 9.0 min (Figure 8d (yellow). These peaks indicate that the mechanism of
ARS oxidation on wool is similar to that in aqueous solution. These peaks have been attributed to a
variety of oxidation by-products [34,35]. Thus adsorption of Cr(VI) by wool loaded with ARS results
in ARS oxidation with simultaneous release of oxidation by-products to solution. This process frees
and regenerates wool from ARS for reuse.

3.2.3. Optimization Studies on Cr(VI) Removal by Wool Loaded with ARS

Effect of Contact Time

Figure 9 shows the effect of contact time on Cr(VI) removal by wool loaded with ARS. Equilibrium
removal is reached after 40 min. This can be compared with the 90 min needed for removal of ARS
alone (Figure 3). However, in a previous study, the optimum time for removal of Cr(VI) by free wool
under short term conditions was 60 min [31]. Hence, adsorption is speeded by the presence of ARS
on wool.
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Figure 9. Effect of contact time on Cr(VI) removal by wool loaded with ARS. Initial [Cr(VI)] concentration
is 100 mg/L, adsorbent dosage = 8.0 g/L, pH = 6.0, T = 25.0 ◦C, shaking speed = 175 rpm.

Effect of pH

pH is an important factor that controls uptake of Cr(VI). Figure 10 reveals that removal of Cr(VI)
by wool loaded with ARS reaches a maximum of 77.8% at pH 2.0, and remains almost constant at
higher pH. In previous studies [39–41], the optimum pH for Cr(VI) removal by free wool was 2.0,
indicating that reduction of Cr(VI) is catalyzed by hydrogen ions. In this study, removal of Cr(VI) by
wool loaded with ARS is essentially independent of pH. pH 2.0 was selected as optimum for removal
of Cr(VI) by wool loaded with ARS.
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Figure 10. Effect of pH on removal of Cr(VI) by wool loaded with ARS. Initial [Cr(VI)] concentration =

100 mg/L, adsorbent dosage = 8.0 g/L, contact time = 120 min., T = 25.0 ◦C, shaking speed = 175 rpm.

Effect of Adsorbent Dosage

The removal of Cr(VI) by wool loaded with ARS was studied at several adsorbent dosages
(Figure 11). As the dosage increases, Cr(VI) removal increases until it reaches ca. 90.3%, at a dosage of
10.0 g/L. This is due to the increase of free active sites on wool and the increase in the number of sites
loaded with ARS.
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Figure 11. Effect of adsorbent dosage on removal of Cr(VI) by wool loaded with ARS. Initial [Cr(VI)]
concentration = 100 mg/L, pH = 2.0, T = 25.0 ◦C, contact time = 120 min, shaking speed = 175 rpm.

Effect of Temperature

Figure 12 shows the effect of temperature on removal of Cr(VI) by wool loaded with ARS. At
constant temperature, removal varies with initial concentration in a semi-random trend. It increases
as the initial concentration rises from 25 to 100 mg/L, then drops at 200 mg/L. The expectation is that
removal ought to decrease with increasing initial concentration. The opposing trends within the two
simultaneous processes that accompany removal may explain this apparent anomaly. The first is the
adsorption of Cr(VI) by free sites on wool and the second is the oxidation of ARS by Cr(VI). In the
first, removal decreases with increasing initial concentration, whereas in the second, the opposite
effect is observed. Figure 12 also reveals that at constant initial Cr(VI) concentration, Cr(VI) removal
decreases with increasing temperature. This observation indicates that the principal adsorption step
is exothermic.
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Figure 12. Effect of temperature and Cr(VI) concentration on removal of Cr(VI) by wool loaded with
ARS. Adsorbent dosage = 8.0 g/L, pH = 2.0, contact time = 120 min, shaking speed = 175 rpm.
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3.3. Adsorption Mechanism

Based on the above results, Figure 13 shows a proposed two-step mechanism for removal of Cr(VI)
by wool loaded with ARS (ARS-W). The second step is similar to that proposed in previous reports for
removal of Cr(VI) by other natural adsorbents, but with ARS yielding oxidation products [39,41].
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Figure 13. Proposed mechanism for removal of Cr(VI) by wool loaded with ARS.

3.4. Isotherm Analysis

Adsorption data were fitted to both the Langmuir and Freundlich models. Figure 14 shows the
dependence of adsorption capacity on Cr(VI) concentration after a 120 min contact, using wool loaded
with ARS as adsorbent. The dependence does not resemble any known adsorption behavior, indicating
that equilibrium was not achieved within this time. This is because removal by adsorption is followed
by a time dependent redox process. Hence, the isotherm could not be fitted to any of the models that
predicate equilibrium between adsorbate and adsorbent.
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Figure 14. Adsorption capacity (q) for the removal of Cr(VI) by wool loaded with ARS as function
of Cr(VI) concentration. Contact time = 120 min, adsorbent dosage = 8.0 g/L, pH = 2.0, T = 25.0 ◦C,
shaking speed = 175 rpm.
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3.5. Regeneration Studies

Wool loaded with ARS has been used to investigate its regeneration by the simultaneous removal
and reduction of Cr(VI) from industrial wastewater, followed by ARS oxidation. For this purpose,
wool loaded with ARS was prepared by shaking wool with 100 mg/L ARS solution at optimum
conditions. The resulting wool-ARS was washed with DDW and dried. Spectrophotometric analysis
of the equilibrium solution gave ARS removal of 93.2%. Wool-ARS was then shaken with 50 mg/L
Cr(VI) solution at optimum conditions for 4 days. Wool-ARS-Cr was washed with DDW and dried for
further studies. AAS analysis of the equilibrium solution gave 86.8% Cr(VI) removal. The cycle was
repeated four times. Figure 15 shows removal of ARS and Cr(VI) after each cycle. Removal of both
ARS and Cr(VI) by wool varies in the range 60%–90%, even at the end of the fourth cycle. This finding
suggests promising prospects for using a sequential batch reactor for the simultaneous removal of
organic pollutants and Cr(VI), which is self-regenerated under field conditions.
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Figure 15. Effect of different cycles on removal of Cr(VI) and ARS by wool. Adsorbent. dosage =

8.0 g/L, pH = 2.0, T = 25.0 ◦C, shaking speed = 175 rpm.

4. Conclusions

Removal efficiency of ARS by wool depends on contact time, adsorbent dosage, initial ARS
concentration and pH. At 25.0 ◦C, The Freundlich adsorption isotherm gave a good fit to the adsorption
data. ARS undergoes slow oxidization by Cr(VI) at pH 2.0. This oxidation and the ability of wool to
adsorb Cr(VI) combine to form the basis of an effective method for sequential removal of ARS and
Cr(VI), resulting in partial self-regeneration of wool from ARS. Wool loaded with ARS was efficient
in removing Cr(VI) with the simultaneous appearance of oxidation ARS by-products. A sequential
batch reactor, designed for four cycles, indicated no significant reduction in the ability of wool to
remove ARS, followed by Cr(VI). A two-step mechanism for this removal has been proposed. The first
involves fast adsorption of Cr(VI) on wool loaded with ARS, and the second involves an oxidation of
ARS, followed by desorption of oxidation by-products into solution. Several of these by-products were
detected by HPLC. The surface of wool before and after adsorption of ARS, followed by the adsorption
of Cr(VI), which was characterized by FTIR. The results support the suggested mechanism. These
findings form a basis for the design of batch sequential reactor for removal of ARS and Cr(VI), under
field conditions and with zero liquid discharge.
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