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Abstract: Due to the expanding concern on cleaner production and sustainable development aspects,
a technology shift is needed for the hydrogen production, which is commonly derived from natural
gas. This work aims to synthesise a large-scale bio-hydrogen network in which its feedstock,
i.e., bio-methane, is originated from landfill gas and palm oil mill effluent (POME). Landfill gas goes
through a biogas upgrader where high-purity bio-methane is produced, while POME is converted
to bio-methane using anaerobic digestor (AD). The generated bio-methane is then distributed to
the corresponding hydrogen sink (e.g., oil refinery) through pipelines, and subsequently converted
into hydrogen via steam methane reforming (SMR) process. In this work, P-graph framework is
used to determine a supply network with minimum cost, while ensuring the hydrogen demands are
satisfied. Two case studies in the West and East Coasts of Peninsular Malaysia are used to illustrate
the feasibility of the proposed model. In Case Study 1, four scenarios on the West Coast have been
considered, showing total cost saving ranging between 25.9% and 49.5%. This showed that aside from
the positive environmental impact, the incorporation of bio-hydrogen supply can also be economically
feasible. Such benefits can also be seen in Case Study 2, where the uptake of biogas from landfill and
POME sources on the East Coast can lead to a 31% reduction on total network cost. In addition, the
effect of bio-hydrogen supply network on carbon footprint reduction was analysed in this work.

Keywords: optimisation; graph theoretic; renewable energy; hydrogen production; process synthesis

1. Introduction

Global warming is the main driving force for researchers in finding ways to curb greenhouse
gas (GHGs) emissions. A growing number of countries are paving ways for sustainable future by
turning to renewable energy [1]. Another source of energy that has been gaining interest globally is
hydrogen. The latter has been widely recognised as a future energy carrier due to factors such as being
environmental-friendly and consisting of high-energy capacity; it can be synthesised using diverse
resources (including renewable energy sources). In the chemical process industries, hydrogen is a
common feedstock for ammonia and methanol, as well as for oil refineries [2]. In addition, hydrogen is

Processes 2020, 8, 505; doi:10.3390/pr8050505 www.mdpi.com/journal/processes



Processes 2020, 8, 505 2 of 25

a promising fuel source for transportation. Among the various hydrogen production technologies,
steam methane reforming (SMR) remains the most well established process for hydrogen production [3].
It is anticipated that by the year 2030, 40% of the global hydrogen production will be generated via SMR
process, dominating other routes such as electrolysis, gasification, and partial oxidation process [4]. The
conventional SMR process utilises natural gas as feedstock and often leads to gigantic GHG emissions,
leading to low sustainability [5]. This drives the research to seek for a more sustainable hydrogen
production process, which considers both the environmental aspect as well as the scalability of the
process. Hydrogen productions from biological sources, such as biomass or biogas, has received good
attention since it is eco-friendly, as compared to the conventional SMR process [6].

Biogas consists of a large portion of methane, which acts as a good replacement for natural gas.
In the seminal work, Hwangbo et al. [7] proposed a hydrogen production network for South Korea
using mathematical programming (MP) approach, in which biogas from wastewater treatment plant is
used as the main resource. Alternatively, landfill gas is another potential source for biogas production.
In the compacted and covered environment of landfills, anaerobic bacteria decompose the municipal
solid waste (MSW), which results in the generation of methane and carbon dioxide [8]. In the Malaysian
context, daily waste generation has been estimated as 0.5–0.8 kg per capita in the rural area, while the
amount is double in the urban areas [9]. Besides, it is predicted that MSW in Malaysia will achieve
31,000 t/d in year 2020, and further increase to 51,700 t/d by year 2025 [9]. Therefore, there is a need
to treat or valorise the landfill gas in order to prevent it from emitting into the atmosphere. It is
possible to harness heat and electricity from the produced landfill gas by channelling it to combustion
engines or alternator [10,11]. In a recent work, Hoo et al. [12] explored the potential of the integration
of bio-methane into existing natural gas grid in Malaysia for power generation. However, due to
limitations of the local electricity load demand, the captured landfill gas is under-utilised. Thus, the
use of landfill gas for hydrogen generation becomes an attractive option for bio-methane utilisation
in Malaysia.

Malaysia is the second largest producer of palm oil in the world, accounting for 39% of world palm
oil production and 44% of world exports [13]. However, the mass production of palm oil further leads
to a gigantic generation of oil palm waste, which accounted for about 86% of the total biomass available
in the country [14]. Among the palm oil wastes, palm oil mill effluent (POME) is the largest contributor.
Although it is non-toxic, it still poses a severe environmental issue due to its large oxygen depleting
capabilities [15]. Fortunately, due to its high organic content, POME can serve as a prominent source
for methane generation via anaerobic digestion (AD). Similar to landfill gas, the generated bio-methane
can then be converted into hydrogen through SMR process. Therefore, a bio-hydrogen supply network
that incorporates the use of biogas (from landfill and AD process) should be considered to improve the
sustainability of the existing network.

Several models have been reported on hydrogen production from biogas sources. Borisov et al. [16]
developed a model that describes the simultaneous production of methane and hydrogen from AD of
organic waste. A study by Woo et al. [17] demonstrated optimal design and operation of four types
of biomass in a hydrogen supply chain. In addition, Hwangbo et al. [6] utilized MP for hydrogen
production from biogas under demand uncertainty. On the other hand, Robles et al. [18] modelled
the demand uncertainty in a hydrogen supply network with fuzzy MP. More recently, MP was
used to determine a sustainable hydrogen supply network with the consideration of fuelling station
planning [19]. Most of these models are developed using MP, where only a single solution is produced
unless further constraints are added to the model [20]. Besides, model solving with the conventional
method becomes progressively difficult as the problem size increases [21].

A bio-hydrogen network is considerably a large network, as it includes (i) the decision of selecting
the feedstock for hydrogen production—either natural gas or biogas obtained through landfill/AD
process; and (ii) the decision of locating the compressor sub-stations between the sources and sinks.
Therefore, to solve this network problem across a country, a rigorous combinatorial tool called
P-graph [22] is used. P-graph determines and showcases the maximal structure of a given network,
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and aids in visualising the full network model. It was developed by Friedler et al. [23] to solve the
process network synthesis problem. In general, its feature, which exploits the combinatorial nature of
the problem instead of transforming it into a set of equations, is the key advantage of P-graph over
other conventional MP approaches [24]. Coupled with three algorithms [25] and five axioms [23]
embedded in the P-graph framework, it is capable to perform rigorous combinatorial computation tasks
efficiently [26]. It is capable to provide multiple feasible network structures simultaneously, which had
proved invaluable in various works. For instance, Voll et al. [27] utilised this additional information to
yield rational decisions for a given network. Lam et al. [28], on the other hand, identified the bottleneck
of a given technology, while near-optimal criteria weights were considered by Low et al. [29] during
the evaluation of various negative emission technologies. The P-graph framework is explained in
depth in Section 3.

In this works, P-graph approach is utilised to synthesise an optimal bio-hydrogen network, which
integrate the use of landfill gas and POME into the conventional hydrogen supply network. This work
contributes in: (i) extending the P-graph methodology to solve hybrid bio-hydrogen network that
incorporates the use of two biogas sources (landfill gas and POME) in Malaysia; and (ii) evaluating the
feasibility of such hybrid hydrogen production network.

The paper is structured as follows. In the following section, a clear problem statement is defined.
The research methodology is presented in Section 3, while the descriptions of the two case studies are
presented in Section 4. The obtained results are then shown and analysed in Section 5, before the work
is finally concluded.

2. Problem Statement

Given the biogas capacities of landfill sites and POME sources, a bio-hydrogen supply network
is to be synthesised. This alternative method reduces the dependency of hydrogen production on
non-renewable fossil fuels. In addition, it prevents the emissions of methane from landfill gas and
biogas (obtained from the AD treatment of POME) to the atmosphere. Each landfill gas source i (i = 1,
2, . . . , n) is equipped with a biogas upgrader to produce clean bio-methane. Whereas, POME sources k
(k = 1,2, . . . , n) goes through anaerobic digestion (AD) process and is converted to bio-methane. Each
hydrogen sink j (j = 1, 2, . . . , n) is connected to bio-methane supply through pipelines. Compressor
substations, l (l = 1, 2, . . . , n) are located in between the sources and the sinks for the re-compression of
gas. Using the SMR process on-site, the bio-methane is converted to hydrogen. The main objective of
the model is to determine an optimal bio-hydrogen supply network with minimum cost, while ensuring
all hydrogen demand targets of the sinks are met. Figure 1 shows an overview of the proposed model.
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3. Methodology

P-graph is a directed bipartite (multicomponent) graph that represents the structure of a process
system [30]. The direction of the arcs represents the direction of the materials flow in the network of
the process system. The method for optimising a complex network has traditionally relied on MP.
However, as aforementioned, applying MP for large problems becomes progressively difficult [31].
Moreover, in some complex cases, MP is time consuming, error-prone and may miss advantageous
options. The structural infeasibilities in the evaluated combinations are discovered by the solvers only
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after evaluating the constraints. Therefore, practical problems often become too complex to solve.
In the case where the problem is simplified to be solvable, the resulting formulation is usually no
longer representative of the original task [31]. The P-graph framework [23] was then been developed
to address these combinatorial challenges for optimising process networks. The recent works done by
Cabezas et al. [32] on design and engineering of sustainable process system, Lam et al. [33] on creating
biomass network, and Vance et al. [34] on designing sustainable energy supply chains are some of
the examples that attempted to address supply chain issues using P-graph methodology. P-graph is
capable of unambiguously representing process structures for sequential, parallel, and alternative
activities. In addition to graphical representation, the P-graph framework provides a set of rigorous
and effective algorithms for supply chain network synthesis [22]. A considerable advantage of the
P-graph model is its potential in solving real life industrial problems related to the design of supply
chain, while incorporating various process-engineering problems, such as reaction and separation
engineering and transportation operations. The P-graph model evaluates the maximal structure and
generates feasible optimised results, which can be ranked based on certain parameters, such as cost
and energy potential. A general direction of the P-graph is from input materials to operating units and
from operating units to its output materials. The vertices used in the P-graph are denoted as operating
units and materials. The vertices used for materials have several different types or subsets such as
raw materials, which is the input elements of the entire process, product materials, which gather the
required input and represents the results of the process, and lastly, the intermediate materials, which
are the elements generated or used in between processing phases. Meanwhile, operating units are
required to carry out certain tasks in between processing phases [22]. The applied operating unit and
materials element notations in P-graph are represented in Table 1. The P-graph framework is based on
the five axioms below [23]:

1. Every final product is represented in the graph.
2. A vertex of the M-type has no input if and only if it represents a raw material.
3. Every vertex of the O-type represents an operating unit defined in the synthesis problem.
4. Every vertex of the O-type has at least one path leading to a vertex of the M-type representing a

final product
5. If a vertex of the M-type belongs to the graph, it must be an input to or output from at least one

vertex of the O-type in the graph.

Table 1. Representation of Symbols used in P-graph Studio.
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P-graph uses three main algorithms, which are explained below:

• Maximal Structure Generation (MSG): This algorithm identifies the maximal structure of the
network, which is based on five axioms and represents the union of all possible networks [26].

• Solution Structure Generation (SSG): This algorithm determines all combinatorial feasible networks,
which are the subsets of maximal structure [25].

• Accelerated Brand and Bound (ABB): This algorithm optimises the network efficiently, which
excludes search of infeasible and redundant network structures. As a result, both the search
space and computational effort are typically reduced, significantly, compared to the conventional
branch-and-bound algorithm [35].



Processes 2020, 8, 505 5 of 25

The detailed explanation and demonstration of the P-graph framework is given in the
following subsections.

3.1. Development of P-Graph Model for Large-Scale Bio-Hydrogen Network

In the process to produce bio-methane, the captured landfill gas goes through biogas upgrader to
increase its purity. The clean bio-methane is then compressed and transported through pipelines to
the suitable substation for further recompression. The bio-methane flows through the pipelines and
is delivered to hydrogen sinks. Finally, the collected gas will be fed into SMR to produce hydrogen.
On the other hand, POME sources also follow the similar path as landfill gas with a small difference
that POME source will be converted into bio-methane via AD instead of being fed to biogas upgrader.
P-graph framework is utilised to obtain the most economically feasible route that can fulfil the demand
of the hydrogen sinks. The procedure for the bio-hydrogen network synthesis follows the flowchart
illustrated in Figure 2. To apply the P-graph approach, various information has to be pre-determined
and specified (see detailed information in case study section).
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Figure 2. Procedure for bio-hydrogen network synthesis using P-graph (POME: Palm Oil Mill Effluent,
AD: Anaerobic Digestion, SMR: Steam Methane Reformer).

As the initial step, the available landfill and POME sites are identified (Layer 1). As shown in
Figure 3, the sources (in green) are connected to biogas upgraders (BGUG) or AD in order to produce
bio-methane (Layer 2, in orange). The investment and operating costs of BGUG and AD are the
input of its operating unit. The generated bio-methane is represented as the M-vertex (in blue), while
the conversion ratio of landfill gas to bio-methane and POME to bio-methane are defined along the
corresponding arcs. The second operating unit (in purple), accounts for the compressor and pipeline
costs for sending bio-methane to the substations (Layer 3).Processes 2020, 8, x FOR PEER REVIEW 6 of 31 
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To ensure that bio-methane flows through the pipelines optimally, it must be periodically
compressed and pushed through the pipeline (see Figure 4). Thus, each bio-methane source is
connected to several substations located within an 80 km radius distance from the source [36]. P-graph
will then decide what substation the bio-methane should be delivered to, based on the overall operating
and capital costs. Note that the compressor and pipeline costs are input to the O-vertex (in maroon;
Layer 4). From Figure 4, “Substation 6” is served as the last substation that is located near to the
hydrogen sink. In other words, bio-methane collected from the South region will be transferred
upwards, while the bio-methane collected from the North region will be delivered downward, in order
to approach this “final station”. Note that the substation arrangement shown in Figure 4 is merely an
illustrative example. It can be changed according to the specific case study.
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Finally, the collected bio-methane will be distributed to the hydrogen sinks. For illustration
purposes, four hydrogen demand sites are shown in Figure 5. The distribution of bio-methane to each
demand site is determined by P-graph. Note that the grey O-vertex represents the SMR processes, which
convert the bio-methane into bio-hydrogen (Layer 5). In the case where the produced bio-hydrogen is
insufficient to cover the hydrogen demand, fresh hydrogen from conventional fossil fuel (i.e., brown
M-vertex) can be purchased from third parties. Note that the model might decide not to produce
bio-hydrogen if the fresh hydrogen from conventional fossil fuel is much cheaper (Layer 6).

3.2. Model Formulation

This section summarises the mathematical formulations that are embedded in the constructed
P-graph model.



Processes 2020, 8, 505 7 of 25

Processes 2020, 8, x FOR PEER REVIEW 7 of 31 

 

Finally, the collected bio-methane will be distributed to the hydrogen sinks. For illustration 
purposes, four hydrogen demand sites are shown in Figure 5. The distribution of bio-methane to each 
demand site is determined by P-graph. Note that the grey O-vertex represents the SMR processes, 
which convert the bio-methane into bio-hydrogen (Layer 5). In the case where the produced bio-
hydrogen is insufficient to cover the hydrogen demand, fresh hydrogen from conventional fossil fuel 
(i.e., brown M-vertex) can be purchased from third parties. Note that the model might decide not to 
produce bio-hydrogen if the fresh hydrogen from conventional fossil fuel is much cheaper (Layer 6). 

 
Figure 5. P-graph representation for Layers 5 and 6. 

3.2. Model Formulation 

This section summarises the mathematical formulations that are embedded in the constructed 
P-graph model. 

3.2.1. Network Design 

Equation (1) describes the demand of hydrogen (𝐹௝ுଶ, t/h) in each sink 𝑗. The hydrogen demand 
of the latter can be fulfilled by fresh hydrogen (𝐹௝ிுଶ, t/h) and/or produced bio-hydrogen (𝐹௝஻ுଶ, t/h). 
The latter can be mathematically expressed as Equation (2): 𝐹௝ுଶ = 𝐹௝஻ுଶ + 𝐹௝ிுଶ ∀𝑗 (1) 

𝐹௝஻ுଶ = ∑ 𝐹௟,௝஼ுସ௟𝑋ௌெோ  ∀𝑗 (2) 

Figure 5. P-graph representation for Layers 5 and 6.

3.2.1. Network Design

Equation (1) describes the demand of hydrogen (FH2
j , t/h) in each sink j. The hydrogen demand of

the latter can be fulfilled by fresh hydrogen (FFH2
j , t/h) and/or produced bio-hydrogen (FBH2

j , t/h). The
latter can be mathematically expressed as Equation (2):

FH2
j = FBH2

j + FFH2
j ∀ j (1)

FBH2
j =

∑
l FCH4

l, j

XSMR ∀ j (2)

where FBH2
l, j refers to the flowrate of bio-methane sent to hydrogen sink j from substation l (t/h); while

XSMR represents the methane-to-hydrogen conversion ratio (kg CH4/kg H2).
Equations (3) and (4) express the mass balance constraint across the sources, where FCH4

i (t/h) and
FCH4

k (t/h) denote the bio-methane generated from landfill source i and POME source k respectively;
while FCH4

i,l (t/h) and FCH4
k,l (t/h) refer to the methane flowrate sent from each source to substation l.

FCH4
i =

∑
l

FCH4
i,l ∀l (3)

FCH4
k =

∑
l

FCH4
k,l ∀l (4)

On the other hand, the mass balance across the substations is presented in Equation (5), where
FCH4

l,l′ refers to the methane flowrate transported from substation l to another substation l’ (t/h).∑
i

FCH4
i,l +

∑
k

FCH4
k,l =

∑
l′

FCH4
l,l′ +

∑
j

FCH4
l, j ∀l (5)
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Next, the conversion of landfill gas and POME to bio-methane modelled in P-graph can also
be expressed mathematically. Due to the corrosive nature of landfill gas impurities, it is essential
to improve methane purity via the biogas-upgrading unit prior to its delivery to the compressor
substation. In this work, a high-pressure water scrubber is used as the biogas-upgrading unit. Water
scrubbing can remove carbon dioxide and hydrogen sulphide since these components are more soluble
in water than methane [37]. Depending on the type of waste available in the landfill site, landfill gas
(FLF

i , in t/h) generally contains 50–60 volume% methane [12]. Therefore, the methane capacity in each
source i can be assumed as follows:

FCH4
i ≤ FLF

i ×XLF
i ∀i (6)

where XLF
i refers to the landfill gas-to-bio-methane conversion in terms of mass flowrate (wt.%). On

the other hand, POME can be converted into bio-methane via AD process. Its conversion can be
formulated as Equation (7):

FCH4
k ≤ FPOME

k ×XPOME
i ∀k (7)

where FPOME
k refers to the available POME capacity in source k (m3/h); while XPOME

k refers to the
conversion ratio of AD process (t CH4/m3 POME).

3.2.2. Objective Function

The main objective of the model is to determine a bio-hydrogen network with minimum total
annualised cost (TAC, $/y). It is generally the sum of annual operating cost (AOC, $/y), annualised
investment cost (AIC, $/y) and annual raw material cost (AMC, $/y), given as in Equation (8).

TAC = AOC + AIC + AMC (8)

where AOC is the product of the operating cost (OC, $/y) and annual operating hours (AOH), given
as in Equation (9). Note that OC encompasses of the operating cost of the involved operating units
(Equation (10)):

AOC = OC×AOH (9)

OC =
∑

i
FCH4

i
XLF

i
×UOCBGU +

∑
k

FCH4
k

XPOME
k

×UOCAD +
(∑

i
∑

l FCH4
i,l +

∑
k
∑

l FCH4
k,l

+
∑

l′
∑

l FCH4
l′,l

)
×UOCComp +

∑
l
∑

j FCH4
l, j ×UOCSMR

(10)

where UOCBGU, UOCAD, UOCComp and UOCSMR refer to the unit operating costs for biogas upgrader
($.h/t), AD ($.h/m3), compressor($.h/t), and SMR ($.h/t)units respectively.

The AIC($/y), on the other hand, is a ratio of total investment cost (TIC, $) over the life span of the
plant (LS).

AIC =
TIC
LS

(11)

The TIC ($/h) considers the investment costs of biogas upgrader (ICBGU, $/h), AD (ICAD, $/h),
compressor (ICComp, $/h), pipeline (ICPipe, $/h), and the SMR process (ICSMR, $/h). These parameters
can be computed using Equations (12)–(17):

TIC = ICBGU + ICAD + ICComp + ICSMR + ICPipe (12)

ICBGU =
∑

i

FCH4
i

XLF
i

×UICBGU (13)

ICAD =
∑

k

FCH4
k

XPOME
k

×UICAD (14)
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ICComp =

∑
i

∑
l

FCH4
i,l +

∑
k

∑
l

FCH4
k,l +

∑
l′

∑
l

FCH4
l′,l

×UICComp (15)

ICSMR =
∑

l

∑
j

FCH4
l, j ×UICSMR (16)

ICPipe =

∑
i

∑
l

di,l +
∑

k

∑
l

dk,l +
∑

l

∑
l′

dl,l′ +
∑

l

∑
j

dl, j

×UICPipe (17)

where UICBGU, UICAD, UICComp, UICSMR, and UICPipe refer to the unit operating costs for biogas
upgrader ($/t), AD ($/m3), compressor ($/t), SMR ($/t), and pipeline (t/km), respectively.

The AMC ($/y) in Equation (8) is a product of total flow rate of external hydrogen supply (FFH2
j , t/h),

its unit cost (CH2, $/t H2), and AOH.

AMC =
∑

j

FFH2
j ×CH2

×AOH (18)

The above is an LP model, which may be solved to achieve global solution, if the solution exists.

4. Case Studies

Two case studies based at Malaysia scenarios will be used to demonstrate the proposed P-graph
framework. Case Study 1 focused on the West Coast of Peninsular Malaysia, which only considers
landfill gas as the bio-methane source. On the other hand, Case Study 2 is based on the East Coast of
Peninsular Malaysia, where both landfill gas and POME are utilised as the bio-methane feedstock. The
economic parameters used in these case studies are the same, and are summarised in Table 2. This LP
model for both case studies were solved using the ABB algorithm in P-graph solver.

Table 2. Economic parameters for case studies.

Parameters Price Unit Reference

UICBGU 7,459,658 $/t landfill gas/h [38]
UOCBGU 83 $/t landfill gas/h

UICAD 6540 $/m3 [39]

UOCAD 0.0872 $/m3/CH4/h [40]
UICComp 827,613 $/t CH4

UOCComp 2.78 $/t CH4/h [41]

UICPipe 65,940 $/km [42]

CH2 4880 $/t H2
[43]

UICSMR 42,104 $/t CH4

UOCSMR 0.4 $/t CH4/h

XLF
i 25–30 weight% [12]

XPOME
k 0.01 t CH4/m3 POME [44]

XSMR 3.4 kg CH4/kg H2 [7]

AOH 7200 h/y -

OY 10 y -

UOCBGU , UOCAD, UOCComp and UOCSMR refer to the unit operating costs for biogas upgrader, AD, compressor,
and SMR units respectively; UICBGU , UICAD, UICComp, UICSMR, and UICPipe refer to unit operating costs for biogas
upgrader, AD, compressor, SMR, and pipeline, respectively; XPOME

k refers to the conversion ratio of AD process, XLF
i

refers to the landfill gas-to-bio-methane conversion.
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4.1. Case Study 1

In this case study, landfill gas is used as bio-methane source for four main oil refineries on the West
Coast of Peninsular Malaysia (see Figure 6), with their capacities and hydrogen demand tabulated in
Table 3. The potential compressor substations are distributed along the North–South Expressway on the
West Coast of Peninsular Malaysia. Note that P-graph will decide (i) the sets of compressor substation
to be chosen; and (ii) the transport direction of the methane flow based on the objective function.Processes 2020, 8, x FOR PEER REVIEW 11 of 31 
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Table 3. Landfill gas capacity and hydrogen demand of each region (Case Study 1).

States Label Regions Landfill Gas
Capacity (t/h) a

Hydrogen
Demand (t/h) b

Johor

1 Kota Tinggi 8.77 -

2 Kulai 2.36 -

3 Kluang 1 1.90 -

4 Kluang 2 6.31 -

5 Batu Pahat 7.10 -

Melaka
6 Jasin 2.36 -

S1 Melaka Oil Refinery 1 - 5.65

S2 Melaka Oil Refinery 2 - 5.83

Negeri Sembilan

7 Jempol 1.42 -

8 Seremban 10.83 -

S3 Port Dickson Oil Refinery 1 - 6.96

S4 Port Dickson Oil Refinery 2 - 3.86

Selangor

9 Sepang 3.00 -

10 Kuala Langat 6.40 -

11 Klang 1.84 -

12 Petalling 7.12 -

13 Kuala Selangor 8.75 -

14 Hulu Selangor 11 -

Pahang 15 Bentong 1.90 -

Perak

16 Hillir Perak 11.24 -

17 Kampar 2.70 -

18 Batang Padang 5.40 -

19 Kinta 1 17.00 -

20 Kinta 2 10.50 -

21 Sungai Siput 2.84 -

22 Larung, Matang and Selama 2.67 -

23 Kuala Kerau 1.42 -

Penang 24 Seberang Perai 1 8.50 -

25 Seberang Perai 2 1.40 -

Kedah 26 Kedah 7.10 -
a Estimated from the data tabulated in Sustainable Energy Development Authority (SEDA) [45] by assuming the
(i) average calorific value of Malaysian municipal solid waste (MSW) is 8.7 MJ/kg [46]; (ii) efficiency of converting
landfill gas to electricity is 35% [47]. b Assumed that 12.5 t/h of hydrogen is required for an 11.4 Million t/y capacity
oil refinery [48].

Figure 7 shows the P-graph model developed for Case Study 1, where four scenarios are considered.
In Scenario 1, the existing landfill gas capacity and hydrogen demand at oil refineries are used (base case).
In Scenario 2, the effect of population growth on bio-methane supply for hydrogen production in the
next five years is considered. In this scenario, three of the eight states on the West Coast, i.e., Johor,
Penang, and Selangor, are assumed to have a 5% increase in the respective landfill gas capacity, while
the remaining five states are anticipated to have a 3% increase in landfill gas capacity. However, no
changes in hydrogen demand are made in this scenario. Scenario 3, on the other hand, consider the
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potential expansion of oil refineries in future, i.e., hydrogen demand is increased. Thus, on top of the
landfill gas increment considered in scenario 2, hydrogen demand of all four oil refineries is assumed
to be increased by 10%. Whereas in scenario 4, it is assumed that there is a surplus of produced
bio-hydrogen, which can fulfil the demands at all four oil refineries. To achieve this, the landfill gas
capacities of all regions are doubled while keeping the hydrogen demand unchanged (same as base
case value). In addition, a sensitivity analysis of external hydrogen price is conducted to observe how
the network structure changes as corresponds to the variation in hydrogen price. Table 4 provides a
summary of these scenarios.
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Table 4. Summary for scenarios 2–4 as compared to base case.

Labels
% Changes as Compared to Base Case

Scenario 2 Scenario 3 Scenario 4

1–5, 9–14, 24, 25 +5% +5% +100%

6–8, 15–23, 26 +3% +3% +100%

S1 +0% +10% +0%

S2 +0% +10% +0%

S3 +0% +10% +0%

S4 +0% +10% +0%

Figure 7 shows the P-graph model developed for the bio-hydrogen supply network discussed in
this work. The model is optimised under different scenarios, while the results are discussed in the
following subsections.
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4.1.1. Supply Demand Analysis

Based on the feasible structure of the networks (see Appendix A Figures A1–A4), the hydrogen
demand of the four refineries have been greatly fulfilled by bio-hydrogen, ranging between 50%–60%
for Scenarios 1–3, and a complete fulfilment for Scenario 4. The results show that the uptake of landfill
gas as the feedstock of bio-methane is favourable. Evidently, the generated bio-methane from landfill
sources have been fully utilised to produce hydrogen, instead of keeping the gases unutilised. However,
due to a limited supply in Scenarios 1–3, external hydrogen (from conventional SMR process) is to be
purchased to fulfil the demands in the refineries. In Scenario 4 where there is surplus of bio-hydrogen
supply, the use of external hydrogen is no longer required. The optimised bio-hydrogen network is
presented in Figure 8, while the respective distributions of bio-hydrogen are tabulated in Table 5.

As represented in Figure 8, all landfill sites are connected to the nearest compressor substation.
It is worth mentioning that some of the compressor substations are constructed in order for the
re-pressurisation of the bio-methane (e.g., Ulu Bernam substation). Based on the results obtained, the
pipeline connection for Scenarios 1–3 are identical (see Figure 8a), while a slightly different network is
observed for Scenario 4 (see Figure 8b). Note that for Scenario 4, as the bio-methane is in excess, P-graph
model tends to omit those landfill sites, which are located further from the sources (e.g., Jempol (7),
Hulu Selangor (14), and Kedah (26)).
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Table 5. Supply of Bio-hydrogen to different oil refineries in four scenarios (case study 1).

Scenarios Total Hydrogen
Demand (t/h)

Total
Bio-Hydrogen
Supplied (t/h)

Total
Bio-Hydrogen
Supplied (%)

Oil
Refinery

Bio-Hydrogen
Used (t/h)

External
Hydrogen

Purchased (t/h)

1 22.30 12.63 57

S1 0 6.96

S2 1.15 2.71

S3 5.65 0

S4 5.83 0

2 22.30 13.21 59

S1 0 6.96

S2 1.73 2.13

S3 5.65 0

S4 5.83 0

3 24.51 13.21 54

S1 0 7.66

S2 0.61 3.64

S3 6.20 0

S4 6.40 0

4 22.30 22.30 100

S1 6.96 0

S2 3.86 0

S3 5.65 0

S4 5.83 0
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4.1.2. Cost Analysis

The total annualised network cost of the developed network for Scenarios 1–4 are determined
as $570,531,600/y, $560,412,720/y, $638,063,280/y, and $395,665,200/y respectively. As a comparison, a
conventional hydrogen supply network (no bio-hydrogen is produced) requires an annualised network
cost of $783,532,800/y to meet the hydrogen demand stated in the base case. In other words, the
integration of bio-hydrogen supply network leads to cost reduction of 25.9%–49.5%. Aside from
this, by comparing Scenarios 1, 2 and 4, it can be clearly seen that the network cost is reduced as
the bio-hydrogen availability is increased. By increasing the bio-hydrogen production from 12.63 t/h
(scenario 1) to 13.21 t/h (scenario 2), the network cost is reduced by 1.8%. The total network cost is
further decreased by 28.9% (as compared to scenario 2) when the bio-hydrogen production is increased
to 22.30 t/h.

Table 6 shows the cost breakdown for all four scenarios (data extracted from P-graph results). As
shown, for Scenarios 1–3, more than half of the network cost is contributed by the procurement of
external hydrogen. Biogas upgrader is the second highest cost followed by the pipeline and compressor
costs. Table 6 also shows that SMR cost is the most insignificant cost as compared to the other three
parameters. This provides an insight that future researches should prioritise in finding alternatives
or strategies to lower the cost of the first two mentioned factors. In Scenario 4, since the hydrogen
demand is fully supplied from bio-methane without any need of external hydrogen, biogas upgrader
becomes the largest cost contributor among all cost elements.

Table 6. Total and breakdown cost for Scenarios 1–4 for case study 1.

Scenarios
Total

Network
Cost($/Year)

External
Hydrogen

Supply Cost (%)

Biogas
Upgrader Cost

(%)

Pipeline and
Compressor

Cost (%)

Steam Methane
Reformer (SMR)

Cost (%)

1 570,531,600 60 36 <4 0.016

2 560,412,720 57 38 <5 0.014

3 638,063,280 62 34 <4 0.015

4 395,665,200 0 90 <10 0.035

4.1.3. Sensitivity of the Model to Hydrogen Price

Cost analysis in previous sections demonstrated the potential of bio-hydrogen network; however,
was heavily dependent on the unit cost of external hydrogen supply. To analyse the effect of external
hydrogen price, a sensitivity analysis has been conducted by varying the price of the external hydrogen
supply. The results are shown in Figure 9. As shown, the amount of bio-hydrogen uptake remains
unchanged when the hydrogen price is progressively reduced from $5200/t to $3290/t. However,
the amount of bio-hydrogen consumption is reduced when hydrogen unit price reached $2500/t.
this indicates that the use of external hydrogen has become more economic feasible as compared
to bio-hydrogen. When the hydrogen price approached $2300/t, the uptake of bio-hydrogen is
completely removed.

4.2. Case Study 2

Figure 10 shows the hydrogen sinks, landfill and POME sources, which are located at the East
Coast of Peninsular Malaysia. Table 7 summarises the landfill gas and POME capacities of each source
and hydrogen requirements of each sink. On top of the base case analysis (based on data tabulated in
Tables 3 and 7), this case study also evaluates the environmental performance of the designed network
in terms of the overall carbon footprint. The results are then compared with the conventional hydrogen
supply network (i.e., without the consideration of bio-hydrogen).
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Similar to case study 1, a P-graph model is developed to determine an optimal bio-hydrogen
supply network in the East Coast of Peninsular Malaysia. The constructed maximal structure of
bio-hydrogen supply network is shown in Figure 11.
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Table 7. Landfill and POME gas capacity and hydrogen demand of each regions considered in case
study 2.

Type States Label Regions Capacity
(m3/h) a

Hydrogen
Demand (t/h) b

Landfill

Kelantan 1 Kelantan 1000 -

Pahang

2 Hulu Terengganu 2183 -

3 Kemaman 2183 -

4 Kuantan 4244 -

5 Pekan 1285 -

Terengganu 5 Rompin 2 3211 -

6 Rompin 1 2183 -

POME
Pahang

A Sepakat 36 -

B Rompin 91 -

C Kampung Padang 198 -

D Bukit Tajau 107 -

E Bandar Tun Razak 169 -

Kelantan F Kampung Cheneh 33 -

Sink Terengganu S1 Kerteh - 2.21

S2 Kemanman - 1.38
a Estimated from the data tabulated in SEDA [45] and Chin et al. [44]. b Assumed that 12.5 t/h of hydrogen is
required for a 11.4 MMTPA-capacity oil refinery [48].
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4.2.1. Base Case Scenario

In this base case, it is assumed that the generated bio-hydrogen can solely fulfil all hydrogen
demand in the case study (i.e., no external hydrogen is supplied). The optimised network determined
by P-graph model is shown in Figure 12 (see Figure A5 in Appendix A for P-graph result). The latter
shows the connection between the sources utilised in the network and the oil refineries, while the
distributions of bio-methane from each source are tabulated in Table 8. The latter shows that the total
amount of landfill biogas and POME biogas used are determined as 5.74 t/h and 6.47 t/h, respectively.
POME biogas uses 100% of its sources capacity, while landfill biogas uses 89.5%. This shows that the
network prefer POME over landfill due to its lower cost. This is due to the proportional investment
cost for biogas upgrader is higher than that of the AD.
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Table 8. The landfill and POME sources and the bio-methane flow rate from each source (case study 2).

Type Region Source Name Bio-Methane Flowrate (t/h)

Landfill

2 Hulu Terengganu 0.8591

3 Kemaman 0.8591

4 Kuantan 1.6706

5 Pekan 0.5058

6 Rompin 2 0.9872

7 Rompin 1 0.8591

POME

A Sepakat 0.3647

B Rompin 0.9283

C Kampung Padang 2.0227

D Bukit Tajau 1.0941

E Bandar Tun Razak 1.7240

F Kampung Cheneh 0.3315
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Based on the optimised network structure, the total network cost is $35,564,400/y to satisfy the
total hydrogen demand of 3.59 t/h in the East Coast. Similar to the situation in case study 1, the uptake
of bio-hydrogen requires less network cost (i.e., 31% lower) as compared to the conventional hydrogen
supply network, which is originated from fossil fuel. In addition to the decent economic performance,
the following section also evaluates the environmental benefit of this intervention.

4.2.2. Environmental Evaluation

In this section, the effect of bio-hydrogen network on carbon footprint is explored. It has been
reported that approximately 260 tonnes of CO2 will be produced for every tonne of hydrogen produced
from conventional fossil fuel sources [49]. Despite the use of waste gas for hydrogen production,
emissions due to natural gas extraction, construction of pipelines, and gas compressor substations
will inevitably lead to carbon emissions. In general, 768 tonnes of CO2 will be produced from
the construction of a 1 km-36-inch pipeline [50], whereas the compressor substation with a 1 MW
compressor will produce 14.9 t/day of CO2 [51].

In order to study the effect of external hydrogen usage and its resulting carbon emissions,
a comparative study is made using P-graph. The results are given in Figure 13, where the corresponding
effects of carrying the uptake of external hydrogen supply on (i) consumption of the generated
bio-hydrogen from landfill and POME sources; (ii) the carbon footprint attributed from bio-hydrogen
supply and external hydrogen supply (varies from 0 t/y to 12,960 t/y). In general, the results show
that as the uptake of external hydrogen supply leads to a significant drop in the usage of landfill
gas. This further assures that the POME-to-methane pathway is more preferable as compared to
landfill-to-methane pathway due to the lower investment cost needed for installing AD.
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The highest carbon emissions of 170,289 t/y is found at the highest fresh hydrogen intake
(i.e., 12,960 t/y), where bio-hydrogen is merely produced from POME sources. On the other hand,
the lowest carbon production of 75,293 t/y can be obtained when no external hydrogen is consumed.
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Besides, it is observed that by increasing the external hydrogen flowrate from 7200 t/y to 10,080 t/y,
despite the overall decreasing trend of the bio-hydrogen network carbon footprint, the biohydrogen
carbon footprint increases at that specific range. The gradual decrease in bio-hydrogen network carbon
footprint is due to the lower uptake of landfill gas. However, at the external hydrogen supplies of
7200–12,960 t/y, the decrease in landfill hydrogen gas is observed, while a slight increase in POME
hydrogen gas is observed. This causes the bio-hydrogen carbon footprint to drop, as the carbon
footprint of landfill hydrogen gas is much lower than that of POME hydrogen gas. This change is a
result of P-graph in which different landfill sources has been selected to supply the hydrogen demand
(with the most economical route).

5. Conclusions

This study proposed an optimal supply chain network using P-graph, for hydrogen production
from bio-methane generated from landfills and SMR. To demonstrate the model, two case studies on
the West and East coasts of Peninsular Malaysia were conducted. The proposed bio-hydrogen network
not only serves as an effective way to mitigate the environmental issues caused by the abundant
generated POME and landfill gas, but also enhances the sustainability of the current hydrogen economy
in terms of both economic and environmental dimensions. From the first case study, it can be clearly
seen that the total network cost can be reduced by replacing more external hydrogen supply with the
generated bio-hydrogen. Besides, the developed P-graph model can also be used to test the feasibility
boundary of the bio-hydrogen network. The generations of bio-hydrogen from POME and landfill
sources are preferable, provided that the unit external hydrogen price is more than $2300/t. In case
study 2, a base scenario is conducted, where all the hydrogen demand is supplied from bio-methane
produced from combination of landfill and POME sources. Similar to case study 1, it was more feasible
to produce hydrogen from bio-methane than using external hydrogen source. In addition, case study
2 explored the effect of using bio-hydrogen network on carbon footprint and the results showed a
positive correlation between the production of hydrogen from bio-methane source and reduction of
carbon footprint. In conclusion, this study showed that the production of bio-hydrogen is not only
environmentally friendly, but also more economically viable. Apart from chemical plants, the proposed
model can be extended for societies looking to grow and increase their hydrogen usage. This work can
be further extended by considering supply chain uncertainty into the sustainability evaluation model.
This can be done by coupling the P-graph framework with the Monte Carlo simulation model [52].
The variation on material costs, raw material availability, and market demand can be considered in the
hybrid model [53].
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