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Abstract: The limited source of fossil-fuel and the predominance of petroleum-based chemistry in
the manufacturing of commodity polymers has generated tremendous interest in replacing the fossil
source-based polymers with renewable counterparts. The field of sustainable elastomers has grown
in the past three decades, from a few examples to a plethora of reports in modern polymer science
and technology. Applications of elastomers are huge and vital for everyday living. The present
review aims to portray a birds-eye view of various sustainable elastomers obtained from the wide
family of acyclic terpenes (renewable feedstocks from different plant oils) via various polymerization
techniques and their properties, as well as plausible developments in the future applications of
sustainable polymers. Not only the homopolymers, but also their copolymers with both green
and commercial fossil based comonomers, are reviewed.
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1. Introduction

Green chemistry was only a new trend a few decades ago, but it has become an essential and hot
topic of research in the last few years because of the significant environmental pollution by fossil
resources and their limited future availability. For polymers/plastics, it is especially important because
of their large-scale production and a large amount of consumption. Considering the soaring petroleum
prices and environmental pollution, the use of petroleum-based products is not an environmentally
favorable process. One of the partial solutions for reducing pollution and fossil resource-dependent
industrial problems is the use of monomers and polymers from renewable resources. In this situation,
we have to utilize this period to evaluate and create major pathways to use alternative resources
for the production of biobased synthetic elastomers. Terpenes or terpenoids are natural materials
built from isoprene and produced by plants and insects [1,2]. Terpenes are readily available in large
amounts and with a variety of structures, and therefore can be easily used for synthesis even without
modifications. There are several types of terpenes, based on the number of isoprene units (in brackets)
in their structure, such as mono (2), sesqui (3), diterpenes (4), etc., including some polymerizable
ones. The directly polymerized terpenes are mainly monoterpenes, for example, myrcene, pinene,
or limonene [3–5]. Some other terpenes can be subjected to Baeyer–Villiger oxidation, and the resulting
lactone becomes polymerizable via ring-opening methods [5]. There are several polymerization
methods applicable to the different terpenes. Radical, ionic, or even coordinative polymerizations
of monomeric terpenes are well known [3,5]. Here we will focus on the elastomeric polyterpenes
based on mostly myrcene, but other terpenes, such as ocimene, farnesene and alloocimene, will also
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be discussed. Their syntheses, properties and commercialized applications—or those that can be
marketed in the near future—will be reviewed.

2. Synthesis of Terpene Based Elastomers

One of the most important elastomeric polyterpenes is polyisoprene [6,7]. Natural rubber is
an enzymatically produced, highly uniform polyisoprene, but this monomer can also be polymerized
by standard radical and ionic polymerization methods, resulting in slightly different products [8,9].
Even industrially, it is the most important elastomer. It is already well described and reviewed,
and therefore, we do not want to focus on it.

2.1. Myrcene

Synthetic polyterpenoid elastomers based on monoterpenes are well known. Myrcene is one
of the most important terpenoids. Not only because of its broad availability in nature, as well as
from industrial synthesis by pinene pyrolysis, but also due to the versatility of the polymerization
methods for β-myrcene without preliminary modifications [5,10,11]. β-Myrcene has been polymerized
by radical, anionic, cationic and coordinative methods so far. The formed polymyrcenes of these
methods are different in terms of topology, chain length, and also, very importantly, in regioselectivity
(Scheme 1). This last property also describes polymer microstructure, which has a massive effect on
the properties of the resulting product.

Scheme 1. Schematic representation of the various microstructures of polymeric myrcene.

Free radical polymerization in n-butanol, initiated by hydrogen peroxide at around 100 ◦C, leads to
polymyrcene with higher than 75% 1,4-structure and low dispersity, but with branched/cross-linked
side-products because of the reaction of the remaining double bonds and the highly reactive
radicals [12–15]. The same radically polymerized myrcene, as well as its polymer synthesized by
anionic conditions, was subjected to 3D printing with subsequent thiol-modification, resulting in
the formation of superhydrophobic material [16,17]. Emulsion polymerization was also applied
to produce polymyrcene, using potassium or ammonium persulfate and tert-butyl hydroperoxide
initiation, at elevated (60–70 ◦C) and room temperature, respectively [11,18,19]. The spectra (Figure 1)
explain the conversion of the monomer to the polymer. The disappearance of methylene proton
peaks in the monomer (C1, C4), and the appearance of broad peaks in the region of 4.50 ppm
to 5.50 ppm, suggest the formation of the polymer. The protons of the methyl groups linked to C8 in all
the microstructures appear at upfield values of δ = 1.60 ppm and 1.52 ppm, and the methylene protons
are displayed as a broad peak at 1.96 ppm. The polymer reported may have four different types of
microstructure, viz. 1,4-cis, 1,4-trans, 1,2-vinyl and 3,4-polymyrcene. Redox starter served a higher
portion of 1,4-microstructures than persulfate analogue, and high molar mass; almost 100 kDa [19].
Vulcanization of the persulfate-initiated polymyrcene led to rubbery materials, with a cross-linking
density of 2.50 × 10−4 mol/cm3, where the formation of the polysulfide linkages was supported by
the microstructural defects [20]. Similar to emulsion polymerization, the radical polymerization of
β-myrcene was also possible with a K2S2O8/Na2S2O5 redox initiating system in cyclodextrin solution,
where the macrocycle solubilizes the monomer [21].
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Figure 1. (a) 1H NMR spectrum of β-myrcene, (b) and (c) 1H NMR spectra of polymyrcene (persulfate and redox
initiated). (Reproduced from Reference 19, with permission from The Royal Society of Chemistry).

This emulsion-like, detergent-free polymerization resulted in low molar mass polymyrcene with
dispersity around 2 and mostly 1,4 microstructure. Anionic and cationic polymerizations were carried
out using n-butyllithium [22–24], boron trifluoride etherate [11,25], and metal halide initiators [26],
respectively. The resulting polymers had low dispersity (in all cases Đ ≤ 1.6), high molar masses (up to
30 kDa), and almost quantitative conversion in a short time, but only slightly-regular microstructures
(40–90% 1,4-structures) for anionic polymerization [11,22]. The polymyrcene from the mentioned
carbocationic polymerizations consisted of only one double bond per repeating unit, but the exact
structure and the mechanism of the reaction were not fully determined. It can be assumed that
some intramolecular cyclization could have occurred during the polymerization process [11]. Linear
polymyrcene can be produced using β-diimidosulfonate lutetium catalyst in carbocationic polymerization,
and the produced polymer also has low dispersity (Ð~1.4), as well as high 3,4-microstructure content [25].
2-propenyl triflate- or 1-(4-methoxyphenyl) ethyl triflate-initiated cationic polymerization of β-myrcene
in CH2Cl2 and cyclohexane yields oligomeric saturated products [27]. Recently, an aqueous cationic
polymerization of β-myrcene was carried, out utilizing water-dispersible Lewis acid surfactant combined
with ytterbium chloride catalyst at 40 ◦C [28]. The resulting polymer had molar mass up to
150 kDa, and was rich in 1,4-microstructure (~93%). Coordinative polymerizations, for example,
using Ziegler–Natta type (based on neodymium or lutetium) or lanthanide catalysts, give rise to
very high regularity (>98%), but poor polydispersity (Ð ≥ 1.5) [25,29–32]. In a recently described
system, cobalt complexes with phenoxy (4,6-di-tert-butyl-2-phenol, naphthalene-2-ol)-imine ligands
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were used to produce cis-1,4-polymyrcene and poly (methyl methacrylate) selectively [33]. Reversible
deactivation radical, or so-called controlled radical polymerization, has been applied for the synthesis of
this polyterpene in the recent past. This kind of polymerization method is an excellent tool for producing
engineered polymers with predetermined properties [34]. Namely, reversible addition-fragmentation
chain-transfer polymerization (RAFT) and nitroxide-mediated radical polymerization (NMP) have been
successfully applied in such reactions [9,35]. In RAFT polymerization, up to 64% conversion, Ð ≤ 1.6,
and even 96% regioregularity, can be reached using 2-ethylsulfanylthiocarbonylsulfanyl-propionic
acid ethyl ester and S-1-Dodecyl-S′-(α,α′-dimethyl-α”-acetic acid) trithiocarbonate chain-transfer
agents (CTA), in combination with various thermal radical initiators, namely dibenzoyl peroxide
and azobis(isobutyronitrile) [36,37]. The temperature was also varied (between 65 and 130 ◦C) and found
to have an effect not only on the conversion or chain length, but also on the regularity and topology
of the polymers [37]. An advantage of this method is that UV-triggered iniferter (initiator-transfer
agent-terminator) reactions can be carried out at room temperature utilizing the above mentioned CTA, i.e.,
no application of external initiator is necessary, and low energy consumption can be reached [38].
NMP utilized 2-Methyl-2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)-aminoxy]-N
-propionyloxysuccinimide initiator at >100 ◦C. With solution polymerization using toluene
and 1,4-dioxane, high regularity (~91% of 1,4-addition) could be reached, while bulk polymerization led to
80% monomer conversion with a lower portion of this microstructure [39,40]. Both reversible-deactivation
radical polymerization methods have resulted in low molar mass polymyrcene (Mn ~15 kDa); only RAFT
polymerization at high temperatures could produce longer chains, with poorer control over the regularity
of polymers [37].

Copolymerization of β-myrcene with various comonomers leads to biobased amphiphilic
or thermoplastic elastomeric products. The combination of styrene has particular importance from
an industrial point of view, due to its similarity to styrene-butadiene rubber (SBR). Although
commercially available styrene is produced mainly from petroleum resources, preparation of styrene via
a biotechnological pathway has been described, employing Escherichia coli obtained from forestry waste
using a strain of Penicillium expansum, in recent times. Statistical copolymerization of these two monomers
was carried out via free radical copolymerization [41], and also emulsion copolymerization [18,42].
This latter, with a potassium or ammonium persulfate initiator, highlighted the effect of composition on
the regioregularity. Copolymers with less than 40 mol. % styrene content had a mixed microstructure,
while above this limit, only 1,4-microstructure was obtained [42]. In this work, the determined
copolymerization reactivity ratios indicated close to ideal copolymerization behavior, slightly differing
from the results of free radical solution copolymerization [41]. Controlled radical polymerizations,
namely RAFT and NMP, were used to synthesize statistical and block copolymers of myrcene
and styrene [36,39]. The gel permeation chromatogram GPC (Figure 2) of the poly (myrcene-b-styrene)
chain-extended block copolymer (dotted line) shifted to a lower elution time compared to its polymyrcene
macroinitiator (solid line). These distinct shifts in GPC trace indicated the increase of Mn with
the time of polymerization, and the results confirmed the ability of the NMP-based polymyrcene
macroinitiator to reinitiate polymerization in a controlled way with styrene. Similar conditions to
the homopolymerization of β-myrcene were used in these methods, i.e., trithiocarbonate chain-transfer
agent at 65 ◦C, and 2-Methyl-2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)-aminoxy]-N
-propionyloxysuccinimide initiator above 100 ◦C, for RAFT and NMP, respectively. Miscibility of
the comonomers in the polymer was confirmed by differential scanning calorimetric (DSC)
measurements [36].

Aqueous emulsion cationic polymerization of styrene and β-myrcene, utilizing sodium dodecyl
benzenesulfonate with ytterbium chloride at 40 ◦C, resulted in a statistical copolymer of the two
comonomers, also miscible in the copolymer structure, with a molar mass range of 60–120 kDa [28].
n-Butyllithium-initiated anionic polymerization of β-myrcene and styrene, and also 4-methylstyrene,
led to gradient copolymer, with solvent dependent kinetics and composition [22,43,44]. In benzene,
β-myrcene reacted first, and styrene started to polymerize in the later stage of reaction, while in



Processes 2020, 8, 553 5 of 21

tetrahydrofuran, the reaction turned around and started with styrene. Instead of gradient copolymer,
block copolymer was also synthesized via anionic polymerization, using a sec-butyllithium initiator
with sequential monomer addition [45]. Styrene and α-methyl-p-methyl styrene-based polymyrcene
containing thermoplastic elastomers were synthesized in this second case with a phase-separated
structure [23]. Coordinative chain transfer copolymerization of β-myrcene and styrene was carried
out using half-sandwich pentamethylcyclopentadienyl-lanthanum catalyst combined with dialkyl
magnesium and dialkyl aluminum, leading to a highly stereoregular copolymer with trans-1,4-structure,
and with good yield [30]. Myrcene/styrene copolymers were also vulcanized using a standard sulfur
cure system, in order to produce bio-based rubber vulcanizate for industrial applications [20,46].

Figure 2. GPC traces of polymyrcene and its copolymer with styrene, synthesized via nitroxide-mediated radical
polymerization. (Reproduced from Reference 39, with permission from American Chemical Society).

Copolymers of β-myrcene and isoprene/butadiene, as well as their terpolymers with styrene, were
synthesized recently, too. The previously mentioned lanthanum-based catalyst for coordinative chain
transfer copolymerization was also applied in the copolymerization of myrcene with isoprene and styrene,
yielding polymers with stereoregular microstructures in a wide range of composition [47]. Coordination
copolymerization of β-myrcene and isoprene with a cationic β-diimidosulfonate lutetium catalyst resulted
in fully isotactic 3,4-polymyrcene and polyisoprene [47]. Fine ether suspension of alkali metal between
25 and 95 ◦C has been used to launch copolymerization of 1,3-butadiene and myrcene, with high
conversion [48]. PN3-Type cobalt complexes were also utilized to copolymerize β-myrcene with isoprene,
and the resulting copolymers had predominantly cis-1,4-microstructure (up to 83% for myrcene). Based on
the copolymer reactivity ratios in this reaction, the polymerization of isoprene was slightly favorable [49].
Interestingly, β-myrcene and styrene were also copolymerized with ethylene using an ansa-lanthanidocene
catalyst, leading to a stereoregular product with an easily controllable composition [50]. Not only
styrene and dienes (olefines), but also methacrylates, were combined with myrcene. Bhowmick et al.
studied the copolymerization of β-myrcene with three different methacrylates, particularly stearyl,
lauryl and butyl methacrylates, by ammonium persulfate-initiated emulsion polymerization [51].
The study stated that the length of the alkyl group in methacrylate functionality has a significant effect
on the rate of propagation, i.e., the reactivity decreased with the growing side chain. The controlled
radical NMP, with 2-Methyl-2-[N-tert-butyl-N-(1-diethoxyphosphoryl-2,2-dimethylpropyl)-aminoxy]-N
-propionyloxysuccinimide initiator, has been used to copolymerize β-myrcene and isobornyl methacrylate,
which is also a partly biobased monomer [40]. The same system has been adopted to copolymerize
β-myrcene and glycidyl methacrylate with various feed compositions, resulting in statistical copolymers
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with low dispersity (Đ < 1.56) and molar mass slightly different from theoretical values [52].
A block-copolymer of these two was produced, too, capable of self-assembly. Emulsion polymerization
has also been used to synthesize poly (myrcene-co-glycidyl methacrylate) with molar mass up to
105 kDa, including subsequent combination with non-petroleum-based silica to form a biobased
nanocomposite [53]. Thermal and UV-initiated RAFT copolymerization of β-myrcene and poly(ethylene
glycol) methyl ether methacrylate has been accomplished using a S,S-dibenzyl trithiocarbonate chain
transfer agent, resulting in the introduction of 6–10 units of the hydrophilic comonomer [38]. In the first
case, the reaction started with a 2,2′-Azobis(2-methylpropionitrile) thermal radical initiator at 65 ◦C, while
for UV initiation, the iniferter method was used, and the chain transfer agent also acted as the starter.

Poly(myrcene-co-dibutyl itaconate) has been prepared via emulsion polymerization, initiated by
ammonium persulfate, with high yield, but a tiny amount of gel fraction [54]. The monomer
reactivity ratios suggest quasi-ideal copolymerization behavior of the two monomers. The produced
copolymers possessed 1,4-microstructure and were partially soluble in a wide range of organic solvents.
Boron trifluoride-initiated cationic copolymerization of β-myrcene with tung oil has been successfully
accomplished to form elastomer thermosets [55]. Dihydroxy polymyrcene, synthesized via anionic
polymerization with a 3-(tert-butyl-dimethylsiloxy)-1-butyllithium initiator in cyclohexane, was used
to polymerize lactide by ring-opening polymerization to form a triblock-copolymer elastomer [56].
Cross-linked thermosetting resins of 1,1′-(Methylenedi-4,1-phenylene)bismaleimide and myrcene
were formed in 1,3-dimethyl-2-imidazolidinone at the temperatures of 150 to 250 ◦C, via Diels–Alder
reaction [57]. Chemical modifications of myrcene, followed by radical or ionic polymerization resulting
in products different from the directly polymerized polymyrcene, are not discussed here [58,59].

2.2. Polyterpene Elastomers, other Than Polymyrcene

Besides myrcene, several other terpenoids have been polymerized to elastomers. Due to
the structural similarity to myrcene, the acyclic terpenes (Figure 3) can be polymerized in the same
ways as the former.

Figure 3. Structure of noncyclic terpenes and terpene alcohols, polymerized to elastomeric products.

Free radical polymerization of ocimene, using a hydrogen peroxide initiator, results in only
oligomers [15]. The ionic polymerization of alloocimene has been patented. Its sodium-initiated anionic
polymerization in ethers ends up in the formation of a mixture of 2,3- and 6,7-polyalloocimene [60].
Alloocimene polymerization with Ziegler-type (triisobutylaluminum/titanium tetrachloride or
vanadium trichloride) or acid catalysts (boron fluoride etherate and titanium tetrachloride) results in
preferably 4,7-microstructures [61,62]. Ocimene and alloocimene have been polymerized by cationic
polymerization using a metal halide catalyst, with at least 70% soluble fraction, that contains oligomers
or polymers longer than dimers [26]. Ocimene, farnesene [63], and alloocimene [64] have been
subjected to redox emulsion polymerization, using tert-butyl hydroperoxide and ammonium persulfate
initiators, under ambient conditions. Farnesene has also been statistically copolymerized with glycidyl
methacrylate, while its copolymer has been block-copolymerized with styrene, using a N-succinimidyl
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modified commercial BlocBuilder initiator, via NMP [1]. Polymeric alloocimene via free radical method
was found to be amorphous, while the rubbery polyocimene and polyfarnesene formed in low yields
because of the hindered double bonds of their monomers. Ocimene was also polymerized cationically
using triflate ester initiators, but the resulting oligomer had no olefinic proton detectable by 1H NMR
spectroscopy [27]. The anionic polymerization of farnesene in cyclohexane using a sec-butyllithium
initiator was successfully conducted, with 85% a product of 1,4-microstructure [65]. Alloocimene
can also be copolymerized with isobutylene via quasi living carbocationic polymerization, using
a trimethylpentyl chloride/TiCl4 initiator/coinitiator system in a hexane/methyl chloride solvent mixture
at −80 ◦C, resulting in thermoplastic elastomers [66–68]. Sequential polymerization using a similar
system with AlCl3, utilizing ethylaluminum dichloride as a coinitiator, also resulted in the formation
of poly(alloocimene-b-isobutylene-b-alloocimene) thermoplastic elastomers up to 100 kDa molar
mass [69].

There are also some examples of the polymerization of monoterpene alcohols, with a similar
structure to the previously mentioned monomers. Dove et al. published their work recently with
linalool-, nerol- and geraniol-based polyterpene resins [17]. The elastomer resins were produced
using pentaerythritol tetrakis(3-mercaptopropionate) and an Irgacure 819 photo initiator, followed by
postpolymerization treatments at various temperatures.

Menthol itself is not a polymerizable terpene and also acts as a radical scavenger. Menthide,
a seven-membered lactone derived from menthol through Baeyer–Villiger oxidation, can be polymerized
via ring-opening transesterification polymerization, using a diethylene glycol initiator and diethyl
zinc/tin(II) ethylhexanoate as the catalyst (Mn up to 100 kDa) [70–73]. The resulting telechelic polymenthide
was further copolymerized with other biobased monomers. After the chain-end modification of
this homopolymer with triethylaluminum, lactide was polymerized with this macroinitiator [71–74].
Controllable composition and molar mass, as well as the phase-separated structure of the formed
triblock-copolymer, was found. In another work, the esterification of hydroxy telechelic polymenthide
(Mn ~100 kDa) resulted in dibromo functionalities, which were then applied as the macroinitiator in
the atom transfer polymerization of α-methylene-γ-butyrolactone, with the final composition of 80–94
weight % terpene in the triblock copolymer [71]. A similar procedure, as in the case of menthol, was
carried out for carvone (Figure 4). First, it was converted to a lactone, and then polymerized to hydroxyl
telechelic polycarvomenthide using tin/diethylene glycol and zink/benzyl alcohol initiating systems, with
predetermined molar mass and low polydispersity (~1.3) [75,76]. This polymer can further copolymerize
with lactic acid or α-methylene-γ-butyrolactone to form triblock-copolymeric thermoset elastomers [77].

Figure 4. Synthesis and structure of some polymerizable cyclic terpenes.

β-Caryophyllene and humulene can be polymerized by ring-opening metathesis polymerization,
using various Grubbs catalysts at room temperature, without modification [78]. The obtained polymers
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were hydrogenated to form fully saturated renewable rubbers. Biodegradable elastomers, with high
molar mass up to 250 kDa, can be produced from bile acids via ring-opening metathesis polymerization,
using second generation Grubbs catalysts [79,80].

3. Properties of Polyterpene Elastomers

In this section, a brief outline of the properties of a few terpene-derived polymers, with an emphasis
on β-myrcene-based homopolymers and copolymers, is presented. β-myrcene is a well-explored
biobased monomer, which has reportedly been polymerized by a wide variety of polymerization
techniques, producing regioselective and stereoselective products with definite properties, discussed
earlier [5,10]. Goldblatt et al. showed the products obtained from the emulsion polymerization of
myrcene were unusually soft and rubbery, like polymer [18]. The vulcanizates showed a tensile
strength (TS) of 4.14 MPa, and an ultimate elongation or elongation at break (EAB) of 300%.
The investigation into the polymerization of β-myrcene by Ziegler−Natta-type catalysts in the 1960s
reported the resulting 1,4-polymyrcenes are of relatively low molecular weight, with intrinsic viscosities
of 0.3–1.0. With variation in the combination of catalysts, a higher molecular weight polymyrcene
(inherent viscosities = 2 to 5.5) was obtained. The polymyrcene obtained showed tough and rubbery
properties [11]. Surprisingly, after the preliminary investigation, there are no such further studies
for at least 50 years into exploiting its commercial viability, or in-depth analyses of the polymer
microstructure and its properties. In the early 21st century, Ritter et al. investigated the properties
of polymyrcene produced via cyclodextrin complexes, using a redox initiator in aqueous media [81].
The corresponding polymer was found as water-insoluble with a glass transition temperature (Tg) of
115 ◦C. The formation of copolymer using myrcene and N-isopropyl acrylamide showed lower critical
solution temperature (LCST) behavior around 80 ◦C in aqueous solution. The polymer obtained was
water soluble with a Tg = 125 ◦C. The biobased polymyrcene polymer obtained using a high-temperature
persulfate initiator displayed a subzero (−73 ◦C) glass transition temperature, along with shear-thinning
behavior [19]. Polymyrcene is amorphous in nature, displaying elastomeric properties. X-ray diffraction
analysis showed a typical pattern of an amorphous polymer, like natural rubber. Rheological studies
revealed that the pseudoplastic behavior of polymyrcene. The mechanical properties (stress-strain
plot) of the polymer showed higher TS value (97.8 kPa) and higher EAB (up to 60%), respectively, than
the corresponding redox analogue (Figure 5) [19]. This was due to the presence of 3,4- and 1,2-vinyl
microstructural defects in the case of persulfate polymyrcene, compared to the defect-free microstructure
(high 1,4-microstructure content results in much denser packing) in redox polymyrcene, which aids in
higher elongation and tensile strength.

Polymyrcenes synthesized using different redox emulsion recipes displayed glass transition
temperature from −70 to −58 ◦C, indicating a rubbery nature of the polymer. The difference in
the properties of the polymers (polyterpene products) is quite contrasting, due to the variation in
the percentage of microstructures [63]. Accordingly, polymyrcene polymer with a highly ordered
structure, having a composition of at least 96% 1,4-units (both cis and trans), was reported by
Kali et al. The produced polyterpenes exhibited low glass transition temperature (−60 ◦C), reflecting
the elastomeric properties of the polymer. The highly controlled molecular structures were also
reflected in the results in terms of the dispersity, functionality and molar mass of the polymer [36].
The polymyrcene-b-polystyrene block copolymer showed a crystalline nature (Tg around 50 ◦C);
the measured value is between the transition temperatures of two miscible polymeric phases.
Polymyrcene obtained in bulk exhibits good thermal stability. The molar mass (Mn) increased
linearly with the conversion to 5.5 kDa, while the polydispersity (Đ) remained low, around 1.3.
It showed moderate weight loss below 300 ◦C on thermal aging, and the decomposition temperatures
corresponding to 50% weight loss of polymer were observed around 385 ◦C [37,38].

Although in-depth investigations into the different properties of polymyrcene have been
investigated, studies into the most important application performances of these polymers in the rubber
industry have been lacking. Biogenic polymyrcene and poly (myrcene-co-styrene) elastomers were



Processes 2020, 8, 553 9 of 21

successfully cross-linked with sulfur [46]. Amazingly, the homopolymer exhibited a good damping
potential, and the copolymer showed satisfactory wet skid resistance and rolling resistance properties
(Figure 6).

Figure 5. (a) Plot of complex viscosity versus angular frequency polymyrcene, (b) tensile stress-strain
plot of synthesized polymyrcene. Sample designations: ‘PMy20h’ stands for polymyrcene via persulfate
polymerization, and ‘PMyredox’ stands for polymyrcene via redox polymerization. (Reproduced from
Reference 19, with permission from The Royal Society of Chemistry).

Moreover, the mechanical performance of the copolymer sufficiently improved after reinforcement
with carbon black or silica-based filler (TS and EAB of 6.3 MPa, and >300% respectively) compared to
pristine material (TS of 1.4 MPa, and EAB of 230%) (Figure 6) [46].

Figure 6. (a) Damping factor (tan δ); (b) Tensile strength and elongation at break of all vulcanizates.
Sample designations: ‘MR’ stands for homopolymer of β-myrcene, ‘SMR’ denotes copolymer of
β-myrcene and styrene, ‘R and B’ before SMR indicates random and block, ‘CB and SiO2’ for carbon
black and Silica. (Reproduced from Reference 46, with permission from American Chemical Society).

With the continuing interest and upsurge in developing sustainable polymers for potential
applications in the industry, several properties and performances of β-myrcene-based copolymers have
also been well explored. A triblock type thermoplastic elastomer, poly (α-methyl-p-methylstyrene-b
-myrcene-b-α-methyl-p-methylstyrene), displayed micro-phase separation and impressive TS of up to
10 MPa, and ultimate EAB up to 1300% (Figure 7), as well as notably low energy loss recovery properties [23].

The copolymer, poly (myrcene-co-styrene), properties were mainly governed by the styrene
content. The rubber vulcanizate with functional filler (carbon black) exhibited decent mechanical
properties (TS of 6.4 MPa and EAB of 395%). The vulcanizate also showed improved wet skid resistance
and lower rolling loss compared to a standard tire tread compound, thereby making it an appealing
material for the tire industry [42]. Intending to replace butadiene in the conventional SBR solution
polymerized styrene-myrcene-butadiene rubber (S-SMBR), with 100% conversion and high-molar mass
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(150–200 kDa), was reported. Interestingly, the introduction of the pendant nonpolar isopropylidene
group greatly improves the carbon black dispersibility in the rubber. The physico-mechanical
properties of the S-SMBR vulcanizate displayed the increase of rubber’s Shore A hardness from 59 to
71, and improved resilience. Furthermore, the TS and the EAB clearly tended to increase first and then
decrease with the increase in the myrcene content in the vulcanizate. The TS and EAB were excellent,
up to 12.60 MPa and 620% respectively, making it a promising material for the tire industry [44].
Nitroxide-mediated block-copolymerization of β-myrcene and styrene resulted in brittle thermoplastics,
with strains below 20% and ultimate tensile strains well below 1 MPa, even at slow elongation rates.
The statistical block copolymers displayed a range of Tg’s (−77 to +30 ◦C) depending on myrcene
molar fraction [39]. Furthermore, a β-myrcene/styrene polymer using a Lewis acid surfactant combined
catalyst enables the synthesis of elastomeric materials (Tg’s from −43 to +15 ◦C). The recycling capacity
of the catalyst explored the reuse of expensive ytterbium salt, and about 70% was recovered for
applying to new polymerization steps after quenching the polymer in ethanol [28]. Biobased gradient,
and block-like, tapered copolymers of β-myrcene with isoprene, styrene and 4-methylstyrene, were
investigated by Frey et al. The copolymers showed narrow molecular weight-distributions and two
glass transition temperatures (Tg,1 = −51 to −62 ◦C; Tg,2 = +93 to +107 ◦C). Transmission Electron
Microscopy (TEM) and Small-angle X-ray scattering (SAXS) measurements revealed microphase
separation and highly ordered lamellar morphologies for all the polymers [43].

Figure 7. Representative stress-strain curves of poly (α-methyl-p-methylstyrene-b-myrcene-b-α
-methyl-p-methylstyrene) samples at room temperature (* Denotes failure point). Sample designation:
The sets of numbers in brackets correspond to block sizes in kg mol−1; inset shows stress recovery
of the 17-101-17 block copolymer. (Reproduced from Reference 23, with permission from American
Chemical Society).

Highly selective polymyrcene via lanthanide-based catalyst showed a cis-stereoselectivity up
to 98.5%, and a controlled molecular weight, reported by Loughmari et al. [29]. With changes in
the combination of pre-catalyst and activator, the polymer was obtained in good yield, displaying low
solubility due to the occurrence of crosslinking. However, myrcene, along with isoprene and styrene
using the lanthanum half-sandwich complex, resulted in highly stereoregular statistical copolymer
and terpolymer. 1,4-trans stereoselectivity enables the growth of several stereoregular chains per
catalyst, providing a significant catalyst economy [30].

Later, a series of biobased random copolymers, poly (myrcene-co-dibutyl itaconate), possessing
a rubbery nature with scope to substitute commercial rubbers, were reported [54]. The inclusion of
polar functional groups manifested good interaction with various fillers used in the rubber industry,
thereby making them a judicious choice to substitute many synthetic elastomers. Sarkar et al. also
delineated the properties of β-myrcene/methacrylate(s) polymers, and correlated their crystallization
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behavior with respect to the side chain length of methacrylate(s) [51]. Long alkyl side chains of
methacrylates dominate the thermal transitions of the copolymers to a greater extent (Figure 8).

Figure 8. DSC heating and cooling traces of various stearyl methacrylate-based homo and copolymers:
(a) poly(SM100), (b) poly(MY50SM50), (c) poly(MY60SM40), (d) poly(MY70SM30), (e) poly(MY80SM20)
and (f) poly(MY90SM10). Sample designation: ‘SM’ stands for stearyl methacrylate, ‘MY’ denotes
β-myrcene and MY:SM (value in the parentheses) indicates copolymer composition. (Reproduced from
Reference 51, with permission from Wiley)

The wide-angle X-ray diffraction patterns confirm the amorphous nature (2θ = 12.5–25.0◦)
of all the copolymers. A highly reactive, epoxy group-functionalized, biobased elastomer of β-myrcene,
with the ultimate aim of having a better reinforcement ability for silica-reinforced tire applications,
was fabricated [53]. The copolymer of β-myrcene and glycidyl methacrylate (GMA) displayed the Tg

values between −48 and −8 ◦C. With increasing GMA content, a decrease in polymer chain flexibility
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and an increase in stiffness of the polymer was reported. The silica-filled elastomer vulcanizate
exhibited better mechanical properties (TS = 2.69 MPa) than the pristine vulcanizate (TS = 1.07 MPa),
due to the improvements in the reinforcement efficiency of the dispersion of silica, and the interfacial
interaction between epoxy-functionalized polymer and silica (Figure 9).

Figure 9. SEM images of (a,a’) PMY/silica and PMG-20/silica nanocomposite. (b) Tan δ vs. temperature
plot of pristine and silica vulcanizates. Sample designations: ‘PMY’ stands for polymyrcene; ‘PMG-20’
represents copolymer containing 20 wt% GMA, PMY/Silica; and ‘PMG-20/Silica’ indicates silica
nanocomposites. (Reproduced from Ref. 53, with permission from American Chemical Society).

Considering the polymer as an attractive choice for tire application, the vulcanizate displayed
good winter traction, ice traction, and wet skid resistance properties (higher tan δ values at −20, −10,
and 0 ◦C respectively) (Figure 9) [53]. Furthermore, β-myrcene/glycidyl methacrylate also resulted in
the formation of amphiphilic statistical and diblock copolymers. The blocks exhibited microphase
separation and showed two distinct Tg’s. The glass transition temperature of the statistical poly
(myrcene-stat-GMA)s increased from −77 to +43 ◦C [52].

Copolymerization with L-lactide by Zhou et al. resulted in fully biobased star polymers,
displaying strains of up to 170% with elastic moduli of nearly 800 MPa. Biobased poly (β-myrcene)
was used as the rubbery block and polylactide as an exterior semi-crystalline block. The mechanical
properties—i.e., TS—of graft copolymers depend on the composition, particularly graft density
and branch length. At the definite poly (β-myrcene) fraction, the EAB of the star comb graft copolymers
was larger than the linear comb analogues [82]. The stress-strain and viscoelastic properties of
β-myrcene/isobornyl methacrylate-based triblock copolymers, synthesized by SG1 nitroxide-mediated
controlled radical polymerization, were elucidated [40]. Moreover, the triblock copolymer exhibited
a tensile strength of 4 MPa, and an elongation at break of 500%. The phase separation of the two
blocks was supported by two distinct Tg’s, at about −60 ◦C and +180 ◦C, and atomic force microscopic
analysis. The micro-phase separation was reported clearly with the embedding of glassy methacrylate
aggregates (disperse phase) in the soft polymyrcene (continuous phase).

In continuation of the thrust to prepare terpene-derived functionalized elastomers, a new
polymeric material, poly (myrcene-co-furfuryl methacrylate), for smart and novel application properties,
has been reported [83]. With the assistance of thermal behavior, the polymer displayed excellent
self-healing properties, using an external crosslinker via the Diels−Alder ‘Click Chemistry’ phenomenon.
The healing efficiency was achieved to about 78%, shown by atomic force microscopy (AFM) depth
profile imaging (Figure 10a). The copolymers showed a completely amorphous and random nature,
with Tg reported between the temperature range of −40 to −25 ◦C (Figure 10b).
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Figure 10. (a) Self-healing analysis by AFM imaging (1–4) of scratched and healed sample at 130 ◦C for
6 h. (b) Thermoreversibility of Diels−Alder crosslinked polymer by DSC trace. Sample designations:
‘PMF-20’ represents a copolymer containing 20 wt. % furfuryl methacrylate, and ‘poly (MY-co-FMA)/BM’
indicates Diels−Alder adduct. (Reproduced from Reference 83, with permission from Wiley)

Polymer networks, based on β-myrcene or β-farnesene and sunflower oil, were successfully
engineered to obtain branched polymers with soft and tearable properties. Variation of Tg with
sunflower oil level is shown in Figure 11a. The myrcene−oil (20/80) network presents a higher tensile
modulus (97 MPa) and TS (8.8 MPa), combining high resistance and good flexibility. The materials
demonstrated remarkable swelling ability in eugenol (Figure 11b), a biobased antibacterial material for
coating application [84].

Dove et al. reported the use of polymyrcene polymer for 3D printing materials, in its linear
and branched forms, via photo-crosslinking and subsequent functionalization with monofunctional
thiols (Figure 12). Thiol-ene click chemistry on polymyrcene films for post-polymerization modification
showed the difference in surface hydrophobicity of polymyrcene, from superhydrophobic, using
an alkyl chain monothiol (greater than 100◦ water contact angle), to a hydrophilic surface displaying
a water contact angle of less than 45◦ (Figure 13) [16].

Figure 11. (a) Variation of Tg values with sunflower oil contents in β-myrcene and β-farnesene networks.
(b) Swelling rate of S50M50 and S50F50 films in eugenol. Sample designations: ‘S’ stands for sunflower
oil, ‘M’ represents β-myrcene, ‘F’ indicates β-farnesene and S:M/S:F (number in the parentheses)
represents polymer network composition. (Reproduced from Reference 84, with permission from
American Chemical Society).
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Figure 12. 3D printed models of polymyrcene resins for negative volume molds (a), and in porous 3D
scaffolds (b). (Reproduced from Reference 16, with permission from American Chemical Society).

Figure 13. Goniometry comparisons of polymyrcene surfaces before (a,d) and after functionalization
using hexadecanethiol (b,e) and mercaptopropanoic acid (c,f), corresponding to static (g) and advancing
(h) contact angles. (Reproduced from Reference 16, with permission from American Chemical Society).

Hydroxy-functionalized polymyrcene has been put forward for use as a useful toughening agent
in a highly crosslinked polyurethane. This causes improved stress-strain and impact properties, with
no decrease in the Tg of the matrix and only small decreases in modulus, relative to the unmodified
polyurethane network [14]. β-myrcene-based polymers were also screened as precursors for
polyurethane elastomers. The study documented a range of polyurethane materials formed using
hydroxy-terminated polymyrcene and modified β-myrcene diols [13,85]. The polymyrcene-based
elastomers synthesized exhibited higher Tg values, ultimate elongations, and larger swelling ratios,
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but were softer and possessed lower tensile strengths in comparison with elastomers based on
polybutadiene [15].

In this scenario, the search for the production of synthetic rubbers is greatly expanded by
the enlarging scope for using terpene-based natural synthons. Indeed, this gives an ample set of
materials with promising properties. Synthesized polymers, like poly (ocimene-co-butadiene) and poly
(farnesene-co-butadiene), revealed elastomeric properties along with good stereoselectivity of both
butadiene (up to 95%) and terpenes (up to 92% and 86% for ocimene and farnesene, respectively)
functionality [86]. The polymer with ocimene showed improved mechanical properties (stress at
break = 17.81 MPa and elongation at break = 645%), and exhibited a superior performance as
a component in a model tread compound, with respect to the standard butadiene (cis) rubbers used in
tire tread application [86].

Polyalloocimene, a terpene-based rubbery-type polymer (Tg = −18 ◦C) obtained in 20–25% yield,
was documented by Sahu et al. The research claimed that, at 35 ◦C in polymerization, the thermal
decomposition of the polymer chains prevails, leading to a reduced molar mass of the material [64].
Polymerization of biobased trans-β-farnesene has been commercialized, producing a highly branched
“bottlebrush” structure, possessing unique thermal and rheological properties. The rheological
properties of the material showed that viscous behavior dominates over the frequency range. Pristine
poly (trans-β-farnesene) oligomers and polymers were reported to be useful plasticizers for rubber
compounds, replacing processed oils, while functionalized polyols of poly (trans-β-farnesene) can be
used as intermediates in preparing polymer-like thermoplastic polyurethanes and polyurea [87].

4. Applications of Terpenes

Terpenes have been used as an essential component in various applications since antiquity.
In earlier days, terpenes were used mainly as solvents in the chemical industry, but these compounds
have long been used in human culture, as a component of essential oils. Terpene oils are employed
widely as natural flavor additives for food, and as fragrances in perfumery (Figure 14) [1,88].
The application portfolios of terpenes also extend into conventional and alternative medicines,
such as aromatherapy, and they also have anti-fungal, anti-depressant and anti-anxiety properties,
as well as antiseptic, anti-bacterial and anti-inflammatory medical benefits [89]. They are also found to
be an active biomaterial with antioxidant, antimicrobial/antimycotic and anticarcinogenic properties,
which also support tissue regeneration and wound/tissue repair [90,91].

Most of the polyterpenes have been used as additives or tackifiers in many high-quality hot
melt and pressure-sensitive adhesives, because they are compatible with many common elastomers,
including natural rubber, styrene-butadiene, and styrene-isoprene rubbers, acrylics and polyolefins
(including ethylene-vinyl acetate) [92,93]. The importance of polymeric myrcene is not only its
biobased origin, but also its possible application potential as well. It has been recognized for its good
biocompatibility, and it is approved as a food additive by the U.S. Food and Drug Administration
(FDA) [10]. The utilization of bio-derived polymers is supported by recent government incentives,
e.g., the United States Department of Agriculture (USDA) BioPreferred Program [94].

Nowadays, terpene-based polymers are being applied to general and engineering applications in
many areas, like biodegradable packaging, antimicrobial films, coatings, fibers, or material reinforcement,
as well as in medicine and pharmaceuticals [95–97]. Moreover, the use of polymyrcene polymer for smart
applications, like self-healing and stimuli-responsive materials, is also a trending phenomenon [98].
These applications can be achieved either by functionalization or by post-polymerization modification,
through the pendant double bonds or by using the pure polymer [42,53,83]. In combination with the great
mechanical properties, the application of this elastomer, also as a copolymer, in tissue replacement
or engineering would be advantageous [99]. Overall, terpene-based polymers will have increasing
applications in the polymer industry in the future.
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Figure 14. Meet the terpenes: a visual introduction of their uses in aroma and fragrances. Reproduced
from https://www.grozine.com/2017/01/05/terpenes, accessed on March 2020).

5. Conclusions and Future Outlook

To conclude, we can say that ‘sustainable development’ is a hot topic in today’s scientific world.
In this review, different sustainable synthons and polymers from terpenes, and their applications in
the current scenario of elastomer science and technology, are highlighted. In particular, significant
efforts are being conducted in the field of polymer science and technology to prepare macromolecular
materials utilizing terpene monomers for common, industrial and smart applications. The synthetic
methodologies comprise of various polymerization techniques (to polymerize terpene-based monomers)
and coupling reactions (to attach terpene entities to different synthetic polymers). We have also tried
to underline several approaches that contribute towards sustainable development in the field of
elastomer science and technology. Although comparisons of sustainable polymers, concerning their
properties, cost and energy benefits, with their petrochemical-derived equivalents is still at an early
stage, the impressive progress in this research field would surely continue to gain substantial popularity,
and allure the scientific fraternity in the near future toward the attaining of its goals. These types of
new green and functional materials, engineered from terpene resources, could be valued as sustainable,
smart and promising materials to replace the commercial petrol-based products.
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