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Abstract: To predict the natural gas hydrate formation conditions quickly and accurately, a novel
hybrid genetic algorithm–support vector machine (GA-SVM) model was developed. The input
variables of the model are the relative molecular weight of the natural gas (M) and the hydrate
formation pressure (P). The output variable is the hydrate formation temperature (T). Among 10 gas
samples, 457 of 688 data points were used for training to identify the optimal support vector machine
(SVM) model structure. The remaining 231 data points were used to evaluate the generalisation
capability of the best trained SVM model. Comparisons with nine other models and analysis of the
outlier detection revealed that the GA-SVM model had the smallest average absolute relative deviation
(0.04%). Additionally, the proposed GA-SVM model had the smallest amount of outlier data and the
best stability in predicting the gas hydrate formation conditions in the gas relative molecular weight
range of 15.64–28.97 g/mol and the natural gas pressure range of 367.65–33,948.90 kPa. The present
study provides a new approach for accurately predicting the gas hydrate formation conditions.

Keywords: gas hydrate; support vector machine; genetic algorithm; outlier detection

1. Introduction

Natural gas hydrate is a dry ice-like crystalline inclusion compound formed by combining small
gas molecules (e.g., light hydrocarbons, CO2, H2S, or N2) and water molecules in natural gas under
certain pressure and temperature conditions. In industrial production, hydrates are widely used for
gas storage and refrigeration. In the process of oil and gas field development, hydrate formation leads
to engineering accidents. The formation of hydrates can easily block wellbores and reservoirs near gas
wells, which results in a reduction or even shutdown of the gas-well production. Additionally, the
formation of hydrates can block measurement instruments, surface separation equipment, and gas
pipelines, which causes a pipeline rupture. It may even cause explosions. Therefore, it is important to
accurately predict the formation conditions of natural gas hydrates.

Currently, the main determination methods for natural gas hydrate formation are experimental
methods [1–3], formula methods [4], thermodynamic models [5,6], and intelligent models [7,8].
Experiments to determine the conditions for forming natural gas hydrates yield the most accurate
results, but the experimental methods are time-consuming, laborious, and expensive. Formula methods
are widely used because they are facile and involve easy programming. The widely used correlation
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formulas include those proposed by Ponomape [9], Bohadori-Vuthalur [10], Chayyem [11], and
Amin [12]. Chayyem established an association formula based on a Katz gravity map for 545 data
points, which exhibited the highest prediction accuracy among the previously mentioned formulas [13].
However, the formula method has a limited range, beyond which the calculation error is relatively
large. Thermodynamic models are usually derived from the VdwP model proposed by Van der Waals
and Platteeuw in 1959. The thermal equilibrium model equation is based on the thermodynamic theory.
A numerical method is used to perform the calculations. Currently, the main models include those
proposed by Parrish and Pransnitz [14], Chen and Guo [15], and Klauda and Sandler [16]. However,
assumptions are made in establishing the models, and the errors of the models in practical applications
are relatively large. Moreover, the models are complex and difficult to generalise [17,18]. Research on
predicting the conditions for natural gas hydrate formation using intelligent algorithms (such as the
backpropagation (BP) neural network and support vector machine (SVM)) has developed rapidly in
recent years and yielded good results. Wu Xiaoqiang, Han Bing [19] established a prediction model for
the natural gas hydrate formation conditions under a high-H2S and high-CO2 environment based on an
SVM by introducing a factor reflecting the contribution of acid gas (H2S+CO2) to the formation of CH4.
To solve the problems of the large-scale secondary planning and low calculation speed of the SVM,
Mesbah et al. [20] used the least-squares SVM method to predict the desulfurisation and temperature
of acid gas-containing hydrates. In the same year, Mohammad Akbari as well as Afshin et al. [21] used
the temperature, pressure, and natural-gas composition as input variables and combined radial basis
function (RBF) neural networks with genetic algorithms (GAs) to predict conditions for natural gas
hydrate formation at low temperatures. However, in this method, the number of nodes in the hidden
layer and the weight threshold must be determined, and it is difficult to identify the optimal network
structure parameters [22–24].

In this study, a GA was used to optimise the process parameters of an SVM, and a new hybrid
model (GA-SVM) was developed for predicting the conditions of natural gas hydrate formation.
The model takes the relative molecular weight of the natural gas and the hydrate formation pressure
as input variables and outputs the hydrate formation temperature. Through example calculations, the
GA-SVM model was compared with nine commonly used models. Using the leverage method, outlier
detection was performed for 688 data points. This study provides a comprehensive method for the
accurate prediction of the gas hydrate formation conditions.

2. Theoretical Basis

Support vector machines (SVM) are a kind of binary classification model. Its purpose is to find a
hyperplane to segment the samples. The principle of segmentation is to maximise the interval, which
is eventually transformed into a convex quadratic programming problem to solve [25]. Rather than
relying on the general rule of empirical risk minimisation, it employs the structural risk-minimisation
function, which significantly improves its efficiency for solving the multivariate nonlinear regression
problem. Advanced optimisation algorithms (e.g., genetic algorithm, particle swarm algorithm, grey
wolf algorithm) are used to avoid the problems related to local optima and non-convergence that easily
occur in other machine-learning algorithms, such as the classic back propagation neural network, and
overcome the difficulties of other machine-learning algorithms, e.g., a small amount of data samples,
rough data, and large data volatility [26].

The basic idea of the SVM nonlinear regression model is to transform a nonlinear regression
problem in a low-dimensional space into a linear regression problem in a high-dimensional feature
space through nonlinear mapping [27]. In this way, the linear regression can be better fitted through a
reasonable feature surface in high-dimensional space. Accordingly, the algorithm of the SVM dual
optimisation problem is as follows.

Given a dataset {(xi, yi), i = 1,2, . . . , N}, its basic regression function is

f (x) = 〈w, x〉+ b. (1)
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The structural risk function used in SVM regression is

R( f ) =
1
N

N∑
i=1

L( f (xi) − yi) +
1
2
‖w‖2. (2)

The loss function in Equation (2) is

L( f (x) − y) =
{ ∥∥∥L( f (x) − y)

∥∥∥− ε,
∣∣∣ f (x) − y

∣∣∣ ≥ ε
0

∣∣∣ f (x) − y
∣∣∣ < ε . (3)

By substituting Equation (3) into Equation (2) and introducing the relaxation variables ξ and ξ*,
the objective function can be obtained:

minimise
1
2
‖w‖2 + C

N∑
i=1

(ξ+ ξ∗) (4)

s.t.


yi − 〈w, xi〉+ b ≤ ε+ ξi
〈w, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0
i = 1, 2, . . . , N

. (5)

Equation (4) introduces the Lagrange function. Dual processing is performed, which yields
the following.

maximise −
1
2

N∑
i, j=1

(
αi − α

∗

i

)(
α j − α

∗

j

)(
xi, x j

)
− ε

N∑
i=1

(
αi + α∗i

)
+

N∑
i=1

yi
(
αi − α

∗

i

)
(6)

s.t.



N∑
i=1

(
αi − α

∗

i

)
= 0

0 ≤ αi ≤ C
0 ≤ α∗i ≤ C
i, j = 1, 2, . . . , N

. (7)

Using Equations (6) and (7), the SVM regression model can be obtained.

f (x) =
(
αi − α

∗

i

)
〈xi, x〉+ b (8)

For the inner-product problem, There are four types of common kernel functions: linear kernel
function, polynomial kernel function, radial basis function (RBF) kernel function and sigmoid kernel
function. Among them, RBF kernel function has better performance and more applications. Therefore,
in this paper, the internal product problem is replaced by RBF function, whose expression is as follows:

K
(
xi, x j

)
= exp

(
−γ

∥∥∥xi, x j
∥∥∥), (γ > 0) (9)

Eventually, the SVM regression model becomes the following.

f (x) =
(
αi − α

∗

i

)
K(xi, x) + b (10)

In Equations (1)–(10),

ε represents the loss factor,
ξ and ξ* represent the relaxation variables,
C represents the penalty factor,
αi and αi

* represent the Lagrange multiplier pairs for each sample, and
γ represents the width parameter of the kernel function.
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The GA is an advanced parameter-optimisation algorithm. The basic idea is to simulate the
evolutionary law of biological competition, i.e., survival of the fittest, in the biological world [28,29].
The specific steps are as follows.

(1) Random chromosome coding of individuals in the initial population using the binary principle to
form a genotype string that mimics the chromosome of a biological gene, which is an individual
in the biological population.

(2) On the basis of step 1), the N initial genotype character strings are randomly generated to form
an initial population containing N individuals.

(3) The fitness function is defined, and the superiority and inferiority of the individuals in the
population are evaluated (i.e., the solution of optimised parameters) by calculating the fitness
values of the individuals.

(4) Individuals are selected with a certain probability based on the fitness value. a smaller fitness
value corresponds to a higher probability of being selected for the next-generation population.

(5) On the basis of step (4), the individuals of the population are optimised through crossover and
mutation with a certain probability to obtain individuals with better adaptability.

By using the Library for Support Vector Machines (LIBSVM) and genetic algorithm (GA) toolboxes
in MATLAB (The toolbox is a set of simple and efficient software package for pattern recognition
and nonlinear regression of support vector machine developed by Professor Lin Zhiren of Taiwan
University) to perform extended programming, a GA-SVM hybrid model was developed. The specific
process of the GA-SVM model training and prediction is shown in Figure 1.

Figure 1. Flowchart of genetic algorithm–support vector machine (GA-SVM) parameter optimisation.

3. Model Building

3.1. Dataset and Variable Selection

In the development of the GA-SVM model, the dataset diversity, variable selection, and parameter
optimisation were mainly considered. To this end, 10 representative natural-gas samples were selected,
and 688 gas samples in pure water hydrate formation conditions were used as experimental data
points [30,31]. Some of the data is based on our experiments, and it is not easy to make public because
of confidentiality. The dataset was randomly divided into two groups, i.e., 457 model training data
and 231 model prediction data (ratio of 2:1). In the selection of the variables, considering the simplicity
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of the input variables of the GA-SVM model, the gas-sample composition was not selected as an input
variable. Each gas sample was considered as a whole, and the relative molecular weight of the natural
gas was used as an input variable. The input variables of the model were the relative molecular weight
of the natural gas and the hydrate formation pressure, and the output variable of the model was the
hydrate formation temperature. The variable ranges are presented in Table 1.

Table 1. Variable ranges of the genetic algorithm–support vector machine (GA-SVM) model.

Variable Relative Molecular Weight of
Gas Sample (g/mol) Pressure (KPa) Temperature (K)

Range 15.64–28.97 367.65–33,948.90 273.20–298.84

As indicated by Table 1, the experimental data had a large step difference. To eliminate the effect
of the data step on the model results, the ‘mapminmax’ function in MATLAB was used to normalise
and de-normalise the data. The ‘mapminmax’ function is shown below.

x = 2 x−xmin
xmax−xmin

− 1 (x ∈ [−1, 1]) (11)

where x represents the variable,
−
x represents the normalised variable value, xmax represents the

maximum value of the variable, and xmin represents the minimum value of the variable.

3.2. Model Parameter Optimisation

According to the GA algorithm parameter optimisation process in flowchart 1, combined with the
‘trial calculation-control error’ method, there are three main parameters to be optimised: the penalty
factor C, the width parameter γ of the kernel function, and the loss factor ε. In the process of parameter
optimization, the value of penalty factor C has the greatest influence on the accuracy of the ε-SVM
regression model. If the C value is too large, the fitting accuracy of training samples is very high, but
the generalization ability of the ε-SVM regression model is very poor, there is a phenomenon of over
learning. Similarly, if the C value is too small, the optimization process takes a long time, the search is
not complete, the fitting effect of training samples is very poor, and the generalization ability of ε-SVM
regression model is very low. Therefore, there is a serious phenomenon of under learning. Therefore,
on the premise of not affecting the prediction accuracy, the C value should be as small as possible to
ensure that the SVM regression model has good generalization ability and prediction accuracy. After
several optimisation calculations, the optimal GA-SVM model parameters were determined, as shown
in Table 2.

Table 2. Optimal parameters of the GA-SVM model for gas hydrate formation.

Parameter Type Optimise Parameters Parameter Value (Range)

Variable value Input data form [−1,1]

genetic algorithm (GA)
parameters

Evolutionary algebra 200
Population size 20

Selection probability 0.9
Cross probability 0.7

Mutation probability 0.035

support vector machine (SVM)
parameters

Best C 854.8931
Best ε 0.003592
Best γ 9.1190

4. Analysis of Results

The results of the GA-SVM model training and prediction are presented in Figures 2
and 3, respectively.
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Figure 2. Training results for the GA-SVM model.

Figure 3. Test results for the GA-SVM model.

As shown in Figures 2 and 3, the GA-SVM model exhibited good training and prediction results.
The predicted and experimental values are evenly distributed around the 45◦ line, and the correlation
coefficient (R2) is greater than 0.99. Thus, the model has good calculation accuracy and generalisation
ability for predicting the natural gas hydrate formation conditions.

The mean absolute relative deviation (AARD) is defined as follows.

AARD =
1
n

n∑
i=1

∣∣∣∣∣∣∣ yexp
i − ypre

i

yexp
i

∣∣∣∣∣∣∣× 100%, (12)

where yexp
i and yexp

i represent the experimental value of the ith data point and the predicted value of
the SVM model, respectively, and n represents the total number of data points.

To further evaluate the GA-SVM model, according to the calculation results of all the data
points (688), the GA-SVM model was compared with the Ghayyem [11], Ann2015 [32], Zahedi (3),
Zahedi (4) [33], Towler [22], Kobayashi [34], Hammerschmidt [35], Motiee [36], and Berge models [37].
The AARD results are shown in Figure 4.

As shown in Figure 4, among the 10 models for calculating the gas hydrate formation conditions,
the GA-SVM model had the highest prediction accuracy, and the AARD was only 0.04%. For the
Ghayyem, Ann2015, Zahedi (3), Zahedi (4), and Towler models, the AARDs were 0.14%, 0.46%, 0.56%,
0.56%, and 0.0.83%, respectively, and the calculation accuracy was relatively high. For the Berg model,
the AARD was as high as 2.36%, and the calculation accuracy was poor.
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Figure 4. Comparison of mean absolute relative deviation (AARD) for various models.

5. Outlier Detection

Artificial-intelligence algorithms have seen rapid development in recent years. Mohammadi et al. [38]
proposed a new technology that can efficiently detect the abnormal points of a model via the Rousseeuw
outlier detection theory–Williams plate detection method. The basic idea is to use the H value of the
hat matrix and the standardised deviation between the model experimental data and the calculated
data with the H value as the abscissa and the normalised deviation as the ordinate. The calculations of
the model are performed on the premise of setting the leverage value. Consequently, abnormal points
are detected. The specific steps of its algorithm are as follows.

First, the hat matrix is defined below.

H = X
(

XTX
)−1

XT, (13)

where X represents an n × 2 matrix, which is composed of an SVM model predictor column vector and
an input variable number vector. The leverage of the H value is set as the following.

H*=3(m+1)/n, (14)

where m represents the number of input variables, and n represents the number of experimental data
points. The effective range of the H value is 0 ≤ H ≤ H*.

The SVM model standardised residual (SR) is defined as the following.

SR =
yexp

i − ypre
i√

1
n−m−1

n∑
i=1

(
yexp

i − ypre
i

)2
(1−Hii)

, (15)

where Hii represents the diagonal element of the hat matrix for the ith data point. For model
standardization residual (SR), the effective range is generally selected as −3 ≤ SR ≤ 3.

The H value and SR for the 10 models were calculated via the foregoing method. A Williams plot
is constructed with the H value as the abscissa and the standardization residual (SR) as the ordinate, as
shown in Figure 5. The number of abnormal points in each model is shown in Figure 6.

As shown in Figures 5 and 6, the GA-SVM model had the smallest number of abnormal points in
the 688 data (only two), which indicates that this model had good stability for predicting the natural
gas hydrate formation conditions. The Ghayyem model had 20 anomalous points. A larger number
of anomalous points indicates greater instability of the model in calculating the natural gas hydrate
formation conditions.
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Figure 5. Outlier detection results for each model ((A): GA-SVM model. (B): Amin model. (C): Berger
model. (D): Hammerschmidt model. (E): Towler model. (F): Motiee model. (G): Kobayashi model.
(H): Ghayyem model. (I): Zahedi (3) model. (J): Zahedi (4) model).
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Figure 6. Number of outliers in each model.

6. Conclusions

By combining a GA, the outlier detection method, and an SVM, a new model for predicting the
conditions of natural gas hydrate formation was developed. Comparisons with nine other models and
analysis of the outlier detection revealed that the GA-SVM model had the smallest average absolute
relative deviation (0.04%) in the gas relative molecular weight range of 15.64–28.97 g/mol and the
natural gas pressure range of 367.65–33,948.90 kPa. Lastly, based on the leverage method, the abnormal
point detection of all the data of all models was carried out. It was found that, in the 688 data points,
the number of abnormal points of the GA-SVM model data was the lowest. There were only two
abnormal points, which further illustrates that the GA-SVM model’s calculation of hydrate formation
conditions has good stability.

Author Contributions: Conceptualization, J.C. and S.Z. Methodology, B.H. and S.Z. Formal analysis, J.C.
Investigation, C.L. Writing—original draft preparation, J.C. Writing—review and editing, S.Z. All authors have
read and agree to the published version of the manuscript.
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