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Abstract: Buoyancy-driven airflow that included two isothermal inner plates established in a vented
cavity is investigated numerically. The thermally optimum wall-to-wall spacing of the immersed
channel, as well as its dependence with respect to the relevant governing parameters, are determined.
Results are presented as a function of the aspect ratio b/H for a wide range of Rayleigh numbers RaH.
A logarithmic correlation for the optimum (b/H)opt as a function of RaH is presented. In addition, since
the outlined configuration might be subject to intense heating conditions, the influence of considering
variable thermophysical properties is also included in the analysis. In fact, an appreciable influence
of the variation of properties on (b/H)opt is also detected for a representative value of RaH = 109.
Obtained results can be directly applied to the optimization of electronic equipment cooling, or even
to thermal passive devices in buildings.

Keywords: convective flow; square cavity; variable thermophysical properties; thermal optimization;
computational fluid dynamics

1. Introduction

From the pioneering experimental study of Elenbaas [1], configurations formed by vertical
heated plates with fluid flows induced by buoyancy effects have been the topic of several studies
(Incropera and De Witt [2], Bejan [3]). The natural convection is a mode of heat transfer that presents
undoubted advantages, under given circumstances. The vertical channel configuration with isothermal
heating (Figure 1a) can be regarded as the most typical analyzed configuration. A relevant review
of benchmark solutions for natural convection flows in vertical channels was presented recently by
Desrayaud et al. [4].

The optimization problem for the described issue is represented by the electronic equipment cooling.
In this case, one of the most important objectives consists of dissipating the heat generated in the
devices to avoid overheating. The determination of the thermally optimum spacing bopt (between the
plates or walls forming the vertical channel) that maximizes the heat transfer rate per unit area can
achieve the thermal optimization of the system. The first criterion for obtaining bopt was reported by
Bodoia and Osterle [5]. Analytically, a given optimization function can be obtained from the appropriate
correlations for calculating the heat transfer rate. Bar-Cohen and Rohsenow [6] and Zamora and
Hernández [7] employed different correlations for the average Nusselt number for achieving this
aim, with laminar flow assumption. The optimum was reached for a modified Rayleigh number Ra*
(based on the inter-plate spacing) placed near the crossing point between the fully-developed and
the boundary layer asymptotes; in this manner, its value depends on the fitting constants used in
the average Nusselt number correlations. In reality, the idea of considering an isothermal vertical
channel as a configuration for obtaining the optimal spacing between plates makes physical sense
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if this geometry is regarded as a representative sample of the channels formed with equally-spaced
isothermal plates located into an available horizontal gap L. When the number of plates increases,
the total area for heat transmission increases, but in turn the temperature gradient at the walls decreases,
as well as the average heat transfer coefficient. Since the described effects become the opposite when
the number of plates decreases, then a thermally optimum wall-to-wall spacing can be encountered.
Note that if the theoretical bopt is bopt < L, a sole channel must be formed. The global heat transfer could
not be maximum in this case, but anyhow its value will be higher than that reached generating more
than one channel in the available space.
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In some cases (in passive ventilation systems, for instance), the dynamic optimization is clearly
interesting. Here, obtaining the maximum induced mass-flow rate can be the main objective for
ventilation purposes (Zamora and Kaiser [8], Zavala-Guillén et al. [9]). Previously, the authors carried
out calculations for obtaining both thermal and dynamic optimization in geometries concerned to
thermal passive systems of buildings (see Zamora and Kaiser [8]).
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Other aspects of the problem can be treated; for instance, finned surfaces in natural convection
provide relevant improvements in the thermal performance. Therefore, the distribution of heat sources
can be analyzed for achieving the optimal arrangement (da Silva et al. [10], Zhang and Liu [11]).

More realistic configurations should be regarded for obtaining practical results. As expected,
several works dealing with the geometric optimization of cavity configurations for obtaining the
maximum heat transfer by buoyancy effects can be found in the literature (Aounallah et al. [12], for
cavities with curved walls; Biserni et al. [13], for H-shaped cavities; Lorenzini et al. [14], for T-shaped
cavities; Lorenzini and Rocha [15], for cavities with T-Y shape, among others). A feasible analysis
procedure consists of using both the scale analysis method and the intersection of the asymptotes
obtained for different regimes of the flow (da Silva and Gosselin [16], for instance). This way is similar
to that followed by Bar-Cohen and Rohsenow [6] and Zamora and Hernández [7]. Another method is
based on the Constructal Law of Bejan (Bejan [17], Bejan and Lorente [18]). These authors pointed out
that, essentially, the constructal theory consists of global objectives and global constraints, whereas
the geometry of the flow is unknown, i.e., the geometry is not previously assumed, but it is deduced.
Alternative configurations and shapes are considered in the literature (da Silva and Gosselin [16],
among others). Two configurations for the buoyancy-induced airflows in vertical channels have been
studied in a previous work (Zamora [19]); one a smooth, curved channel, and the other a channel with
several sharp changes of direction. For any given circumstances, the performance of the alternative
outlined configurations can be considered better than that corresponding to a straight channel. This is
a representative case, in which the geometries are mainly defined, and generalized enough correlations
for the Nusselt number are not available; therefore, massive computational data (or experimental, if
applicable) should be analyzed in order to find possible optimal situations.

For simulating the buoyancy effects, the well-known Boussinesq approach assumes constant
properties of fluid, except for density variations exclusively due to temperature variations in the vertical
component of the momentum equation. When the influence of variation of the air thermophysical
properties is taken into account, a contrasted result found in the literature is that heat transfer coefficients
and the induced mass-flow rate are considerably lower than those obtained under non-Boussinesq
conditions. This particular effect can be attributed to the increase of the air viscosity (viscous drag)
and the decrease of the air density, which produces an additional thermally-induced pressure drop
(thermal drag), as the temperature difference increases (Zhong et al. [20], Guo and Wu [21]). In other
words, both the viscous drag and the thermal drag increase faster than the buoyancy force when the
temperature increases. The flow patterns could be affected strongly by the fluid variable properties
for intense heating conditions; in this way, it can be expected that the thermally optimum inter-plate
spacing (if it exists) is also affected by the described phenomenon.

In present work, a realistic situation that consists of considering a limited space, i.e., a vented cavity,
into which a vertical channel is placed, is outlined (see Figure 1b). The spacing between the plates
forming the channel can vary, but the dimensions of the cavity remain constant. The physically periodic
conditions of the array of plates described above disappear, and thus the geometrical surroundings of
the isothermal channel have a relevant influence on the behavior of the convective airflow. In this case,
the area dedicated to convective heat transfer does not vary, but in turn, the thickness of the thermal
boundary layers adjacent to heated walls varies strongly when the inter-plate spacing b changes.
Therefore, a thermally optimum wall-to-wall spacing could exist; its determination constitutes the
aim motivation of this work, as well as the simulation of the evolution of air properties. The adopted
approach is numerical; results are presented as a function of the inter-plate spacing for a wide range of
Rayleigh numbers. In view of the fact that the main applications of the outlined configuration might be
subject to intense heating conditions, the influence of considering variable thermophysical properties
of air is also included in the study. It is foreseeable that some effects could be explained by the flow
configuration changes when the relevant parameters vary.
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2. Materials and Methods

Figure 1 shows the configurations outlined in this paper. The first one is a typical vertical channel
(Figure 1a); the height is H (y-direction) and the spacing between walls is b (x-direction); the relationship
b/H is commonly named the aspect ratio. Figure 1b shows the configuration proposed for the numerical
simulations; the dimensions of the cavity are HT in y-direction and L in x-direction, whereas the vents
have a width equal to bV; a standard vertical channel (b × H) is placed centrally into the cavity; the
thickness of the plates is considered negligible. A square cavity, L/HT = 1, is considered; the ratio
between channel and cavity heights is H/HT = 1/2, and the width of vents is given by bV/HT = 0.075.
The flow enters mainly through the lower vents and goes out mainly through the upper one.

The plates of the channel are considered isothermal at Tw, whereas the reference (ambient)
conditions for air are given by p∞ = 105 N/m2 and T∞ = 293 K. In this manner, the relevant parameters
to be considered are based on the height of plates H and on the characteristic temperature difference
∆T = Tw − T∞. Hence, the Rayleigh number is defined as RaH = GrH Pr∞, being GrH the Grashof
number based on H, GrH = gβ (Tw − T∞) H3/ν∞2, with g the gravity acceleration, β = 1/T∞ (perfect gas
assumption), ν∞ the kinematic viscosity of the fluid, and Pr the Prandtl number of the fluid (Pr∞ = 0.7
in this work). The range of the Rayleigh number considered is 103–1011 with turbulent simulation,
which includes the whole range of typical performance conditions.

The average Nusselt number at heated, isothermal walls is calculated as follows

NuH = −

∫
H [(∂T/∂x)w/(Tw − T∞)] dy. (1)

The Nusselt number calculated at the plate side facing the surrounding cavity wall is denoted
with subscript out, and that calculated at the side facing the other plate is denoted with in.

The buoyancy-induced incoming (or outgoing) dimensionless mass-flow rate M is

M = m/ρ∞ν∞, (2)

m being the two-dimensional mass-flow rate.
Lastly, for evaluating the fluid variable properties effects, the heating parameter can be defined

as follows
Λ = (Tw − T∞)/T∞. (3)

For low enough values of Λ, the influence of variable properties is negligible, and therefore
the Boussinesq approach can be employed. In this work, this limit is achieved for the lowest value
considered of the heating parameter, Λ = 0.01. For analyzing the variable properties effects, the range
of values of Λ considered for numerical simulations is 0.01–10, which includes the whole range of
typical situations.

Regarding the mathematical approach, the two-dimensional form of the elliptic time-averaged
Navier–Stokes equations (continuity, momentum, and energy) for the turbulent airflow (see Zamora
and Kaiser [8] for more details), are solved numerically by using the general-purpose Phoenics code
(Phoenics Encyclopaedia [22]), which is based on a finite-volume procedure. The driving (buoyancy)
force is calculated directly from density variations (instead of from temperature variations such as
is advocated by the Boussinesq approach), and it is implemented in the vertical component of the
momentum equation. The selected turbulence model for solving the closure problem is the version
of the two-transport equations k–ω model proposed by Wilcox [23], which includes a low-Reynolds
extension for near-wall turbulence. If the mesh includes some nodes into the boundary layer, the entire
laminar–transitional–turbulent behavior can be appropriately simulated. The obtained results have
been compared with those computed through the SST k–ω turbulence model, but they are not presented
because of differences tend to be negligible provided that the grid was refined enough, mainly near the
walls. Now then, the necessary computations times are, in general, higher with the SST k–ω model.



Processes 2020, 8, 554 5 of 17

Regarding the boundary conditions, the plates of the channel are considered with a uniform hot
temperature T = Tw, whereas a cold temperature T = T∞ is imposed on the fluid outside the cavity.
The walls forming the cavity are treated as adiabatic. The non-slip condition for velocity and turbulent
kinetic energy is imposed at all the walls. At the inlet sections (lower vents), the mass-flow rate is
assumed to be dependent of the square root of the difference between the ambient pressure p∞ and
the pressure p computed at each inlet cell (this can be regarded as a result of the Bernoulli equation
application at the surroundings of the cavity), whereas the temperature is fixed at T∞. At the outlet
sections (upper vents), the pressure is fixed at p∞, and the streamwise variations of velocity components,
temperature, and turbulent variables are neglected.

From the experimental data available in the literature (Çengel and Cimbala [24], for instance),
own correlations are developed for expressing the evolution of the thermophysical properties of air
as a function of temperature. Thermal conductivity, specific heat at constant pressure and kinematic
viscosity are increasing with absolute temperature T,

κ(T) = 5.061 × 10−3 + 7.387 × 10−5 T − 1.215 × 10−8 T2, (4)

cp(T) = 923.2 + 2.619 × 10−1 T − 4.872 × 10−5 T2, (5)

ν(T) = −1.448 × 10−5 + 8.653 × 10−8 T + 4.802 × 10−11 T2, (6)

valid for 273–2273 K, with determination coefficients R2 equal to 0.9937, 0.9993, and 0.9990, respectively.
In addition, the perfect gas assumption ρ = p/RT, being R the air constant, equal to 287 J/kg.K indicates
that since variations of pressure are low, the density of air is mainly decreasing with T. These correlations
are implemented into the Phoenics code for simulating the thermophysical air behavior.

Regarding the numerical details, the time-dependent procedure is employed for obtaining the
numerical results; a fully-implicit scheme for the time discretization is used. A scale analysis in the
y-momentum equation gives a typical vertical velocity in the order V ≈ [gβ(∆T)H]1/2 for natural
convection flows, by equating convective and buoyancy terms, v(∂v/∂y) ≈ gβ(∆T). The characteristic
time can be estimated as t0 ≈ H/V. For obtaining the appropriate accuracy, the employed values of time
step ∆t are into the range 0.01–0.25. A number of 40 iterations allows us to achieve spatial convergence
in each time step. Finally, most of the computations lead to obtaining essentially steady-state solutions.

The equations are discretized by a staggered-grid scheme. Structured, cartesian meshes are
employed (120 × 120 cells in most cases), with different power-law distributions to produce fine
meshing near the walls, as aforementioned. A typical grid is shown in Figure 1c. The accuracy of
the numerical results is tested by a grid dependence study; both the dimensionless sub-layer scaled
distance y+ and the total number of cells are taken into account for analyzing the influence of meshing
on the results (see Zamora and Kaiser [8]). Parameter y+ is revealed as the most influential so that for
low enough values of y+, the obtained results are affected mainly by the given value of y+. Therefore,
the results presented are computed using grids with y+ low enough (mainly in the range 0.1–0.5),
achieving in this way the grid independence.

The numerical results are obtained through a second-order “muscl” (non-linear) differencing
scheme (Phoenics Encyclopaedia [22], Van Leer [25]) for the convective terms of the momentum, energy,
and turbulence transport equations. Focusing on numerical convergence, the relative change of any
dependent variable in each iteration is less than 10−5. The relative residuals for mass, momentum,
energy, and turbulent variables for the full flow field are less than 10−4.

3. Results and Discussion

Both the mathematical and the numerical modeling of the concerned matter have been tested
and validated in several above works by comparing the obtained results with experimental and
numerical data taken from the literature for different morphologies. Readers can find more detailed
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information in Zamora and Kaiser [8] and Zamora [19], for instance. Illustratively, a basic comparison
with benchmark, asymptotical solutions is presented in Figure 2.Processes 2020, 8, x FOR PEER REVIEW 6 of 17 
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Figure 2. Validation of the numerical computations through comparisons with benchmark, asymptotical
solutions for thermally fully-developed flow (Elenbaas [1] asymptote, Nub = Ra*/24) and isolated-plate
limit (Incropera and De Witt [2], Nub = 0.1(Ra*)1/3). Configuration of a simple vertical channel of
Figure 1a, with b/H = 0.1. Note that the average Nusselt number is based on b.

3.1. Evolution of Relevant Parameters vs. Rayleigh Number

From now on, attention is posed in the vented cavity configuration given by Figure 1b. As a first
step, a very low value of the heating parameter Λ = 0.01 is considered for avoiding the effects of the
variable thermophysical properties of air. Given the considered morphology, now it can be expected
that solution depends on the Rayleigh number RaH and on the geometrical aspect ratio of channel
b/H, provided that dimensions and shape of cavity remain constant, as well as the Prandtl number Pr.
Consequently, it seems appropriate to base the Rayleigh number on H, and thus computations are
carried out for RaH = 103–1011, varying the aspect ratio b/H from 0.01 to 1.5. Heat transfer coefficients
are evaluated through the average Nusselt number, also based on H, which is calculated at the outer
(NuH,out) and at the inner (NuH,in) faces of one of the plates forming the channel, as above explained.
Note that the global heat dissipation of the system concerns the sum (NuH,out + NuH,in), which can be
named as the global Nusselt number.

The evolution of NuH,out, NuH,in, (NuH,out + NuH,in), and M as a function of RaH is presented in
Figure 3, for different values of b/H (0.05, 0.1, 0.2, and 1.0). The evolutions are clearly logarithmic, but
relevant differences exist between trends of NuH,out and NuH,in for low enough values of RaH; it can
be seen that these differences tend to decrease as b/H increases (trends becomes very similar for high
enough values of b/H, as Figure 3d shows, for b/H = 1.0). However, the trend of non-dimensional
mass-flow rate M seems to be invariable versus b/H. This can be explained by the fact that the induced
buoyancy force is roughly the same for each value of Rayleigh number, irrespective of the distance
between plates, although differences in the thickness of the thermal boundary layers adjacent to
heated walls can produce relevant discrepancies between the Nusselt numbers calculated at both sides
of plates.

Both the mass-flow rate and the global Nusselt number can be correlated well through power-law
functions. Taking a representative value of aspect ratio b/H = 0.2 (Figure 3c), the following equations
summarizes well the obtained results

M = 0.321 (RaH)0.519, RaH = 103–1011, (7)
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with an average deviation equal to 2.9%, peak error 4.5% and R2 = 0.9999, and

(NuH,out + NuH,in) = 0.0905 (RaH)0.485, RaH = 103–105, (8)

(NuH,out + NuH,in) = 0.708 (RaH)0.304, RaH = 105–108, (9)

(NuH,out + NuH,in) = 0.174 (RaH)0.380, RaH = 108–1011, (10)

with an average deviation equal to 2%, peak error of 4.4%, and R2 = 0.9998. Note that for the global
Nusselt number, three different trends are mandatorily distinguished.
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Figure 3. Evolution of average Nusselt number NuH and dimensionless mass-flow-rate M as a function
of Rayleigh number RaH, for different values of aspect radio b/H. Configuration is given in Figure 1b.
Heating parameter Λ = 0.01.

3.2. Thermally Optimum Inter-Plate Spacing

Now focusing on the possibility of finding maximum heat transfer conditions when plate-to-plate
spacing varies, systematic results are obtained for the wide range of Rayleigh number considered, and
b/H from 0.01 to 1.5, as above explained. Results obtained for selected values of RaH are graphically
presented in Figure 4. For a given value of the RaH, when b/H is very low, then NuH,in⇒ 0 (at the end,
the two plates are joined and would form a sole plate), but NuH,out reaches its maximum value, due that
the plate is far enough from the cavity wall, and its thermal behavior is similar to that corresponding
to an isolated plate. As b/H increases, heat transmission between the inner side of plates and the
fluid increases, whereas the available space comprised between the surrounding (adiabatic) wall of
the cavity and the outer side of plates decreases, thus entailing a decrease in the Nusselt number.
These two opposite effects can justify the existence of an optimal value of aspect ratio, (b/H)opt. For
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the full understanding of these effects, the structure of the fluid motion should be taken into account;
the buoyant plume generated by the heated channel is divided into two symmetrical parts under given
circumstances, and they mainly escape through the upper vents. However, in some cases, recirculation
zones appear and tend to modify the expected flow pattern.
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Figure 4. Evolution of average Nusselt number NuH and dimensionless mass-flow-rate M as a function
of aspect ratio b/H, for different values of RaH, with an indication of the thermally optimal points.
Configuration is given in Figure 1b. Heating parameter Λ = 0.01. Note that in (e) and (f), values of M
are divided by 103.

For a given value of b/H, when the value of RaH is very low, the conduction effects produced
meant that the cavity core was quite hot, and the heat dissipation was low; that is to say, the thickness
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of the thermal boundary layer adjacent to heated walls is considerably high. This trend changes as RaH
increases, and then the behavior of the computed Nusselt numbers also change. For low enough values
of RaH, NuH,out is always decreasing with b/H, whereas in turn, NuH,in is increasing; this trend changes
for the case RaH = 106, from which the evolution of both Nusselt numbers as a function of aspect
ratio tends to be almost coincident. For RaH > 107, the NuH,in curve exhibits a not too pronounced
maximum (Figure 4c), but this maximum is more pronounced as RaH increases. Note that for some
intermediate values of RaH, an unexpected detachment of curves corresponding to NuH,out and NuH,in
for high enough values of b/H is detected. This can be related to a certain asymmetric flow pattern that
is encountered under given circumstances.

Now, let us to focus the attention on the global Nusselt number (NuH,out + NuH,in). In this
case, a relevant maximum value is encountered for all the investigated values of RaH (Figure 4).
Appropriately extrapolating the maximum values of the spline curves depicted in each case, the
maximum heat transfer is found at b/H = 0.962 for RaH = 103, at b/H = 0.415 for RaH = 104, at b/H =

0.248 for RaH = 105, and so on. The trend of the optimal aspect ratio (b/H)opt decreases as RaH increases.
This fact can be explained by the progressive narrowing of the thermal boundary layer when the
Rayleigh number increases, for a given value of b/H. This finding is similar to that exposed in Zamora
and Kaiser [8], for Trombe wall shaped channels (thermal passive device). In addition, note that the
higher value of RaH, the higher the intensity (or relevance) of the maximum. Although the maximum
is slightly pronounced for low values of RaH, for the highest value of RaH = 1011, the (maximum)
global Nusselt number obtained for (b/H)opt = 0.0680 is in the order of 2.5 times the value computed for
the highest value of b/H.

In Figure 5, the obtained values of (b/H)opt are shown as a function of Rayleigh number RaH.
Note that the trend is clearly logarithmic and that two different decreasing trends can be discerned.
The slope is lower when the conduction effects are no longer important. The following blended-type
equation is appropriate for correlating the numerical results

(b/H)opt = {[12.0 (RaH)−0.365]n + [0.495 (RaH)−0.0782]n}1/n, (11)

with n = 3.20. The average deviation is equal to 2.4%, and the peak error is 4.5%.
Regarding the mass-flow rate, it is evident in Figure 4 that the behavior of M is mainly monotonous,

and no significant optimal points can be deduced. Although it seems that the maximum values of M
are reached for b/H ≈ 0.35 for high enough values of RaH, this cannot be considered as too relevant,
given the scarce differences between the obtained values.
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3.3. Influence of the Variable Thermophysical Properties

The analysis of the influence of variable thermophysical properties, which can be relevant for more
intense heating conditions than that above considered (Λ = 0.01), is conducted for a representative
value of Rayleigh number RaH = 109.

Firstly, the advised decreasing of the computed relevant parameters when heating parameter Λ
increases is investigated. Figure 6 shows the obtained results for aspect ratios b/H = 0.05, 0.1, 0.2 and 1,
with Λ varying from 0.01 to 10. The expected decrease in NuH at heated walls and in M is confirmed in
this figure; the increasing of both the thermal drag and the viscous drag becomes higher than that
corresponding to buoyancy force for high enough values of Λ, producing in this manner sizeable
decays in the trends of relevant properties. Evolutions of M and NuH are different. In the case of M, the
decay is essentially the same irrespective of the value of b/H, which confirms the behavior explained
above. Note that the decreasing ratio is in the order of 2.5 between results obtained for Λ = 0.01
and Λ = 0.1, whereas it is in the order of 10 for Λ varying from 0.01 to 10. Regarding the Nusselt
numbers, it can be observed that in general, the decay of results is lower; in addition, the behavior
of NuH,out and NuH,in tends to be essentially the same as b/H increases, following the trend exposed
above. Representative ratios can be given for illustrating this fact; for b/H = 0.1, maximum decay in
both NuH,out and NuH,in are in the order of 4 (with Λ from 0.01 to 10), but for b/H = 1, the maximum
decay falls to 2 (also from Λ = 0.01 to 10), approximately.

Processes 2020, 8, x FOR PEER REVIEW 10 of 17 

 

Firstly, the advised decreasing of the computed relevant parameters when heating parameter Λ 
increases is investigated. Figure 6 shows the obtained results for aspect ratios b/H = 0.05, 0.1, 0.2 and 
1, with Λ varying from 0.01 to 10. The expected decrease in NuH at heated walls and in M is confirmed 
in this figure; the increasing of both the thermal drag and the viscous drag becomes higher than that 
corresponding to buoyancy force for high enough values of Λ, producing in this manner sizeable 
decays in the trends of relevant properties. Evolutions of M and NuH are different. In the case of M, 
the decay is essentially the same irrespective of the value of b/H, which confirms the behavior 
explained above. Note that the decreasing ratio is in the order of 2.5 between results obtained for Λ 
= 0.01 and Λ = 0.1, whereas it is in the order of 10 for Λ varying from 0.01 to 10. Regarding the Nusselt 
numbers, it can be observed that in general, the decay of results is lower; in addition, the behavior of 
NuH,out and NuH,in tends to be essentially the same as b/H increases, following the trend exposed above. 
Representative ratios can be given for illustrating this fact; for b/H = 0.1, maximum decay in both 
NuH,out and NuH,in are in the order of 4 (with Λ from 0.01 to 10), but for b/H = 1, the maximum decay 
falls to 2 (also from Λ = 0.01 to 10), approximately. 

  
(a) RaH = 109, b/H = 0.05 (b) RaH = 109, b/H = 0.1 

  
(c) RaH = 109, b/H = 0.2 (d) RaH = 109, b/H = 1.0 

Figure 6. Influence of the thermophysical variable properties. Evolution of average Nusselt number 
NuH and dimensionless mass-flow-rate M as a function of heating parameter Λ, for different values 
of aspect radio b/H. Configuration is given in Figure 1b. Rayleigh number RaH = 109. Note that values 
of M are divided by 103. 

Secondly, the evolution of the thermally optimum plate-to-plate spacing for high values of Λ is 
investigated. Results obtained for Nusselt numbers and M, with RaH = 109, and values of Λ = 0.01, 0.1, 
0.5, 1, 5, and 10, as a function of b/H, is shown in Figure 7. By analyzing the succession of Figure 7a–
f, a relevant finding is that the evolution of heat transfer coefficients tends to be more homogeneous 
as Λ increases. This fact could be explained by the progressive thickening of the thermal boundary 
layers adjacent to walls when Λ increases, as well as by the consequent heating of the core regions of 

Λ

0.01 0.1 1 10

NuH

10

100

M (x 0.001)

1

10

NuH,out

NuH,in

M

500 20

Λ

0.01 0.1 1 10

NuH

10

100

M (x 0.001)

1

10

NuH,out

NuH,in

M

500 20

Λ

0.01 0.1 1 10

NuH

10

100

M (x 0.001)

1

10

NuH,out

NuH,in

M

500 20

Λ

0.01 0.1 1 10

NuH

10

100

M (x 0.001)

1

10

NuH,out

NuH,in

M

500 20

Figure 6. Influence of the thermophysical variable properties. Evolution of average Nusselt number
NuH and dimensionless mass-flow-rate M as a function of heating parameter Λ, for different values of
aspect radio b/H. Configuration is given in Figure 1b. Rayleigh number RaH = 109. Note that values of
M are divided by 103.

Secondly, the evolution of the thermally optimum plate-to-plate spacing for high values of Λ is
investigated. Results obtained for Nusselt numbers and M, with RaH = 109, and values of Λ = 0.01, 0.1,
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0.5, 1, 5, and 10, as a function of b/H, is shown in Figure 7. By analyzing the succession of Figure 7a–f,
a relevant finding is that the evolution of heat transfer coefficients tends to be more homogeneous
as Λ increases. This fact could be explained by the progressive thickening of the thermal boundary
layers adjacent to walls when Λ increases, as well as by the consequent heating of the core regions
of the cavity. Although optimal points are also detected for the global Nusselt number (NuH,out +

NuH,in), the relevance of the maximum tends to decrease as Λ increases, in accordance with the above
explanation. From appropriate interpolation of the obtained curves, the corresponding values of
(b/H)opt are included in Figure 7.
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Figure 7. Evolution of average Nusselt number NuH and dimensionless mass-flow-rate M as a function
of aspect ratio b/H, for RaH = 109, and different values of heating parameter Λ, with indication of the
thermally optimal points. Configuration is given in Figure 1b. Note that in (a), values of M are divided
by 103.
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Trends of results obtained for (b/H)opt as a function of Λ is also logarithmic, as can be observed in
Figure 8; a relevant finding is that a minimum is detected roughly for Λ = 0.2. The following equation
summarizes acceptably well the trend of results,

(b/H)opt = 0.0655 + 0.0152 ln Λ + 0.00485 ln2 Λ, (12)

with an average deviation of 3.6%, peak error equal to 8.1%, and R2 = 0.9880. Although results are
not presented, it is checked that trends can vary for other values of RaH, and therefore the explained
behavior should not be extrapolated to values of RaH different to the considered 109, because of the
variability of flow regimes that can be characterized throughout the whole range of values studied.
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Figure 8. Thermally optimum plate-plate spacing (b/H)opt as a function of heating parameter Λ,
for Rayleigh number RaH = 109. Configuration is given in Figure 1b. Proposed correlation is given
by Equation (12).

4. Discussion of Flow Patterns

Flow patterns are shown in Figures 9–11. Figure 9 illustrates the thermal flow patterns that are
found for two different Rayleigh numbers and two different aspect ratios. Here, it can be considered
that results are obtained as the Boussinesq approach proposes since that Λ = 0.01, and therefore the air
properties are considered almost constant. Note that for low enough values of RaH, the temperature
field tends to be more homogeneous throughout the cavity than for higher values. The buoyant plumes
generated at the upper part of heated plates are clearly more recognizable when b/H is low enough, and
for b/H high enough, plumes are rapidly routed towards the upper exit vents. Characteristic values of
dimensionless temperature difference θ = (T − T∞)/(Tw − T∞) are depicted in this figure.

The effects of variable thermophysical properties are graphically depicted in Figures 10 and 11.
The first shows the filled contours of temperature, and the second, streamlines and selected velocity
profiles, for a characteristic value of Rayleigh number RaH =109, aspect ratio b/H = 0.5, and different
values of heating parameter Λ. In Figure 10, it is evident the progressive thickening of the thermal
boundary layers adjacent to heated walls as Λ increases. The isotherms tend to occupy a larger portion
of the cavity for higher values of Λ, and the Nusselt numbers at walls tend to decrease as a consequence
of the generated thermal drag for intense heating conditions. This behavior is accompanied by a
relevant change in the velocity field of airflow, which can be observed in Figure 11. When Λ increases,
the increase of viscosity produces a reduction of the gradients of velocity into the boundary layers
adjacent to walls; in addition, the generated viscous drag, as well as the decrease of buoyancy forces,
modify the global field of velocity, and therefore the velocity profiles through the immersed channel.
Both the average velocity and the density decrease significantly for intense heating conditions, and,
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finally, the induced mass-flow rate decreases. In this figure, note that since reached values of velocity
are very low in the upper part of the cavity, then some streamlines seem to end on the top wall. In
Figure 11, the maximum values of the dimensionless vertical velocity ψ = VH/νGrH, computed in each
case, are indicated.
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In general, the structure of the airflow consists of two clearly defined incoming jets that rise through
the core of cavity, impelled by the buoyancy forces produced by the heated immersed channel (see
Figure 11). Two counterrotating rolls are detected in most of the cases, placed at the spaces comprised
between the outer sides of channel plates and the walls of the cavity. Under given circumstances,
some additional recirculation areas are found at the central, upper, and bottom parts of the cavity.
An asymmetric alternative configuration of the flow motion is encountered for some intermediate
values of both RaH and (not too high) b/H. This flow pattern consists of a predominant jet from the
right that crosses the cavity and goes out through the upper exit vent placed on the left (or vice versa).
There are well-founded suspicions that this phenomenon could be a numerical effect; in fact, reducing
the time step of numerical marching, the explained asymmetry tends to be reduced as well; however, it
can be noted that these oscillating flows could reproduce a certain physical reality, which should be
analyzed in detail in each case.
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Figure 11. Total streamlines and vector profiles through the channel for RaH = 109, b/H = 0.5, and
different values of heating parameter Λ. Configuration is given in Figure 1b. Maximum values of ψ =

VH/νGrH are equal to 4.90 × 10−5, 2.01 × 10−5, 1.06 × 10−5, and 7.85 × 10−6, respectively, for cases a, b, c,
and d.

5. Conclusions

• The problem of the thermal optimization of the inter-place spacing in an isothermal vertical
channel with buoyancy-induced airflow is numerically revisited. The regarded configuration,
placing the channel into a vented cavity, is more realistic and is oriented to the passive electronic
equipment cooling.

• Since the size and morphology of the vented cavity are fixed, the variations of thickness of thermal
boundary layer adjacent to heated walls, along with the changes encountered in the flow patterns,
result in the appearance of a dimensionless optimum wall-to-wall spacing (b/H)opt, for each value
of the Rayleigh number RaH.

• The obtained optimum inter-place spacing maximizes the global Nusselt number, the sum of the
respective Nusselt numbers computed at both sides of plates. No relevant optimal points are
found for an induced mass-flow rate through the cavity.

• From numerical results, a practical correlation giving (b/H)opt as a function of RaH is provided, valid
for low enough values of the heating parameter Λ. The found trend is logarithmically decreasing.

• The influence of the variable thermophysical properties is taken into account. For this, own
correlations for expressing the kinematic viscosity, thermal conductivity, and specific heat at
constant pressure as a function of temperature are developed from experimental data and
implemented into the numerical modeling.

• The expected decrease in the reached values of heat transfer coefficients and in the induced
mass-flow rate for intense heating conditions is confirmed for the outlined configuration. In
addition, relevant changes in the airflow pattern are found; these changes are concerned with the
thermal drag and the viscous drag phenomena, which are clearly detected for high enough values of
the heating parameter.

• For a characteristic value of RaH = 109, it is checked that (b/H)opt is appreciably affected by the
heating intensity. A non-homogeneous logarithmic dependence of (b/H)opt as a function of Λ
is detected.
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Nomenclature

b inter-plate spacing of the vertical channel, m (Figure 1a)
bV width of the cavity vents, m (Figure 1b)
cp specific heat at constant pressure, J/kg.K
g gravitational acceleration, m/s2

GrH Grashof number based on H
HT total height of the cavity, m (Figure 1b)
k turbulent kinetic energy, m2/s2

L total length of the cavity, m (Figure 1b)
M dimensionless mass-flow rate
m two-dimensional mass-flow rate, kg/m.s
NuH average Nusselt number based on H
p pressure, N/m2

Pr∞ Prandtl number
R2 determination coefficient
R air constant, J/kg.K
Ra* modified Rayleigh number based on b
RaH Rayleigh number based on H
T temperature, K
t time, s
t0 characteristic time, s
V characteristic vertical velocity, m/s
x,y horizontal and vertical cartesian coordinates, m
y+ dimensionless sub-layer scaled distance
Greek symbols
β coefficient of thermal expansion K−1

κ thermal conductivity, W/m.K
Λ heating parameter
µ viscosity, kg/m.s
ν kinematic viscosity, m2/s
θ dimensionless temperature difference
ρ density, kg/m3

ω specific dissipation rate of k, s−1

ψ dimensionless vertical velocity
Subscripts
in side of the plate facing the other plate
out side of the plate facing the surrounding cavity wall
opt optimum
t turbulent
w wall
∞ ambient or reference conditions
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