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Abstract: This study examines the potential of applying computational intelligence modelling to
describe the drying kinetics of persimmon fruit slices during vacuum drying (VD) and hot-air-drying
(HAD) under different drying temperatures of 50 ◦C, 60 ◦C and 70 ◦C and samples thicknesses of
5 mm and 8 mm. Kinetic models were developed using selected thin layer models and computational
intelligence methods including multi-layer feed-forward artificial neural network (ANN), support
vector machine (SVM) and k-nearest neighbors (kNN). The statistical indicators of the coefficient of
determination (R2) and root mean square error (RMSE) were used to evaluate the suitability of the
models. The effective moisture diffusivity and activation energy varied between 1.417 × 10−9 m2/s
and 1.925 × 10−8 m2/s and 34.1560 kJ/mol to 64.2895 kJ/mol, respectively. The thin-layer models
illustrated that page and logarithmic model can adequately describe the drying kinetics of persimmon
sliced samples with R2 values (>0.9900) and lowest RMSE (<0.0200). The ANN, SVM and kNN
models showed R2 and RMSE values of 0.9994, 1.0000, 0.9327, 0.0124, 0.0004 and 0.1271, respectively.
The validation results indicated good agreement between the predicted values obtained from the
computational intelligence methods and the experimental moisture ratio data. Based on the study
results, computational intelligence methods can reliably be used to describe the drying kinetics of
persimmon fruit.

Keywords: persimmon fruit; drying methods; computational intelligence methods; artificial neural
network model; support vector machine model; k-nearest neighbors

1. Introduction

Persimmon (Diospyros kaki) is an edible fruit with a sweet taste and rich in vitamin A, C, calcium,
condensed tannins, carotenoid, phenolic compounds and iron [1–3]. Besides the nutritional value of
persimmon, it has many health benefits such as therapeutic effect on cardiovascular system disease,
helps effectively to reduce cholesterol and blood pressure, strengthens the immune system, prevents
cancer and remedy for digestion [4]. Persimmon has high moisture content resulting in susceptibility
to spoilage even at refrigerator temperatures. Thus, it has to be preserved by proper drying processes
to increase the shelf life [5,6].
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Drying is considered one of the commonly used postharvest preservation techniques. The
drying process of harvested agricultural products assists in reducing spoilage, increasing shelf-life and
reducing the bulk weight of products during transportation. Drying of agricultural products causes the
enzymatic reactions to be inactivated as a result of heat and mass transfer leading to a reduction of the
moisture content inside the product [7]. It also helps the extraction of bioactive compounds from food
products. Drying methods such as hot-air drying (HAD), freeze-drying (FD), vacuum drying (VD),
microwave drying (MWD) and infrared drying (IRD) have been used in drying agricultural crops [7–10].
Amongst these drying methods, the HAD and VD are the most common commercially used drying
methods as they provide more uniform dried product, naturally harmless and nontoxic [11]. For the
VD method, the use of low temperatures in the absence of oxygen can preserve heat-sensitive and
easily oxidizable foods [12]. Consequently, discoloration and decomposition of the flavor and some
nutritional substances can be prevented [10]. However, using HAD and VD without appropriate
operating parameters can negatively affect the essential properties of food products such as nutritional
and phytochemical properties. Hence, the determination of the optimum operating parameters, drying
conditions using suitable drying models are indispensable for achieving quality along with minimum
product cost and maximum yield [7,13,14].

Previous studies have explored several mathematical thin-layer drying models (empirical,
semi-theoretical and theoretical) to describe the drying kinetics of fruits and vegetables for enhancing
the overall performance of the drying process [5,15–17]. These models are derived from the physical
laws that govern the process such as mass, reaction kinetics and thermodynamics. The models accuracy
of a thermal process are limited to other factors like physical properties, which may vary during the
thermal process. Besides that, these models can achieve satisfying regression results in comparison
with experimental data in specific conditions. Nevertheless, mathematical thin-layer models are
empirical in nature, do not give the physical interpretation of the drying process and they are product
dependent [18].

Computational intelligence tools such as artificial neural networks (ANN), support vector
machine (SVM) and k-nearest neighbors (kNN) are considered as complex tools for complex systems
and dynamic modelling [19]. The application of ANN, SVM and kNN offer many advantages
compared to conventional modeling techniques due to the learning ability, increased flexibility, online
non-destructive measurements, reduced assumptions, suitability to the non-linear process and tolerance
of incomplete data [7,13,14]. For example, ANN is inspired by the biological neural system as a useful
statistical tool for nonparametric regression [19]. SVM is highly recognized in terms of its superior
performance of the regression data due to its excellent performance capability when working with
multi-dimensional data [20]. The kNN is an easy-to-implement algorithm that can be used to solve
prediction problems [21].

Computational intelligence modelling methods can be applied as a potential alternative to
mathematical thin-layer models in the drying of fruits and vegetables due to the stability and precision
in case of uncertainties in the input parameters. ANN and SVM have been successfully applied in
modelling and optimizing the drying processes of fruits and vegetables such as pomelo [22], ginkgo
biloba seeds [13], mushroom [23], tomato [24], wood [25], celeriac slices [26], pumpkin [11], pepper [27],
eggplant [28] and tea leaves [29]. The application of computational intelligence modelling methods in
many areas such as cybersecurity and health-care has proven their unique ability to learn such complex
data interactions [30,31]. Therefore, including these models in the drying techniques can enhance the
prediction and optimization of the drying kinetics of agricultural crops. They provide a significant
advantage to overcome the large errors in predictions, by automatically adapting the models until the
minimum error rate. In view of this, ANN, SVM and kNN techniques can be applied to predicting and
optimizing the drying kinetics of persimmon fruit under VD and HAD. It can help in the evaluation
of drying parameters in real conditions, the optimization of processing conditions and the increase
in the overall drying efficiency. However, this knowledge is limited in the literature regarding the
application of ANN, SVM and kNN techniques in modelling the drying kinetics of persimmon fruit
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under VD and HAD. Application of these models can optimize energy and quality for persimmon
fruit and further minimize the required time and production cost.

The objectives of this study are to investigate the drying characteristics of persimmon fruit at
different temperatures using VD and HAD, to evaluate the feasibility of applying ANN, SVM and
kNN modelling as a non-destructive technique in describing the drying behavior of persimmon fruit
under different drying conditions and to compare the results to mathematical thin-layer models.

2. Materials and Methods

2.1. Samples Preparation

Persimmon fruit bought from a market in Prague, Czech Republic, was used for the experiment.
A total of 30 persimmon fruits were selected based on similar physical appearances (shape, color and
size). Before the drying experiments, the persimmon fruits were stored in a refrigerator at 5 ◦C until
further processing. Prior to each experiment, samples were peeled and washed under running tap
water. Afterwards they were sliced into two thickness levels of 5 mm and 8 mm with a diameter of
56 mm using a Sencor slicer (SFS 4050SS, Prague, Czech Republic). The initial moisture content of the
fresh samples was determined to be 3.98 kg/kg (dry basis) based on the ASABE standard by drying
25 g of selected samples at 70 ◦C for 24 h using the conventional oven [32].

2.2. Drying Experiments

2.2.1. Vacuum Drying (VD) Technique

The VD technique was carried out using a laboratory-scale drying unit (l 450 Gold brunn, Poland).
The vacuum was regulated at a 50 mbar ultimate pressure and 2 L/s pump speed by a vacuum pump
(VE 135, RoHS, Shanghai, China). However, it is worth mentioning that the pressure was monitored
through the vacuum gauge which was unstable during the drying process. This problem was solved
manually by fixing the pressure at approximately 50 mbar. This meant that when the pressure increased
above or decreased below 50 mbar, the pump was opened for the adjustment. The VD operates by
heating the samples with a conduction heat from a heater plate in the container. The vacuum pump
reduces the pressure around the sample to be dried and further ensures less atmospheric pressure.
This decreases the boiling point of the water inside the product and thereby increases the rate of
evaporation. The sliced samples were dried at three temperatures (50 ◦C, 60 ◦C and 70 ◦C). Prior to the
experiments, the VD was set-up to the required temperature for 30 min to enable the dryer temperature
to reach equilibrium with the surrounding air temperature. The weight of the persimmon sample was
measured at 1 h interval using a digital scale (HR-250AZ, A&D Company Limited) weighing balance
of 252 g 0.1 mg−1 precision. All the drying experiments were carried-out in triplicates and the average
values were used for further analyses.

2.2.2. Hot-Air Drying (HAD) Technique

A laboratory-scale convective HAD (UF 110, Memmert, Germany) was used. Similar to VD,
three temperatures (50 ◦C, 60 ◦C and 70 ◦C) at a constant air velocity of 1.10 m/s was attained
until constant weight between two successive readings. The air velocity was measured using a
Thermo-Anemometer (Model 451104, EXTECH Instruments, Tainan, Taiwan; with the accuracy of
62% velocity). Before starting the experiments, the HAD was set-up to the required temperature for a
half-hour to enable the dryer temperature to reach equilibrium with the surrounding air temperature.
Similar to VD, the weight of the persimmon sample was measured 1 h interval using a digital scale
weighing balance; whereby the samples were removed from the dryer and measured and then
returned to the dryer. The experiments were conducted in triplicate and the average values used in
further analyses.
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2.3. Drying Kinetics

The variation in moisture content during VD and HAD techniques was expressed in the form of
moisture ratio (dimensionless) as described in Equation (1).

MR =
(Mt −Me)

(Mo −Me)
(1)

where Mt, Me and Mo are the moisture content of the samples at time t, equilibrium moisture content
and initial moisture content, respectively. According to Aghbashlo et al. [33], Me values did not change
because they were relatively low compared to Mt and Mo values, resulting in negligible error during
simplification, thus, in this study, the moisture ratio was expressed as shown in Equation (2):

MR =
Mt

Mo
(2)

2.4. Effective Moisture Diffusivity

To effectively assess the behavior of the VD and HAD methods of samples, it is important to
understand the mechanisms of moisture movement within the samples during drying. Fick’s diffusion
equation as a dimensional approach was applied due to its simplicity to describe the mass transfer of
drying samples. The effective moisture diffusivity of samples for VD and HAD methods was estimated
using Crank’s solution [33] of Fick’s diffusion equation as described in Equation (3) [16].

∂Mt

∂t
= ∇ .

(
De f f ∇Mt

)
(3)

Assuming constant diffusion and uniform initial moisture distribution, the Crank’s solution for
cylindrical shaped sample is shown in Equation (4).

MR =
8
π2

∞∑
n=1

1

(2n + 1)2 exp

− (2n + 1)2De f f t

r2

 (4)

where Deff is the effective moisture diffusivity (m2/s), n is the positive integer, r is the radius of the
sample (m) and t is the drying time (s). For the sake of mathematical simplicity, Equation (4) was
restricted to the first term, resulting in Equation (5).

MR =
8
π2 exp

−π2De f f t

r2

 (5)

2.5. Activation Energy

In general, activation energy is the minimum energy needed in order for drying to occur. The
activation energies for VD and HAD methods were calculated from the relationship between effective
moisture diffusivity and the average temperature of the samples based on the Arrhenius equation as
shown in Equation (6) [34].

De f f = Do exp
(
−

Ea

R(T + 273.15

)
(6)

where Do is the pre-exponential factor, Ea is the activation energy (kJ/mol), R is universal gas constant
(8.3143 × 10−3 kJ/mol) and T is the average temperature of the sample (K). The values of Ea for VD and
HAD methods for different persimmon thickness levels were measured from the resulting slope values
by plotting the fitting curve between lnD and 1/(T + 273.15) (Equation (7)).

Slope = −
Ea

R
(7)



Processes 2020, 8, 544 5 of 21

2.6. Mathematical Thin-Layer Modelling

The experimental drying data measured were fitted to ten selected mathematical thin-layer drying
models. The selected mathematical models are listed in Table 1 namely Newton, Page, Modified
page, Logarithmic, Two-term, Two-term exponential, Henderson and Pabis, Modified Henderson
and Pabis, Midilli et al. and Hii et al. The coefficients of the mathematical models were determined
based on non-linear least squares regression analysis using Sigma plot software (Version12.0, Systat
Software Inc., California, USA). The application of these models gives a better prediction with fewer
assumptions [35].

Table 1. Mathematical thin-layer drying models.

Model
No. Model Name Model Expression Reference

1. Newton model MR = exp (−kt) [36]
2. Page model MR = exp (−ktn) [15]
3. Modified page MR = exp [−(kt)n] [37]
4. Logarithmic model MR = a exp (−kt) + c [38]
5. Two-term model MR = a exp (−k1t) + b exp (−k2t) [39]
6. Two-term exponential model MR = a exp (−k0t) + (1−a) exp (−k1at) [40]
7. Henderson and Pabis model MR = a exp (−kt) [41]
8. Modified Henderson and Pabis model MR = a exp (−kt) + b exp (−gt) + c exp (−ht) [42]
9. Midilli et al. model MR = a exp (−kt) + bt [43]
10. Hii et al. model MR = a exp (−k1tn) + b exp (−k2tn) [11]

2.7. Computational Intelligence Methods

2.7.1. Artificial Neural Network

The structure of a neural network is in the form of interconnected layers [44,45]. Haykin [46]
divided an ANN into three groups of structures based on their connection namely, single layer
feed-forward network, the multi-layer feed-forward network and the recurrent network. Among these
structures, the multi-layer feed-forward network is widely applied in modelling of agricultural and
food systems. The feed-forward neural network has an input layer (n), an output layer (m) and one or
more hidden layers (h). The number of neurons in the input and output layers is representative of
the number of independent variables (input) and dependent variables (output) respectively. Each of
the nodes has connected weight to all the nodes in the next layer calculated to give the sum of the
nodes (x) representing an activation input value function of the node. The value of x is computed first
followed by computing the activation function of the node until the output nodes activation function
is acquired. Hidden layer with different nodes is used to process the information received by the input
nodes through activation function. In this study, a multilayer feed-forward network structure was
used with three input parameters (temperature, thickness and drying time), 1–3 hidden layers and one
output parameter (moisture ratio) as shown in Figure 1. A back-propagation algorithm was applied in
training of the model because it is stable when a small learning rate is used and sigmoid function was
used in all cases as illustrated in Equation (8) [47].

f(x) =
1

1 + e−x (8)

This algorithm passed through four steps; initialization, activation, weight training and iteration to
train data. In this case, the error minimization can be obtained by several procedures; gradient descent,
conjugate gradient and Levenberge-Marquardt. Several methods for speeding up back-propagation
algorithm have been used like using a variable learning rate and adding a momentum term. In this
process, the parameters of learning rate, momentum and number of epoch were set as 0.3, 0.2 and
500, respectively. It is worth noting that the training time in this study depended on the number
of iterations which was chosen to be 200. This is because at 200 iterations, the minimum error rate
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was reached. The datasets were prepared by randomly dividing the data into training (70%) and
testing (30%) [48,49]. The chosen hidden layer architectures were (3), (6), (9), (3, 3), (6, 6), (9, 9), (3, 3,
3), (6, 6, 6) and (9, 9, 9) matrix, where for example, (3, 3) and (3, 3, 3), represent the 2 and 3 hidden
layers with 6 and 9 neurons each (Figure 1). The number of the hidden layers and neurons are affected
directly by the simplicity of the ANN topology, while few numbers of hidden layers and neurons are
recommended for simplicity. The software (Weka 3.6, Hamilton, New Zealand) was used to analyze
the ANN model. Overall, ANN has the ability to performing the neural fitting and prediction and in
this case, could be used for future predictions without the need for the neural network tools for the
specific drying conditions.

Figure 1. Artificial Neural networks topology with three hidden layers and different number of neurons.

2.7.2. Support Vector Machine

Support Vector Machine (SVM) is a supervised learning model which combines theoretical
solutions with numerical algorithms used for classification and regression methods [50]. In 1999,
Vapnik [51] developed the SVM algorithm and other important feature information and patterns.
SVM as a regression method is considered an effective approach due to its capability of capturing
non-linear relationships in the feature space.

The SVM used for the moisture ratio values was determined by the SMOreg sequence in the
Waikato Environment for Knowledge Analysis (WEKA) software, whereby, the SMOreg implements
SVM for regression. In this regard, the parameters of SVM learned by setting the RegOptimizer with
ReqSMOImproved as a learning algorithm [52]. Figure 2 shows the workflow of using the SVM
according to ReqSMOImproved learning algorithm.

The three input variables used for the SVM model were temperature, thickness and drying time
with the output as the moisture ratio. Two filter types were applied, namely normalize and standardize
in order to determine how/if the data need to be transformed. Additionally, three different kernel
models: polynomial, Pearson universal and Radial Basis Function (RBF) were used to construct the
predictive model of the calculated moisture ratio values. The data required to be optimized in the
three kernels’ parameters for maximum performance were obtained using the Grid Search technique.
Similar to ANN, the number of iterations used was 200 due to the minimum error rate limit. The three
kernels’ parameters were computed mathematically as described in Equations (9)–(11):

f(x, y) =
((x× y) + 1)d√

((x× y) + 1)d((y× y) + 1)d
(9)

f(x, y) =
11 +

 2×
√
||x−y||2

√
2(1/ω)−1

σ


2
ω (10)

f(x, y) = e−
′Υ||(x−y)||2 (11)
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where x represents the feature vector, y is referred to as the label for each x, d is the degree of polynomial,
ω and σ are Pearson width parameters and ’Υ is the kernel dimension.

Figure 2. The workflow of support vector machine (SVM).

2.7.3. k-Nearest Neighbors

The kNN is a simple algorithm that predicts the test samples category according to the k training
samples, which are the nearest neighbors to the test sample and classifies it to the category that has
the largest category probability (Zhang and Zhou, 2005). kNN can select the appropriate value of k
based on cross-validation and also kNN can perform distance weighting. In this study, the numbers
of neighbors were used to be 3, 5, 7, 9 and 11, in order to select the best k-value in kNN based on
the highest results of statistical indicators. The parameters of debug are meanSquared, crossValidate,
distanceWeighting, nearestNeighbourSearchAlgorithm, windowSize and doNotCheckCapabilities did
not change in Weka software. The value of the batchSize parameter in the kNN classifier was set to be
150 since the highest accuracy was observed at this value. The number of iterations was set to be 200
due to the minimum error rate. The number of decimal places used for the output of numbers in the
model was 2 (numDecimalPlaces = 2).

2.8. Color Measurements

Color is one of the most important quality evaluation attributes for fruits and vegetables during
drying. For the color measurements, first, the images of fresh (reference) and dried samples obtained
from VD and HAD methods were captured using a smartphone camera (oppo F7, Dongguan, China).
The smartphone camera is equipped with a 16 mega-pixel charged-coupled device (CCD). Samples
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were put in a glass plate located on the white paper as a background during image capture for
more focus and the distance between sample and smartphone camera was set-up to be 18 cm
vertically. Then the images were transferred to ImageJ software for determining the color parameters:
lightness (L*), redness/greenness (a*) and yellowness/blueness (b*) (http://rsb.info.nih.gov/ij/). The
total color difference (∆E) was estimated based on Equation (12). For each sample, three replications
were performed.

E =

√
(L∗ − L∗o)

2 + (a∗ − a∗o)
2 + (b∗ − b∗o)

2 (12)

where L∗o, a∗o and b∗o indicate the reference values of fresh sample.

2.9. Statistical Analysis for Mean Comparison

Statistical analysis was performed using the Statistical Analysis System software (SAS version 9.2,
Institute, Inc., Cary, NC, USA). ANOVA at 5% level of significance and 95% confidence interval was
performed using the Duncan test to compare the mean significant differences between quality attributes
(L*, a*, b* and ∆E) for different sample thickness levels of 5 mm and 8 mm, drying time intervals
between (0 and 600 minutes) and drying techniques (VD and HAD). The results were presented as
mean ± standard error values. The fit accuracy of experimental data to the mathematical thin-layer
and computational intelligence (ANN, SVM and kNN) models was determined by the statistical
indicators: coefficient of determination (R2) and root mean square error (RMSE) which are described
mathematically in Equations (13) and (14):

R2 = 1−

∑N
i=1

(
Vpred −Vexp

)2

∑N
i=1

(
Vpred −Vm

)2 (13)

RMSE =

√∑N
i=1

(
Vpred −Vexp

)2

N
(14)

where Vpred is the predicted value, Vexp is the actual observation from experimental data, Vm is the
mean of the actual observation and N is number of observations. From the values of R2 and RMSE, the
higher the value of R2 and the lower the RMSE value, the better the goodness of fit.

3. Results and Discussion

3.1. Drying Process Behavior

The variations of moisture ratio with time for VD and HAD techniques at different temperatures
(50 ◦C, 60 ◦C and 70 ◦C) and samples thicknesses (5 mm and 8 mm) are presented in Figure 3. From the
plot, the moisture ratio of the sliced samples for all techniques decreased with an increase in drying
time. The drying rates for VD and HAD methods occurred in the falling rate period. Based on Figure 3a,
it is clear that the drying time thus reduces as the drying temperature increases. The moisture ratio
values of 0.18 and 0.28 were determined at drying time of 170 min and temperatures of 50 ◦ C and
60 ◦C. At a drying time of 360 min at 70 ◦C was found the moisture ratio of 0.22. As shown in Figure 3b,
as the drying time increased, for example, the moisture ratio values at 300 min at 50 ◦C and 70 ◦C
were 0.44 and 0.12 respectively. Similar results were observed for HAD at samples thickness levels of
5 mm and 8 mm as illustrated in Figure 3c,d. For example, the final time found from HAD of 5 mm
sample thickness at 50 ◦C, 60 ◦C and 70 ◦C was 420 min, 300 min and 240 min respectively. The results
indicate that the moisture transfer rate from the inner layers to its surface thus increases as the drying
air temperature increases. The rate of moisture evaporation at the surface of dried material to the
atmosphere also increases as the temperature increase leading to a higher drying rate. The results are
in agreement with other researchers on the drying behavior of various varieties of persimmon [1,2,5].
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Figure 3. Drying characteristics of persimmon fruit sliced samples; (a) vacuum drying (VD) of sample
thickness of 5 mm; (b) VD of 8 mm; (c) hot-air drying (HAD) of 5 mm; (d) HAD of 8 mm.

3.2. Results of Effective Moisture Diffusivity

The values of the effective moisture diffusivity (Deff) are presented in Table 2. The Deff values were
varied between the range of 1.417 × 10−9 m2/s and 1.925 × 10−8 m2/s. As it can be seen from Table 2,
the Deff increased significantly with increasing drying temperature from 50 ◦C to 70 ◦C. The HAD
with a 5 mm thickness of persimmon samples illustrated the highest values of Deff as compared to VD.
The result is attributed to the increase in water molecules activity at higher temperatures leading to
higher moisture diffusivity [53]. Moreover, the Deff values of samples thickness of 5 mm were higher
than samples of 8 mm thickness for VD and HAD drying techniques (Table 2). This is because of
the increased heat arising from the increase in drying temperature of the product resulting to the
water molecules activities compared to samples of bigger thickness. The values of Deff obtained in
this study were within the general range of 10–6 to 10–12 m2/s for drying of food materials [5,54].
The values of Deff are agreement with published works for strawberry drying (2.40–12.1 × 10−9 m2/s),
apple drying (2.27–4.97 × 10−10 m2/s), persimmon slices (2.60–5.40 × 10−10 m2/s) and pumpkin drying
(1.19–4.27 × 10−9 m2/s) [17,55–57].

Table 2. Values for effective moisture diffusivity, Deff.

Thickness (mm) Drying Method Deff (m2/s) R2 RMSE

5
VD-50 3.316 × 10−9 0.9647 0.5564
VD-60 8.742 × 10−9 0.9897 0.4563
VD-70 1.330 × 10−8 0.8094 0.3829

8
VD-50 1.417 × 10−9 0.9670 0.6056
VD-60 2.688 × 10−9 0.9710 0.5708
VD-70 2.959 × 10−9 0.9786 0.5273

5
HAD-50 9.221 × 10−9 0.9900 0.3632
HAD-60 1.712 × 10−8 0.9956 0.3280
HAD-70 1.925 × 10−8 0.9991 0.3461

8
HAD-50 2.905 × 10−9 0.9314 0.4644
HAD-60 4.834 × 10−9 0.9811 0.5641
HAD-70 7.890 × 10−9 0.9888 0.4395

3.3. Results of Activation Energy

The activation energy (Ea) of persimmon fruit samples was calculated from the values of
effective moisture diffusivity, Deff. The relationship between Ea and Deff was described by an
Arrhenius-type equation (Equation (6)). The values of activation energy were obtained by plotting
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ln(Deff) versus 1/(T + 273.15) for VD and HAD methods. The activation energy is equal to the slope
times the universal gas constant (R) as shown in Figure 4. The activation energy values for the VD and
HAD for samples thicknesses (5 mm and 8 mm) were further estimated as given in Table 3. The values
of Ea for the VD method were 64.2895 kJ/mol and 34.1785 kJ/mol for 5 mm and 8 mm respectively. While
for the HAD method, the Ea was 34.1560 kJ/mol at 5 mm thickness, and that of 8 mm was 46.0715 kJ/mol
at temperatures between 50 ◦C and 70 ◦C. The results found in this study are similar to those reported
for persimmon sliced samples with activation energy between 30.64 and 43.26 kJ/mol for blanched and
control respectively [5]. The Ea values of persimmon samples dried using VD and HAD methods were
consistent with those in the literature for different fruits and vegetables, for example,30.46–35.57 kJ/mol
in strawberry, 25.26–72.47 kJ/mol in yams and 22.66–30.92 kJ/mol in apples [17,58,59]. The values of Ea
were within the acceptable range from 12.7 to 110 kJ/mol for various food materials [60].

Figure 4. Arrhenius-type relationship of effective moisture diffusivity versus temperature for VD and
HAD methods at different samples thickness levels.

Table 3. Activation energy of persimmon fruit samples for VD and HAD at different thickness levels.

Drying Method R2 Ea (kJ/mol)

VD-5 mm 0.9577 64.2895
VD-8 mm 0.8583 34.1785

HAD-5 mm 0.8774 34.1560
HAD-8 mm 0.9999 46.0715

3.4. Comparison of Mathematical Thin-Layer Models

The mathematical thin-layer models were used to describe the drying kinetics of persimmon fruit
samples for VD and HAD methods. Tables 4–7 show the selected mathematical models that fitted
the experimental moisture content data in relation to samples thickness levels of 5 mm and 8 mm.
Although all the selected ten models adequately fitted the experimental data, the logarithmic model
sufficiently described the drying kinetics of persimmon samples with R2 values (> 0.9900) and lowest
RMSE values (< 0.0200) for VD technique at all drying temperatures as given in Table 4. Similar results
were obtained for VD at 8 mm thickness indicating that the logarithmic model showed the best model
to fit the experimental data with the highest R2 of > 0.0990 and the lowest RMSE of < 0.0100 at all the
three temperatures (50 ◦C, 60 ◦C and 70 ◦C). For HAD technique, the Page, Logarithmic, Midilli et.al
and Hii et al. models significantly described the drying kinetics of persimmon samples of thicknesses
(5 mm and 8 mm) with R2 of more than 0.9990 and lowest RMSE of less than 0.0010 (Tables 6 and 7).
For example, the validation of the logarithmic model by comparing the predicted moisture data and
those obtained from the experiments is shown in Figure 5. The moisture ratio data predicted using
the logarithmic model lied closely along a straight regression line for different drying conditions
indicating the suitability of the model for describing the VD and HAD behaviors of persimmon fruit
samples. Onwude et al. [61] also reported the adequacy of page, logarithmic, Midilli et al. and Hii et al.
models for predicting the drying kinetics of sweet potato. Similarly, Younis et al. [62] indicated the
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appropriateness of page, logarithmic, Midilli et al. and Hii et al. models for describing the drying
performance of garlic slices.

Table 4. Statistical evaluation of the mathematical drying models for persimmon samples of 5 mm
thickness for VD.

Drying
Temperature (◦C) Model No. Model Parameters R2 RMSE

50

1 k = 0.2491 0.9577 0.0682
2 k = 0.1224, n = 1.4734 0.9940 0.2559
3 k = 0.2259, n = 1.1031 0.9577 0.0762
4 a = 1.5532, k= 0.1229, c = −0.5369 0.9980 0.0146
5 a = 0.5606, k1 = 0.2663, b = 0.5108, k2 = 0.2663 0.9650 0.0620
6 a = 0.6224, k0 = 0.2491, k1 = 0.4003 0.9577 0.0815
7 a = 1.0713, k = 0.2663 0.9650 0.0693
8 a = 0.3715, k = 0.2663, b = 0.3610, g = 0.2663, c = 0.3388, h = 0.2663 0.9650 0.0620
9 a = 1.0177, k = 0.1639, b = -0.0287 0.9976 0.0194

10 a = 0.4916, k1 = 0.1068, b = 0.4821, k2 = 0.1068, n = 1.5424 0.9948 0.0339

60

1 k = 0.4503 0.9821 0.0457
2 k = 0.3292, n = 1.3069 0.9960 0.0217
3 k = 0.4097, n = 1.0990 0.9821 0.0527
4 a = 1.1435, k = 0.3445, c = −0.1331 0.9964 0.0206
5 a = 0.5347, k1 = 0.4632, b = 0.4988, k2 = 0.4632 0.9836 0.0438
6 a = 0.6046, k0 = 0.4503, k1 = 0.7448 0.9821 0.0577
7 a = 1.0335, k = 0.4632 0.9836 0.0505
8 a = 0.3531, k = 0.4632, b = 0.3503, g = 0.4632, c = 0.3300, h = 0.4632 0.9836 0.0438
9 a = 1.0125, k = 0.3867, b = -0.0143 0.9955 0.0289

10 a = 0.4936, k1 = 0.3194, b = 0.4955, k2 = 0.3194, n = 1.3254 0.9961 0.0348

70

1 k = 0.6145 0.9957 0.0220
2 k = 0.5871, n = 1.0608 0.9963 0.0205
3 k = 0.5954, n = 1.0320 0.9957 0.0260
4 a= 1.0325, k = 0.5613, c = −0.0345 0.9974 0.0173
5 a = 0.5045, k1 = 0.6171, b = 0.5003, k2 = 0.6171 0.9958 0.0219
6 a = 0.6832, k0 = 0.6145, k1 = 0.8993 0.9957 0.0290
7 a = 1.0049, k = 0.6171 0.9958 0.0259
8 a = 0.3329, k= 0.6171, b = 0.3408, g = 0.6171, c = 0.3312, h = 0.6171 0.9958 0.0219
9 a = 0.9985, k = 0.5811, b = −0.0054 0.9975 0.0223

10 a = 0.4869, k1 = 0.5862, b = 0.5122, k2 = 0.5862, n = 1.0617 0.9963 0.0383

Figure 5. Predicted versus experimental moisture ratio data for logarithmic model at 50 ◦C and 8 mm
samples thickness for VD and HAD methods.
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Table 5. Statistical evaluation of the mathematical drying models for persimmon samples of 8 mm
thickness for VD.

Drying
Temperature (◦C) Model No. Model Parameters R2 RMSE

50

1 k= 0.1854 0.9420 0.0765
2 k = 0.0754, n = 1.5266 0.9878 0.0350
3 k = 0.1702, n = 1.0897 0.9420 0.0846
4 a = 2.8487, k = 0.0435, c = −1.8449 0.9998 0.0040
5 a = 0.5626, k1 = 0.2010, b = 0.5161, k2 = 0.2010 0.9522 0.0694
6 a = 0.5761, k0 = 0.1854, k1 = 0.3219 0.9420 0.0897
7 a = 1.0787, k = 0.2010 0.9522 0.0768
8 a = 0.3734, k = 0.2010, b = 0.3626, g = 0.2010, c = 0.3427, h = 0.2010 0.9522 0.0694
9 a = 1.0046, k = 0.0795, b = −0.0456 0.9998 0.0050
10 a = 0.4864, k1 = 0.0580, b = 0.4751, k2 = 0.0580, n = 1.6487 0.9896 0.0439

60

1 k = 0.2355 0.9579 0.0667
2 k = 0.1183, n = 1.4480 0.9921 0.0288
3 k = 0.2152, n = 1.0947 0.9579 0.0746
4 a = 1.6897, k = 0.1027, c = −0.6819 0.9994 0.0076
5 a = 0.5557, k1 = 0.2512, b = 0.5109, k2 = 0.2512 0.9646 0.0611
6 a = 0.6343, k0 = 0.2355, k1 = 0.3713 0.9579 0.0797
7 a = 1.0665, k = 0.2512 0.9646 0.0683
8 a = 0.3682, k = 0.2512, b = 0.3594, g = 0.2512, c = 0.3389, h = 0.2512 0.9646 0.0611
9 a = 1.0092, k = 0.1438, b = −0.0323 0.9992 0.0107
10 a = 0.4885, k1 = 0.1009, b = 0.4817, k2 = 0.1009, n = 1.5277 0.9931 0.0382

70

1 k = 0.3601 0.9736 0.0548
2 k = 0.2336, n = 1.3657 0.9955 0.0228
3 k = 0.3303, n = 1.0903 0.9736 0.0633
4 a = 1.3017, k = 0.2238, c = −0.2918 0.9987 0.0120
5 a = 0.5419, k1 = 0.3756, b = 0.5052, k2 = 0.3756 0.9768 0.0513
6 a = 0.6891, k0 = 0.3601, k1 = 0.5225 0.9736 0.0693
7 a = 1.0470, k = 0.3756 0.9768 0.0593
8 a = 0.3581, k = 0.3756, b = 0.3542, g = 0.3756, c = 0.3347, h = 0.3756 0.9768 0.0513
9 a = 1.0117, k = 0.2714, b = -0.0249 0.9983 0.0177
10 a = 0.4921, k1 = 0.2225, b = 0.4942, k2 = 0.2225, n = 1.3937 0.9957 0.0363

Table 6. Statistical evaluation of the mathematical drying models for persimmon samples of 5 mm
thickness for HAD.

Drying
Temperature (◦C) Model No. Model Parameters R2 RMSE

50

1 k = 0.5737 0.9986 0.0120
2 k = 0.5514, n = 1.0481 0.9990 0.0103
3 k = 0.5582, n = 1.0277 0.9986 0.0139
4 a = 1.0228, k = 0.5349, c = −0.0255 0.9998 0.0047
5 a = 0.5027, k1 = 0.5753, b = 0.5005, k2 = 0.5753 0.9987 0.0120
6 a = 0.6842, k0 = 0.5737, k1 = 0.8384 0.9986 0.0152
7 a = 1.0032, k = 0.5753 0.9987 0.0138
8 a = 0.3315, k = 0.5753, b = 0.3405, g = 0.5753, c = 0.3313, h = 0.5753 0.9987 0.0120
9 a= 0.9980, k = 0.5505, b= −0.0035 0.9998 0.0059
10 a = 0.4894, k1 = 0.5493, b = 0.5083, k2 = 0.5493, n= 1.0503 0.9990 0.0167

60

1 k = 0.8838 0.9957 0.0235
2 k = 0.7945, n = 1.2519 0.9998 0.0047
3 k = 0.8213, n = 1.0762 0.9957 0.0288
4 a = 1.0409, k = 0.8064, c = −0.0359 0.9982 0.0152
5 a = 0.5142, k1 = 0.8898, b = 0.4950, k2 = 0.8898 0.9958 0.0232
6 a = 0.6039, k0 = 0.8838, k1 = 1.4636 0.9957 0.0333
7 a = 1.0092, k = 0.8898 0.9958 0.0284
8 a = 0.3401, k= 0.8898, b = 0.3409, g = 0.8898, c = 0.3282, h = 0.8898 0.9958 0.0232
9 a = 1.0058, k = 0.8451, b = −0.0064 0.9978 0.0240
10 a = 0.4975, k1 = 0.7941, b = 0.5022, k2 = 0.7941, n = 1.2522 0.9998 0.0117

70

1 k = 0.9781 0.9943 0.0284
2 k = 0.8745, n = 1.3348 0.9999 0.0031
3 k = 0.8897, n = 1.0994 0.9943 0.0367
4 a = 1.0564, k = 0.8581, c = −0.0522 0.9979 0.0171
5 a = 0.5158, k1 = 0.9840, b = 0.4928, k2 = 0.9840 0.9944 0.0281
6 a = 0.5740, k0 = 0.9781, k1 = 1.7039 0.9943 0.0449
7 a = 1.0086, k = 0.9840 0.9944 0.0363
8 a = 0.3409, k = 0.9840, b = 0.3408, g = 0.9840, c = 0.3270, h = 0.9840 0.9944 0.0281
9 a = 1.0047, k = 0.9118, b = −0.0110 0.9974 0.0301
10 a = 0.4973, k1 = 0.8743, b = 0.5026, k2 = 0.8743, n = 1.3349 0.9999 -



Processes 2020, 8, 544 13 of 21

Table 7. Statistical evaluation of the mathematical drying models for persimmon samples of 8 mm
thickness for HAD.

Drying
Temperature (◦C) Model No. Model Parameters R2 RMSE

50

1 k = 0.2797 0.9925 0.0264
2 k = 0.2448, n = 1.0909 0.9946 0.0225
3 k = 0.2702, n = 1.0350 0.9925 0.0292
4 a = 1.0943, k = 0.2204, c = −0.1083 0.9989 0.0099
5 a = 0.5092, k1 = 0.2828, b = 0.5022, k2 = 0.2828 0.9927 0.0261
6 a = 0.6403, k0 = 0.2797, k1 = 0.4368 0.9925 0.0310
7 a = 1.0114, k = 0.2828 0.9927 0.0288
8 a = 0.3350, k= 0.2828, b = 0.3444, g = 0.2828, c = 0.3320, h = 0.2828 0.9927 0.0261
9 a = 0.9876, k = 0.2407, b = −0.0080 0.9992 0.0100

10 a = 0.4845, k1 = 0.2343, b = 0.5018, k2 = 0.2343, n = 1.1112 0.9948 0.0299

60

1 k = 0.3411 0.9622 0.0670
2 k = 0.1887, n = 1.4915 0.9979 0.0157
3 k = 0.3134, n = 1.0882 0.9622 0.0774
4 a = 1.3969, k = 0.1992, c = −0.3693 0.9956 0.0229
5 a = 0.5562, k1 = 0.3624, b = 0.5121, k2 = 0.3624 0.9689 0.0608
6 a = 0.6258, k0 = 0.3411, k1 = 0.5450 0.9622 0.0847
7 a = 1.0684, k = 0.3624 0.9689 0.0702
8 a = 0.3669, k = 0.3624, b = 0.3610, g = 0.3624, c = 0.3405, h= 0.3624 0.9689 0.0608
9 a = 1.0289, k= 0.2489, b = −0.0294 0.9949 0.0313

10 a = 0.4986, k1 = 0.1849, b = 0.4961, k2 = 0.1849, n = 1.5034 0.9980 0.0254

70

1 k = 0.5139 0.9942 0.0255
2 k = 0.4559, n = 1.1338 0.9972 0.0177
3 k = 0.4882, n = 1.0527 0.9942 0.0302
4 a = 1.0830, k = 0.4234, c = -0.0857 0.9998 0.0044
5 a = 0.5125, k1 = 0.5195, b = 0.4998, k2= 0.5195 0.9944 0.0251
6 a = 0.6353, k0 = 0.5139, k1 = 0.8089 0.9942 0.0338
7 a = 1.0123, k = 0.5195 0.9944 0.0296
8 a = 0.3385, k = 0.5195, b = 0.3431, g = 0.5195, c = 0.3307, h = 0.5195 0.9944 0.0251
9 a = 0.9984, k = 0.4570, b = −0.0112 0.9999 0.0053

10 a = 0.4915, k1 = 0.4516, b = 0.5040, k2= 0.4516, n= 1.1393 0.9972 0.0329

3.5. Results of Artificial Neural Network

The parameters namely time, temperature and samples thickness were used to predict moisture
ratio using ANN model for VD and HAD techniques. Tables 8 and 9 show the statistical results with
respect to training and validation of the multilayer feed-forward network structure of samples drying
data for VD and HAD. The training data set were used to assess the optimum number of neurons and
hidden layers for multilayer neural network modelling for determining the best predictive power. For
VD, it was found that the architecture with 1 and 2 hidden layers with 9 and 12 (6, 6 neurons), obtained
the best results for training set (R2 = 0.9991) and test set (R2 = 0.9881) as compared to those of 1 hidden
layer (3 and 6 neurons), 2 hidden layers (6 and 18 neurons) and 3 hidden layers (9, 18 and 27 neurons),
respectively (Table 8). Moreover, the networks were found to be susceptible to the number of neurons
in their hidden layers. Thus, smaller neurons led to under fitting, while too many neurons contributed
to overfitting. In addition, Figure 6 showed the predicted and experimental moisture ratio values for
the optimal ANN for training and testing sets.

Table 9 presented the statistical results of drying kinetics of persimmon samples for the ANN
model using HAD. Similar to VD, the results showed that the architecture with 1 and 2 hidden layers
with 9 and 6 (3, 3) neurons, obtained the best results as compared to those of 1 hidden layer (3 and
6 neurons), 2 hidden layers (12 and 18 neurons) and 3 hidden layers (9, 18 and 27 neurons), respectively.
The highest result of R2 values found for training and testing set were 0.9994 and 0.9979, respectively.
Therefore, to compare the results obtained from the thin-layer mathematical models and ANN results,
it can be seen that the ANN model is very close to the highest model in the theoretical mathematical
models with R2 and RMSE values of 0.9994 and 0.0124, respectively as compared to those of the
logarithmic model (R2 = 0.9998 and RMSE = 0.0044). Additionally, the predicted and experimental
moisture ratio values for the optimal ANN for training and testing data sets are illustrated in Figure 7.
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Zenoozian et al. [63] demonstrated that 1 and 2 hidden layers and 30 neurons for ANN adequately
predicted the moisture changes of pumpkin during osmotic dehydration. ANN with 1 and 2 hidden
layers have also been successful in predicting the drying behavior of other fruits and vegetables such
as pepper, apple slices, mushroom during microwave-vacuum drying [36,64,65].

Table 8. Statistical results of drying kinetics of persimmon fruit samples for the artificial neural network
(ANN) model using VD.

No. Hidden Layer No. Neurons
Training Testing

R2 RMSE R2 RMSE

1 3 0.9979 0.0249 0.9791 0.0696
1 6 0.9990 0.0245 0.9794 0.0692
1 9 0.9991 0.0213 0.9812 0.0671
2 3, 3 0.9981 0.0209 0.9820 0.0658
2 6, 6 0.9978 0.0237 0.9881 0.0572
2 9, 9 0.9976 0.0312 0.9848 0.0800
3 3, 3, 3 0.9980 0.0275 0.9803 0.0704
3 6, 6, 6 0.9982 0.0264 0.9854 0.0576
3 9, 9, 9 0.9987 0.0269 0.9866 0.0661

Table 9. Statistical results of drying kinetics of persimmon samples for the ANN model using HAD.

No. Hidden Layer No. Neurons
Training Testing

R2 RMSE R2 RMSE

1 3 0.9952 0.0655 0.9885 0.0557
1 6 0.9962 0.0296 0.9882 0.0878
1 9 0.9992 0.0183 0.9979 0.0351
2 3, 3 0.9994 0.0124 0.9983 0.0281
2 6, 6 0.9975 0.0529 0.9943 0.0605
2 9, 9 0.9989 0.0297 0.9979 0.0459
3 3, 3, 3 0.9518 0.1348 0.8025 0.3419
3 6, 6, 6 0.9969 0.0344 0.9947 0.0649
3 9, 9, 9 0.9983 0.0233 0.9952 0.0431

Figure 6. Predicted and experimental moisture ratio using VD from training and testing data set of
ANN model.
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Figure 7. Predicted and experimental moisture ratio using HAD from training and testing data set
of ANN.

3.6. Results of Support Vector Machine

The statistical results related to the training and validation of the SVM of persimmon drying
experimental data using VD and HAD are given in Tables 10 and 11. Similar to the ANN model, the
training data set was used to evaluate the best filter and kernel type modeling for determining the best
predictive power. For VD, the training data set at standardize filter with Pearson universal kernel type
found the best result of R2 and RMSE values of 1.0000 and 0.0004 as compared to those of normalize
with polynomial, Pearson universal kernel and RBF kernel and also standardize with polynomial
and RBF kernel, respectively. For the testing data set, standardize filter with polynomial kernel type
obtained the best results for R2 and RMSE values of 0.9996 and 0.1213 (Table 10).

Table 10. Statistical results of drying kinetics of persimmon samples for SVM model using VD method.

Filter Type Kernel Type
Training Testing

R2 RMSE R2 RMSE

Normalize Polynomial kernel 0.9672 0.0904 0.9234 0.1339
Normalize Pearson universal kernel 1.0000 0.0014 0.9564 0.1041
Normalize RBF kernel 0.9998 0.0067 0.9575 0.1000

Standardize Polynomial kernel 0.9672 0.0903 0.9996 0.1213
Standardize Pearson universal kernel 1.0000 0.0004 0.9258 0.2174
Standardize RBF kernel 0.9999 0.0040 0.9577 0.1042

Table 11. Statistical results of drying kinetics of persimmon samples for SVM model using HAD method.

Filter Type Kernel Type
Training Testing

R2 RMSE R2 RMSE

Normalize Polynomial kernel 0.8712 0.1697 0.8797 0.1612
Normalize Pearson universal kernel 0.9996 0.0103 0.9680 0.0862
Normalize RBF kernel 0.9980 0.0233 0.9674 0.0871

Standardize Polynomial kernel 0.9339 0.1337 0.8797 0.1612
Standardize Pearson universal kernel 1.0000 0.0005 0.8933 0.2308
Standardize RBF kernel 1.0000 0.0004 0.9690 0.0912

However, for HAD, the standardize filter type with RBF kernel obtained the best results for
training and testing data set of R2 and RMSE values of 1.0000, 0.0004, 0.9690 and 0.0912 respectively
(Table 11). From the results, it is clear that the SVM model showed the highest results as compared to
the theoretical mathematical models and also ANN (Tables 7 and 9). Few studies used SVM as a model
in drying techniques. Das and Akpinar [50] applied SVM to investigate pear drying performance by
different ways of convective heat transfer. The authors applied normalization and standardization
filter to the target attribute with three kernel models (polynomial kernel, Pearson universal kernel
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and RBF kernel). They found that the polynomial kernel showed the lowest RMSE of value 0.3351.
This indicates that the applied algorithm for SVM prediction for the moisture ratio during the drying
process for both VD and HAD techniques can be promised.

3.7. Results of k-Nearest Neighbors

Tables 12 and 13 summarized the R2 and RMSE of kNN tool developed with training and testing
data set for VD and HAD methods. For VD method, the prediction model developed using a k-value
of 3, produced the highest results for training and testing data set of R2 values of 0.9327 and 0.8782 and
lowest RMSE values of 0.1271 and 0.1829 respectively. Meanwhile, k-values of 11 and 9 indicated the
lowest R2 values of 0.8355 and 0.5638 and the highest RMSE values of 0.2214 and 0.6399 for training
and testing data set, respectively (Table 12). For HAD technique, the results of the training set showed
R2 values between 0.6347 and 0.8638 and RMSE values between 0.2145 and 0.2907. The k-value of 7
showed the highest result compared to other k-values (3, 5, 9 and 11). The prediction model developed
using the testing data set indicated R2 values of ranging from 0.4877 to 0.7873 and RMSE values from
0.2385 to 0.3099. The k-value of 5 showed the highest values (Table 13).

Table 12. Statistical results of drying kinetics of persimmon samples for k nearest neighbors (kNN)
model using VD method.

k
Training Testing

R2 RMSE R2 RMSE

3 0.9327 0.1271 0.8782 0.1829
5 0.9209 0.1548 0.7881 0.2320
7 0.8969 0.1730 0.6123 0.2799
9 0.8383 0.2059 0.5638 0.2877
11 0.8355 0.2214 0.6399 0.6399

Table 13. Statistical results of drying kinetics of persimmon for kNN model using HAD method.

k
Training Testing

R2 RMSE R2 RMSE

3 0.7923 0.2143 0.6819 0.2510
5 0.8135 0.2253 0.7873 0.2385
7 0.8638 0.2320 0.7160 0.2673
9 0.6347 0.2860 0.4877 0.3099
11 0.7101 0.2907 0.7484 0.2955

3.8. Comparison between Computational Intelligence and Mathematical Thin-Layer Models

The highest results obtained from the computational intelligence models (ANN, SVM and kNN)
and the top three mathematical thin-layer models (page, logarithmic and Midilli et al.) for moisture ratio
prediction are summarized in Table 14. The R2 value of 0.9991 and RMSE value of 0.0213 at 1 hidden
layer with 9 neurons by applying ANN model showed the best results for VD method. For the HAD
method applying ANN model, the R2 value of 0.9994 and RMSE value of 0.0124 were found. For kNN,
the results of R2 and RMSE were 0.9327, 0.1271, 0.8638 and 0.2320 for VD and HAD respectively. On the
other hand, the mathematical thin-layers modelling found the range of R2 values from 0.9963 to 0.9999
and RMSE from 0.0205 to 0.0031 for both VD and HAD methods.
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Table 14. Statistical results of drying kinetics of persimmon samples for computational intelligence
and mathematical thin-layer models using VD and HAD.

Model
VD HAD

R2 RMSE R2 RMSE

Computational
intelligence

ANN 0.9991 0.0213 0.9994 0.0124
SVM 1.0000 0.0004 1.0000 0.0004
kNN 0.9327 0.1271 0.8638 0.2320

Mathematical model
Page 0.9963 0.0205 0.9999 0.0031

Logarithmic 0.9998 0.0040 0.9998 0.0047
Midilli et al. 0.9998 0.0050 0.9999 0.0053

It can be seen that the prediction of moisture ratio with the model developed using SVM gave the
highest R2 and the lowest RMSE values of 1.0000 and 0.0004 compared to the models developed using
other computational intelligence methods (ANN and kNN) and mathematical thin-layers models;
page, logarithmic and Midilli et al. (Table 14). The results indicate that SVM gave the best results
which are in agreement with the findings of prior studies [19,66] that used SVM as a data prediction
method to improve outcomes. In summary, the results from this study demonstrate the application
of computational intelligence methods for the drying processes of persimmon samples at different
conditions. Thus, applying computational intelligence methods in drying generally improves the
drying performance by controlling the drying input parameters for optimizing energy, quality and
production cost.

3.9. Results of Color Measurements

The color properties of persimmon samples of 5 mm and 8 mm thickness for VD and HAD
methods were determined based on the change in color parameters of L *, a * and b * and the total
color change ∆E as given in Table 15. It can be seen clearly from Table 4 that the lightness (L *) of
persimmon samples dried using VD and HAD methods decreased significantly (P ≤ 0.05) compared
to the fresh samples. However, there was no significant difference between the lightness of samples
using HAD-60 for 5 mm and HAD-60 and HAD-70 for 8mm, with those of the fresh samples. The VD
method significantly (P ≤ 0.05) reduced the lightness of samples compared to HAD. The VD-70 for
8 mm showed the lowest lightness value of 33.479 ± 6.888. The redness/greenness (a *) of all dried
persimmon samples reduced significantly (P ≤ 0.05) compared to fresh samples, except VD-50, which
resulted in higher a* value than the fresh. Generally, the values of redness/greenness (a *) found using
HAD were lower than the values found using VD. The lowest value of redness/greenness (a *) was
found to be 6.032 ± 1.740 using HAD-60. Similar results were found for the yellowness/blueness (b *),
where all dried persimmon samples were reduced significantly (P ≤ 0.05) compared to fresh samples,
except HAD-60, which resulted in higher b* than the fresh. In addition, there was no significant
difference between the b* fresh samples with those of dried samples using VD-50, VD-60, VD-70 for
5 mm; VD-60 for 8 mm; HAD-50, HAD-60, HAD-70 for 5 mm and HAD-50, HAD-60, HAD-70 for 8
mm. Dried samples using VD-50 and VD-70 methods for 8 mm showed different groups of values
of 45.250 ± 2.542 and 38.733 ± 6.948 respectively. The values of total color change using VD method
showed higher values compared to the HAD method for the persimmon samples. The highest value
was found using VD-70 for 8 mm of 38.733 ± 6.948. Generally, the change of color properties of the
fresh samples under different drying methods is due to the increased sample temperature resulting
from increased enzymatic and non-enzymatic chemical reactions of the product [67,68].
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Table 15. Drying methods and color parameters of persimmon fruit samples.

Thickness (mm) Drying Method
Color Properties for Different Sample Thickness

L * a * b * ∆E

Fresh 61.425 ± 2.533 ab 26.282 ± 0.747 b 65.698 ± 2.126 ab -

5
VD-50 52.560 ± 3.680 bc 20.69 ± 1.95bc d 56.040 ± 3.410 b 17.790 ± 4.100 bcd

VD-60 56.161 ± 3.476 bc 16.280 ± 3.598 de 61.073 ± 2.834 ab 15.859 ± 1.822 bcd

VD-70 59.646 ± 0.413 bc 12.804 ± 0.764 e 62.265 ± 0.076 ab 14.568 ± 0.669 cd

8
VD-50 39.637 ± 2.554 d 31.815 ± 1.901 a 45.250 ± 2.542 c 27.069 ± 3.852 ab

VD-60 50.341 ± 2.610 c 15.736 ± 0.868 de 55.656 ± 2.020 b 16.624 ± 1.715 bcd

VD-70 33.479 ± 6.888 d 22.842 ± 0.784 bc 38.733 ± 6.948 c 35.875 ± 9.638 a

5
HAD-50 56.930 ± 1.152 bc 23.438 ± 0.258 b 61.762 ± 1.088 ab 9.528 ± 1.568 d

HAD-60 60.250 ± 2.229 ab 11.684 ± 0.259 e 64.831 ± 2.231 ab 14.928 ± 0.680 bcd

HAD-70 59.846 ± 1.149 bc 17.259 ± 1.164 cde 64.491 ± 0.750 ab 10.140 ± 0.405 d

8
HAD-50 56.301 ± 1.562 bc 20.571 ± 2.890 bcd 60.907 ± 0.971 ab 8.817 ± 0.789 d

HAD-60 60.310 ± 1.478 ab 6.032 ± 1.740 f 69.432 ± 0.556 a 24.618 ± 2.301 abc

HAD-70 60.781 ± 1.973 ab 11.541 ± 0.798 e 64.015 ± 1.325 ab 15.959 ± 0.876 bcd

Different letters at the same column indicates statistical difference for Duncan test, P < 0.05.

4. Conclusions

This study investigated the potential of using computational intelligence as a modelling tool for
predicting the drying process of persimmon fruit samples. The performance of vacuum drying (VD)
and hot-air-drying (HAD) techniques for drying persimmon fruit samples was evaluated. The results
showed that VD and HAD had a significant effect on the drying kinetics, moisture diffusivity, activation
energy and color properties of persimmon fruit samples. An increase in drying temperature and
samples thickness influenced the drying kinetics and moisture diffusivity of samples. The effective
moisture diffusivity and activation energy varied between 1.417 × 10−9 m2/s and 1.925 × 10−8 m2/s and
34.1560 kJ/mol to 64.2895 kJ/mol respectively. Persimmon fruit samples using HAD showed significant
color attributes compared to VD method.

The mathematical thin-layer modelling results showed that page and logarithmic models can
adequately (R2 = 0.9999) describe the drying kinetics of persimmon fruit samples. The highest R2

values of 0.9994, 1.0000 and 0.9327 were observed for ANN (2 hidden layers with (3, 3) neurons),
SVM (standardize filter and RBF kernel) and kNN (k-value of 3) models, respectively. SVM tool as
a computational intelligence method produced higher results compared to mathematical thin-layer.
Therefore, SVM models are able to describe a wider range of experimental data whereas the application
of theoretical models is limited to specific experimental conditions in most cases. Thus, computational
intelligence models may be considered as a suitable alternative modelling method for describing the
drying behavior of persimmon sliced samples. On the other hand, computational intelligence methods
can be successfully applied to industrial drying processes and operations as well as online monitoring
and control. However, further study is required to ascertain the suitability of ANN, SVM and kNN for
predicting the nutritional composition of fruits and vegetables during drying.
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22. Kirbas, I.; Tuncer, A.D.; Şirin, C.; Usta, H. Modeling and developing a smart interface for various drying
methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Comput. Electron. Agric.
2019, 165, 104928. [CrossRef]



Processes 2020, 8, 544 20 of 21

23. Omari, A.; Behroozi-Khazaei, N.; Sharifian, F. Drying kinetic and artificial neural network modeling of
mushroom drying process in microwave-hot air dryer. Food Process Eng. 2018, 41, 1–10. [CrossRef]

24. Movagharnejad, K.; Nikzad, M. Modeling of tomato drying using artificial neural network. Comput. Electron. Agric.
2007, 59, 78–85. [CrossRef]

25. Wen, S.; Deng, M.; Inoue, A. Moisture content prediction of wood drying process using VM-based model.
Int. J. Inov. Comput. Infomation Control 2012, 8, 4083–4093.

26. Beigi, M.; Ahmadi, I. Artificial neural networks modeling of kinetic curves of celeriac (Apium graveolens L)
in vacuum drying. Food Sci. Technol. 2018, 2061, 1–6. [CrossRef]

27. Jafari, S.M.; Ghanbari, V.; Ganje, M.; Dehnad, D. Modeling the drying kinetics of green bell pepper in a heat
pump assisted fluidized bed dryer. J. Food Qual. 2016, 39, 98–108. [CrossRef]

28. Bahmani, A.; Jafari, S.M.; Shahidi, S.-A.; Dehnad, D. Mass transfer kinetics of eggplant during osmotic
dehydration by neural networks. J. Food Process. Preserv. 2016, 40, 815–827. [CrossRef]

29. Xie, C.; Li, X.; Shao, Y.; He, Y. Color measurement of tea leaves at different drying periods using hyperspectral
imaging technique. PLoS ONE 2014, 9, 1–15. [CrossRef]

30. Ieracitano, C.; Adeel, A.; Morabito, F.C.; Hussain, A. A novel statistical analysis and autoencoder driven
intelligent intrusion detection approach. Neurocomputing 2020, 387, 51–62. [CrossRef]

31. Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel multi-modal machine learning based
approach for automatic classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190.
[CrossRef] [PubMed]

32. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official
Analytical Chemists, 15th ed.; United States Department of Agriculture: Rockville, MD, USA, 1990.

33. Aghbashlo, M.; Kianmehr, M.H.; Khani, S.; Ghasemi, M. Mathematical modelling of thin-layer drying
of carrot. Int. Agrophys. 2009, 23, 313–317.

34. Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1979.
35. Chen, N.; Chen, M.; Fu, B.; Song, J. Far-infrared irradiation drying behavior of typical biomass briquettes.

Energy 2017, 121, 726–738. [CrossRef]
36. Jafari, S.M.; Ganje, M.; Dehnad, D.; Ghanbari, V. Mathematical, fuzzy logic and artificial neural network

modeling techniques to predict drying kinetics of onion. J. Food Process. Preserv. 2016, 40, 329–339. [CrossRef]
37. Gamea, G.R.; Essa, A.A. Solar drying characteristics of strawberry. J. Food Drug Anal 2007, 78, 456–464.
38. Antonio, V.; Uribe, E.; Lemus, R.; Miranda, M. Hot-air drying characteristics of Aloe vera (Aloe barbadensis

Miller) and influence of temperature on kinetic parameters. LWT-Food Sci. Technol. 2007, 40, 1698–1707.
39. Kaur, K.; Singh, A.K. Drying kinetics and quality characteristics of beetroot slices under hot air followed by

microwave finish drying. African J. Agric. Res. 2014, 9, 1036–1044.
40. Sacilik, K. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita

pepo L.). J. Food Eng. 2007, 79, 23–30. [CrossRef]
41. Dash, K.K.; Gope, S.; Sethi, A.; Doloi, M. Study on Thin Layer Drying Characteristics Star Fruit Slices. Int. J.

Agric. Food Sci. Technol. 2013, 4, 679–686.
42. Hashim, N.; Daniel, O.; Rahaman, E. A Preliminary Study: Kinetic Model of Drying Process of Pumpkins

(Cucurbita Moschata) in a Convective Hot Air Dryer. Int. Conf. Agric. Food Eng. CAFEi2014 2014, 2, 345–352.
[CrossRef]

43. Zenoozian, M.S.; Feng, H.; Razavi, S.; Shahidi, F.; Pourreza, H.R. Image analysis and dynamic modeling of
thin-layer drying of osmotically dehydrated pumpkin. J. Food Process. Preserv. 2008, 32, 88–102. [CrossRef]

44. Ayadi, M.; Ben Mabrouk, S.; Zouari, I.; Bellagi, A. Kinetic study of the convective drying of spearmint.
J. Saudi Soc. Agric. Sci. 2014, 13, 1–7. [CrossRef]

45. Kose, U.; Arslan, A. Optimization of self-learning in computer engineering courses: An Intelligent software
system supported by artificial neural network and vortex optimization algorithm. Comput. Appl. Eng. Educ.
2017, 25, 142–156. [CrossRef]

46. Haykin, S. Neural Networks a Comprehensive Introduction; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
47. Fu, L.-M. Neural Networks in Computer Intelligence; Tata McGraw-Hill Education: New York, NY, USA, 2003.
48. Benkovi, M.; Mari, L.; Male, E.; Valinger, D.; Jurina, T.; Gajdo, J. Effects of drying on physical and chemical

properties of root vegetables: Artificial neural network modelling. Food Bioprod. Process. 2020, 119, 148–160.
49. Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.; Abdan, K. Modelling the convective drying process of

pumpkin (Cucurbita moschata) using an artificial neural network. Int. Food Res. J. 2016, 23, S237–S243.



Processes 2020, 8, 544 21 of 21

50. Das, M.; Akpınar, E. Investigation of pear drying performance by different methods and regression of
convective heat transfer coefficient with support vector machine. Appl. Sci. 2018, 8, 2–16.

51. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
52. Shevade, S.; Keerthi, S.S.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to the SMO algorithm for

SVM regression. IEEE Trans. Neural Netw. 2000, 11, 1188–1193. [CrossRef]
53. Xiao, H.; Pang, C.; Wang, L.; Bai, J.; Yang, W.; Gao, Z. Drying kinetics and quality of Monukka seedless

grapes dried in an air-impingement jet dryer. Biosyst. Eng. 2010, 105, 233–240. [CrossRef]
54. Abbaspour-Gilandeh, Y.; Jahanbakhshi, A.; Kaveh, M. Prediction kinetic, energy and exergy of quince under

hot air dryer using ANNs and ANFIS. J. Sci. Food Agric. 2020, 8, 594–611. [CrossRef]
55. Sacilik, K.; Elicin, A.K. The thin layer drying characteristics of organic apple slices. J. Food Eng. 2006, 73,

281–289. [CrossRef]
56. Telis-Romero, J.; Gabas, A.L.; Menegalli, F.C.; Telis, V.R.N. Drying of persimmon: Mathematical model for

diffusivity as a simultaneous function of moisture content and shrinkage. In Proceedings of the Second
Inter-American Drying Conference, Monteral, QC, Canada, 8–10 July 2001; pp. 243–251.

57. Tunde-Akintunde, T.Y.; Ogunlakin, G.O. Influence of drying conditions on the effective moisture diffusivity
and energy requirements during the drying of pretreated and untreated pumpkin. Energy Convers. Manag.
2011, 52, 1107–1113. [CrossRef]

58. Falade, K.O.; Olurin, T.O.; Ike, E.A.; Aworh, O.C. Effect of pretreatment and temperature on air-drying of
Dioscorea alata and Dioscorea rotundata slices. J. Food Eng. 2007, 80, 1002–1010. [CrossRef]

59. Meisami-asl, E.; Rafiee, S.; Keyhani, A. Tabatabaeefar, and others. Drying of apple slices (var. Golab) and
effect on moisture diffusivity and activation energy. Plant Omics 2010, 3, 97.

60. Zogzas, N.P.; Maroulis, Z.B. Drying technology: An international journal moisture diffusivity data compilation
in foodstuffs. Dry. Technol. Int. J. 2007, 14, 37–41.

61. Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Modelling the mid-infrared drying of sweet
potato: Kinetics, mass and heat transfer parameters, and energy consumption. Heat Mass Transf. 2018, 54,
2917–2933. [CrossRef]

62. Younis, M.; Abdelkarim, D.; El-abdein, A.Z. Saudi journal of biological sciences kinetics and mathematical
modeling of infrared thin-layer drying of garlic slices. Saudi J. Biol. Sci. 2018, 25, 332–338. [CrossRef]

63. Zenoozian, M.S.; Devahastin, S.; Razavi, M.A.; Shahidi, F.; Poreza, H.R. Use of artificial neural network and
image analysis to predict physical properties of osmotically dehydrated pumpkin. Dry. Technol. 2014, 26,
132–144. [CrossRef]

64. Ghaderi, A.; Abbasi, S.; Motevali, A.; Minaei, S. Comparison of mathematical models and artificial neural
networks for prediction of drying kinetics of mushroom in microwave vacuum dryer. Chem. Ind. Chem.
Eng. Q. 2012, 18, 283–293. [CrossRef]

65. Nadian, M.H.; Rafiee, S.; Aghbashlo, M.; Hosseinpour, S.; Mohtasebi, S.S. Continuous real-time monitoring
and neural network modelling of apple slices color changes during hot air Drying. Food Bioprod. Process.
2014, 94, 1–40.

66. Samsudin, S.H.; Shafri, H.; Hamedianfar, A.; Mansor, S.B. Spectral feature selection and classification of
roofing materials using field spectroscopy data. J. Appl. Remote Sens. 2015, 9, 95079. [CrossRef]

67. Nozad, M.; Khojastehpour, M.; Tabasizadeh, M. Characterization of hot-air drying and infrared drying of
spearmint (Mentha spicata L) leaves. J. Food Meas. Charact. 2016, 10, 466–473. [CrossRef]

68. Onwude, D.; Hashim, N.; Janius, R.; Nawi, N.; Abdan, K. Color change kinetics and total carotenoid content
of pumpkin. Ital. J. Food Sci. 2017, 29, 1–18.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

