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Abstract: The aim of this paper is to conduct a generalised assessment of both optimal working
fluids and radial turbine designs for small-scale organic Rankine cycle (ORC) systems across a range
of heat-source temperatures. The former has been achieved by coupling a thermodynamic model
of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the
working-fluid and cycle parameters for heat-source temperatures ranging between 80 ◦C and 360 ◦C.
The critical temperature of the working fluid is found to be an important parameter governing
working-fluid selection. Moreover, a linear correlation between heat-source temperature and the
optimal critical temperature that achieves maximum power output has been found for heat-source
temperatures below 300 ◦C (Tcr = 0.830Thi + 41.27). This correlation has been validated against cycle
calculations completed for nine predefined working fluids using both the Peng–Robinson equation of
state and using the REFPROP program. Ultimately, this simple correlation can be used to identify
working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the
effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW
subcritical ORC system has been studied. As the heat-source temperature increases, the optimal
blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage
losses are dominant in turbines intended for low-temperature applications. However, at higher
heat-source temperatures, clearance losses become more dominant owing to the reduced blade
heights. This information can be used to identify the most direct route to efficiency improvements in
these machines. Finally, it is observed that the transition from a conventional converging stator
to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ◦C,
whilst radially-fibered turbines seem unsuitable as the heat-source temperature exceeds 250 ◦C;
these conclusions can be used to inform expander design and selection at an early stage.

Keywords: organic Rankine cycle (ORC); radial turbine design; computed-aided molecular
design (CAMD); working-fluid selection; small-scale

1. Introduction

In the past decade, organic Rankine cycle (ORC) systems have gained significant traction as a
viable technology for the conversion of low-temperature heat (<400 ◦C) into power [1]. ORC systems
are commercially available with power outputs of the order of 100 kWe and above, but the penetration
of the domestic and commercial scales has been elusive owing to technical and economical challenges.
As such, there have been a number of research activities focussing on ORC systems of this scale.
Arguably, two of the most critical components are the working fluid and the expander. The former
defines the potential of the cycle to convert thermal energy into work, whilst an efficient expansion is
critical to realise as much of this potential as possible.
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The list of possible working fluids is vast, including fluids from the hydrocarbon, hydrofluorocarbon,
hydrofluoroolefin and siloxane families. An optimal fluid should result in good thermodynamic and
component performance, have good material compatibility, be safe, available and cheap. Moreover,
environmental properties are becoming increasingly important, and the selection process must keep
up-to-date with changing legislation, such as the recent Kigali agreement [2]. The selection process
typically involves considering a group of known fluids, taken from programs such as REFPROP [3] or
CoolProp [4], and screening these fluids based on predefined criteria. This is followed by a system
optimisation study in which each fluid is considered in turn. Notable examples can be found in
Refs. [5,6]. Other examples include those by Drescher and Brüggemann [7], who identified five
optimal fluids for a biomass application from an initial group of 1800 substances. More recently,
the same group has used computational chemistry to identify fluids for automotive waste-heat
recovery applications [8,9], evaluating over 3000 promising candidates from the 72 million substances
available in the PubChem database. Vivian et al. [10] optimised four different ORC configurations with
27 working fluids, and produced guidelines for fluid selection based on the heat-source temperature.
More specifically, it was suggested that the difference between the heat-source temperature and the
critical temperature of the fluid is an important selection criteria.

A more sophisticated approach to working-fluid selection can be achieved using computer-aided
molecular design (CAMD). In this approach, group-contribution methods, such as the Joback and
Reid method [11], are used to determine key fluid parameters based on the functional groups
that make up the molecule. By combining these group-contribution methods with an equation
of state, such as a cubic equation of state or the more advanced statistical associating fluid theory
(SAFT) [12], and describing the fluid structure using integer variables, the fluid structure can be
optimised alongside the thermodynamic cycle. One of the first CAMD-ORC studies was completed
by Papadopoulos et al. [13], who considered a range of factors such as performance, cost, toxicity
and flammability. Palma-Flores et al. [14] focussed primarily on thermodynamic performance and
safety characteristics, whilst Cignitti et al. [15] considered thermodynamic performance alongside the
heat exchanger requirements. In comparison to these studies, which all use a cubic equation of state,
studies have also been conducted using SAFT. Lampe et al. [16,17] devised a two-stage CAMD-ORC
optimisation framework, based on the perturbed-chain SAFT equation of state [18], and determined
an optimal fluid for a 120 ◦C heat source based on thermodynamic performance. Schilling et al. [19]
reduced this to a single-stage optimisation framework, and considered the multi-objective optimisation
of an ORC system for a combined-heat and power application, in addition to considering the
preliminary design of the turbine. White et al. [20] developed a CAMD-ORC model, based on the
SAFT-γ Mie equation of state, and applied this model to identify optimal hydrocarbon working fluids
for 150, 250 and 350 ◦C heat sources.

Compared to REFPROP, CoolProp and SAFT, cubic equations of state are not as accurate. However,
since they require less fluid parameters and can be easily implemented within a process model,
they remain a viable research tool. Lujàn et al. [21] compared the Peng–Robinson (PR) [22] and the
Redlich–Kwong–Soave (RKS) [23] equations of state for modelling the expansion of R245fa within
an ORC and found that these equations of state corresponded to deviations in the specific energy
of expansion of 6% and 8%, respectively, compared to REFPROP. Brignoli and Brown [24] coupled
an ORC thermodynamic model with the PR equation of state. A comparison between the saturation
pressures, latent heats of vaporisation, saturation densities and ideal specific-heat capacity terms
calculated using PR and using REFPROP found that for the 31 fluids considered, the maximum error
was generally below 10%. Su and Deng [25] report similar conclusions. Frutiger et al. [26] compared
uncertainty assessments of the RKS and PC-SAFT equations of state, and found that the RKS equation
of state could be preferable with regards to minimising uncertainty.

Regarding expander technology for small-scale ORC systems, either volumetric- or turboexpanders
can be considered. Examples of volumetric expanders are scroll, screw and reciprocating-piston expanders,
which are all characterised by low rotational speeds, simple construction, low part count and low cost.
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Scroll expanders are generally considered for power outputs in the order of a few kilowatts, whilst
screw expanders are considered when the power output is in the order of a few tens of kilowatts
up to a few hundred kilowatts. However, due to mechanical design constraints, screw and scroll
expanders are limited by their built-in volume ratio, and as such single-stage systems are limited
to low-temperature applications, in which the volumetric expansion ratio is typically below 10.
Reciprocating-piston expanders can achieve higher volume ratios, but are at an early stage of
development [27]. By comparison, turboexpanders can achieve a high expansion ratio over a
single stage, which means they are suitable for the full range of heat-source temperatures considered
within this paper, and also have advantages with regards to size, compactness and can achieve
a high efficiency at the design point. Therefore, the focus of this paper is on turboexpanders for
small-scale ORC applications, although turboexpanders correspond to higher rotational speeds than
volumetric expanders which can increase cost, and the low speed of sound of organic fluids often
leads to supersonic conditions within the turbine. The design of an ORC turbine is achieved by
combining a real-gas model with conventional turbomachinery design practices, for example in
Refs. [28–30]. Lio et al. [31,32] attempted to establish general recommendations for the design of
axial [31] and radial [32] turbines, by evaluating the effects of turbine size and expansion ratio on the
turbine efficiency. Their results suggest there could be a reduction in turbine efficiency as the operating
conditions approach the critical temperature. Advancements in computational power mean turbine
design models can be integrated with thermodynamic cycle models, and the integrated optimisation
of both the thermodynamic cycle and turbine can be completed, as demonstrated in Refs. [33,34].

In general, the majority of studies within the literature follow a similar approach to fluid selection
and turbine design in that a list of candidate fluids is generated and a parametric optimisation study
is completed. Whilst these studies can identify the optimal fluid and turbine design for a specific
application, they provide little insight into the general characteristics that make a fluid an optimal
choice for a particular heat-source temperature, or the effect of the heat-source temperature on the
turbine design. Existing CAMD-ORC models facilitate a more generalised approach to fluid selection,
but do not provide sufficient detail with regards to component design, and are typically applied to
individual case studies. On the other hand, a market assessment of ORC technology, such as the one
completed by Landelle et al. [35], are useful to make general observations with regards to component
selection and expected performance, but are too general to make recommendations with regards to
both working-fluid selection and turbine design.

With this in mind, there are two objectives of this paper; the first is to use principles taken
from CAMD, namely the optimisation of fluid parameters such as the critical properties, to identify
theoretically optimal fluids for a range of heat-source temperatures. The second objective is to use
this information to make a generalised assessment of how the heat-source temperature affects the
design and performance of a radial turbine. To the authors’ knowledge, this study is the first to apply
these methods within this context, and the results are useful to make more informed choices with
regards to both working-fluid selection and turbine design for future applications. Not only will this
information be useful to system designers considering a specific application, but a more generalised
approach favours a transition towards a more standardised design method, which should enable
future improvements in the economy-of-scale and lead to cost reductions in small-scale ORC systems.

Following this introduction, the developed models are described in Section 2, and the optimisation
methods are described in Section 3. In Section 4, a case study is defined that considers a range of
different heat-source temperatures, and the results from this case study are presented and discussed in
Section 5. Finally, the main conclusions from this research are presented in Section 6.
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2. Modelling

2.1. Thermodynamic Properties

In line with the motivation behind this research, an equation of state is required that is capable
of describing a working fluid in a generalised way, rather than using software such as REFPROP.
Cubic equations of state are a suitable choice, and have previously been used within the context of
cycle and expander modelling for ORC systems [21,24,25]. Specifically, the Peng–Robinson equation of
state is used to model the thermodynamic properties of the working fluid, which is defined as [22]:

p =
RT

Vm − b
− aα(T)

V2
m + 2bVm − b2 , (1)

where p is the pressure in Pa, R is the universal gas constant with units J/(mol K), T is the temperature
in K, and Vm is the molar volume with units of m3/mol. The parameters a and b are fluid-specific
parameters given by:

a =
0.45724R2T2

cr
pcr

, (2)

b =
0.0778RTcr

pcr
, (3)

where Tcr and pcr are the temperature and pressure at the critical point. These terms are derived by
setting the derivatives of Equation (1), ∂p/∂Vm and ∂2 p/∂V2

m, equal to zero at the critical point.
The function α(T) introduces a temperature dependence to the term on the right-hand side of
Equation (1):

α(T) =

(
1 + n

(
1−

√
T

Tcr

))2

, (4)

where n is a quadratic function of the acentric factor ω:

n = 0.37464 + 1.54225ω− 0.26992ω2 . (5)

The acentric factor is another fluid-specific parameter, defined as ω = − log10(psat
r )− 1, where psat

r
is the reduced saturation pressure at a reduced temperature of 0.7.

Using Equation (1), the fugacity and the departure functions for enthalpy and entropy can be derived.
For brevity, these calculations will not be reproduced here, but can be found in Ref. [36]. Using these
functions, the saturation pressure psat and the latent-heat of vapourisation can be determined.
Under saturated conditions, the liquid and vapour fugacity are equal. Therefore, for a defined temperature,
the saturation pressure can be found by varying the pressure until this condition is met. Within the
model, this procedure is completed using the Newton–Raphson method.

To determine the enthalpy and entropy for a single-phase fluid, the ideal specific-heat capacity
cp,id as a function of temperature is required. This is defined using a second-order polynomial:

cp,id(T) = A + BT + CT2 , (6)

where A, B and C are constants. The enthalpy h in J/mol and the entropy s in J/(mol K) can be
calculated from Equations (1) and (6). Further details of these calculations can be found in Ref. [36].

Combining the Peng–Robinson equation of state with a second-order polynomial for cp,id means
a fluid can be fully described by six parameters, namely Tcr, pcr, ω, A, B and C. This, in turn, allows a
more generalised approach to ORC working-fluid selection by enabling these parameters to become
variables during a cycle optimisation process. With this in mind, it is noted that the equation of state
is defined in terms of the molar volume and the universal gas constant, which removes the need of
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defining the molar mass as an additional parameter. Moreover, the Peng–Robinson equation of state is
selected over other possible equations of state that contain more adjustable parameters, for example
the Peng–Robinson–Stryjek–Vera equation of state [37], since reducing the number of fluid parameters
reduces the number of optimisation variables, therefore simplifying the optimisation. It is noted that
the validity of the Peng–Robinson equation of state for modelling ORC fluids will be verified later on.

In Figure 1, the effect of the fluid parameters on the saturation curve of a fluid is investigated with
Tcr = 500 K and pcr = 30 bar. As ω increases towards 1, the same pressure ratio can be obtained over a
smaller temperature ratio, suggesting that a high value of ω is favourable for maximising the pressure
ratio for a given heat-source and heat-sink temperature. Moreover, as ω increases, the latent-heat and
entropy of vapourisation both increase, resulting in a widening of the saturation curve on a T–s diagram.
Depending on the application, this may be an advantage or a disadvantage. In applications where
maximising the cycle efficiency is the objective, a high latent-heat of vapourisation results in a
high specific work output [38]. However, in waste-heat recovery applications, where the objective
is maximising the power output, a lower latent-heat means allowing a larger proportion of the
heat-transfer process within the evaporator to occur in the preheating region, thus resulting in a
better thermal match to the heat source, and a higher power output. Finally, the cp,id polynomial
defines whether the saturated-vapour curve has a positive or negative gradient, but plays no role in
determining the saturation properties of the fluid.

Figure 1. Effect of ω, A, B and C on the thermodynamic behaviour of a working fluid with Tcr = 500 K
and pcr = 30 bar. For the top two plots, A = B = C = 0, whilst for the bottom plot ω = 0.25.

2.2. ORC Modelling

Within this paper, the Peng–Robinson equation of state will be used to identify the optimal fluid
parameters that result in the best thermodynamic performance from a subcritical, non-recuperated ORC
intended for a waste-heat recovery application. This type of system is the most common cycle, and has
advantages with regards to both simplicity and cost. Other cycles, such as supercritical and cascaded
cycles, two-phase expansion, and cycles operating with mixtures may offer performance benefits,
but introduce additional complexities or increased costs. For example, supercritical cycles operate
under higher pressures, expanders for two-phase expansion are not widely available, whilst fluid
mixtures and cascaded cycles typically require much larger heat exchangers. Recuperated cycles can
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also be considered, but for waste-heat recovery applications, they may have limited effect on improving
the thermodynamic performance of the system, as a recuperator could increase the heat-source
temperature at the outlet of the evaporator.

A subcritical, non-recuperated Rankine cycle, shown in Figure 2, can be defined by the
condensation temperature T1, the evaporation reduced pressure pr (defined as p2/pcr, where p2 is the
evaporation pressure), and the amount of superheat ∆Tsh. Alongside the pump and turbine efficiencies,
denoted ηp and ηt respectively, this defines all thermodynamic state points. The working-fluid
mass-flow rate ṁw is determined by applying an energy balance to the evaporator:

ṁw =
ṁhcp,h(Thi − Thp)

h3 − h2′
, (7)

where ṁh and cp,h are the heat-source mass-flow rate and specific-heat capacity respectively, Thi is the
heat-source temperature, and Thp is the heat-source temperature at the start of evaporation. This is
defined by specifying, as a model input, the temperature difference:

∆Tp = Thp − T2′ , (8)

where T2′ is the saturation temperature of the working fluid at the evaporation pressure.

Figure 2. Notation used to describe the thermodynamic cycle (left) and a radial turbine (right). In the
left figure the red and blue lines correspond to the heat source and heat sink temperature profiles
respectively, and the magenta lines represent the thermodynamic cycle.

The cycle analysis is completed by applying an energy balance to the preheating, precooling,
and condensation processes to determine the temperature differences between the fluid and the
heat-source and heat-sink streams, which must be greater than the minimum allowable temperature
differences, denoted PPh and PPc respectively. The temperature differences are calculated along the
complete heat-transfer process to ensure the pinch constraints are not violated; during preliminary
studies, it was found that, due to the curvature of the isobars, it is possible for the pinch constraint
to be satisfied at location 2 and location 2′, but violated at a position between these two locations.
In some cases, the pinch point will correspond to the temperature difference at the start of evaporation
(i.e., PPh = ∆Tp); however, the pinch point could in fact occur at any location within the preheater,
or even at the expander inlet if the degree of superheat is sufficiently high.

Within the cycle model, there is no consideration of the heat-exchanger area requirements. This is
because prediction methods for the thermal conductivity, viscosity and surface tensions are required
to be able to accurately size the heat exchangers. However, these cannot be calculated using the



Energies 2018, 11, 800 7 of 26

Peng–Robinson equation or state, and cannot be easily determined without either predefining the
working fluid, or using relatively complex group-contribution methods, which, in turn, require the
full molecular structure of the working fluid to be defined. This introduces significant complexity
to the model, as demonstrated in Ref. [20] in which a relatively complex set of empirical equations
are implemented to determine these properties for only hydrocarbon fluids. Moreover, requiring the
molecular structure to be defined, does, by definition, lead to a less general approach. For this reason,
the authors have chosen to focus on thermodynamic performance only. However, it is noted that
component sizing and costing remains an important aspect of system modelling, and an optimisation
on the basis of thermo-economic performance indicators, such as the payback period, could result in
different optimal systems. Therefore, once the suitability of the method described within this paper
has been confirmed, thermo-economic optimisation should become an objective of future studies.

2.3. Turbine Modelling

The main components of a radial turbine are the stator and the rotor. The stator accelerates the
flow and delivers it to the rotor at the desired absolute flow angle. The further expansion of the fluid
through the rotor produces mechanical power, which can be converted into electricity. Of the two
components, the rotor is the most critical, and it will be the focus of this paper. The design of the rotor
for a particular application requires the integration of a rotor design model with a performance model.
These two models are implemented based on the work of Baines [39].

2.3.1. Rotor Design

The rotor design is based on first determining the spouting velocity cs, which is a function of the
isentropic total-to-static isentropic enthalpy drop across the expander:

cs =
√

2(h03 − h5ss) , (9)

where h03 is the total inlet enthalpy and h5ss is the enthalpy following an isentropic expansion to the
static outlet pressure p5. The rotor inlet velocity triangle is defined by the isentropic velocity ratio
(ν = u4/cs), loading coefficient (ψ = cθ4/u4), flow coefficient (φ = cm5/u4) and meridional velocity
ratio (ξ = cm4/cm5):

u4 = νcs , (10)

c4 = u4

√
ψ2 + (ξφ)2 , (11)

w4 =
√
(ψu4 − u4)2 + (ξφ)2 , (12)

where c4, w4 and u4 are the absolute, relative and blade velocities at the rotor inlet, respectively,
cm4 and cθ4 are the meridional and tangential velocity components of c4, and cm5 is the meridional
velocity component at the rotor outlet. Although a small amount of swirl is often applied in practice,
for simplicity, the rotor outlet is designed for zero swirl (i.e., cθ5 = 0). This implies c5 = cm5,
and therefore, the static enthalpy at the rotor outlet is determined as:

h5 = h05 −
1
2

c2
5 = (h03 − u4cθ4)−

1
2

c2
5 . (13)

Furthermore, the rotor diameter radius d5/d4 is defined as a model input, from which the rotor
outlet blade velocity u5 and relative velocity w5 can be determined:

u5 =

(
d5

d4

)
u4 , (14)

w5 =
√

c2
m5 + u2

5 . (15)
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The rotor inlet and rotor outlet flow areas, denoted A4 and A5 respectively, can be found using
the defined mass-flow rate and meridional velocities if the density of the fluid is known. The density at
the rotor outlet ρ5 is calculated using the static outlet pressure and enthalpy using the equation of state
(i.e., ρ5 = f (p5, h5)). The density at the rotor inlet is calculated from the stator isentropic efficiency:

ηn =
h03 − h4

h03 − h4s
, (16)

where h4 and h4s are the real and isentropic enthalpies respectively. Therefore, h4s can be used to
determine the static pressure p4, which in turn provides ρ4 via the equation of state (i.e., ρ4 = f (p4, h4)).
The calculated flow areas translate into the physical geometry of the turbine via:

A4 =
ṁw

ρ4cm4
= πd4b4(1− BK4) , (17)

A5 =
ṁw

ρ5cm5
=

π(1− BK5)(d2
5s − d2

5h)

4
, (18)

where d4, d5s and d5h are the rotor inlet diameter, rotor outlet shroud diameter and rotor outlet
hub diameter respectively, b4 is the rotor inlet blade height, and the parameters BK4 and BK5 are
correction factors accounting for blockage. The rotor design process is closed by defining a value for
the hub/shroud diameter ratio, d5h/d5s.

2.3.2. Performance Models

Loss models exist to assess the performance of radial turbines [39,40]. However, most of these
models are empirically based and have been developed for radial turbines operating with ideal gases.
Therefore, there are uncertainties surrounding the application of these models to ORC turbines.
However, in the absence of experimental data for validation, a number of authors have successfully
applied these models to ORC turbines [30,32]. Therefore, it seems reasonable to apply these models to
ORC turbines, but it is stressed that future experimental validation is a necessity.

Loss models decompose the total drop in efficiency of the rotor into a number of different loss
mechanisms. One widely implemented set of loss models is reported by Baines [39], in which losses are
decomposed into incidence, passage, clearance, trailing edge and windage losses. The incidence loss
accounts for recirculation behind the rotor leading edge at off-design conditions, and can be neglected
for design-point calculations assuming that the rotor will be adequately designed to ensure there is no
recirculation at the design point. The passage and clearance losses, denoted Lp and Lc respectively,
are expressed as a reduction in the kinetic energy of the flow, corresponding to an increase in the static
enthalpy at the rotor exit:

L = h5 − h5s , (19)

where h5 is the static enthalpy at the rotor exit and h5s is the static enthalpy for an isentropic expansion
to the same pressure. The passage loss accounts for losses within the rotor passage, including losses
due to secondary flows and boundary layer effects, whilst the clearance loss models the energy loss
associated with the leakage of the fluid from the pressure to the suction surface of the rotor, owing to
the clearance gap between the rotor shroud and the casing. Both Lp and Lc are calculated based on the
rotor geometry and the flow velocities at the rotor inlet and rotor exit. For brevity, the equations for
determining Lp and Lc can be found in Ref. [39].

The trailing-edge loss accounts for the sudden expansion of the fluid at the rotor exit and is
expressed as a total pressure loss:

p05 − p06

p05 − p5
=

(
1− cm6

cm5

)2
, (20)
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where the subscripts ‘5’ and ‘6’ refer to the conditions before and after the sudden expansion.
The windage loss is a parasitic loss, which occurs due to the circulation of fluid and the

development of boundary layers on the back-face of the rotor and the rotor casing. Windage loss is not
an aerodynamic loss, but instead is a power loss expressed in terms of an enthalpy loss:

∆hw =
1
2 Cwρ4Ω3r5

4
ṁw

, (21)

where Ω is the rotational speed in rad/s, r4 is the rotor inlet radius, and Cw is a torque loss coefficient.
This parameter depends on the flow regime within the clearance gap, and is defined in Ref. [41].

3. Optimisation

Within this paper, two different optimisation studies will be completed. In the first instance,
the ORC will be optimised to identify optimal working fluids and cycle operating conditions. In the
second instance, an optimal radial turbine design will be obtained for each optimal cycle, allowing
a general characterisation of losses within ORC turbines to be established. Both optimisations are
completed in MATLAB (2017a, MathWorks, Natick, MA, USA) using the GlobalSearch function [42].
This algorithm conducts a nonlinear programming optimisation from multiple start points to ensure a
global optimum is obtained. Each individual optimisation is completed using the sequential quadratic
programming algorithm.

In this study, the two optimisations are decoupled since the turbine models require the molar mass
and viscosity of the fluid to be defined. Unfortunately, as discussed previously, these parameters cannot
be calculated using the Peng–Robinson equation of state, and cannot be easily determined without
either predefining the working fluid, or using relatively complex group-contribution methods, which,
in turn, require the full molecular structure of the working fluid to be defined. Therefore, to enable
a general assessment of the optimal working fluid for different heat-source temperatures, the cycle
optimisation is completed using a fixed turbine efficiency. Then, in the second stage, once these
theoretically optimal fluids have been mapped to physical working fluids, the turbine optimisation
can be completed. For the cycle analysis, the expander efficiency is set to 80%, and, as shown later,
this was found to be representative of the turbine efficiencies obtained during the turbine optimisation.

3.1. Cycle Optimisation

The aim of the cycle optimisation is to optimise the working fluid and cycle conditions within the
ORC to obtain the best thermodynamic performance. Since this is purely a thermodynamic analysis,
it is assumed that both the pump and expander are operating at their design point, and therefore both
components are modelled using fixed component efficiencies. For waste-heat recovery applications,
the objective is to maximise the power output Ẇn. The optimisation is therefore defined as:

max Ẇn = f (x, y) , (22)

where the vectors x and y represent the fluid and cycle optimisation variables respectively:

x = [Tcr, pcr, ω, A, B, C] , (23)

y = [T1, pr, ∆Tsh, ∆Tp] . (24)

3.2. Turbine Optimisation

The turbine optimisation aims to determine an optimal turbine design that achieves the highest
efficiency for a defined fluid, total inlet temperature, total inlet pressure, mass-flow rate and
total-to-static pressure ratio. Since the focus is on the rotor design, a fixed stator isentropic efficiency of
ηn = 92.5% is assumed. Therefore, there is no consideration of the effect the degree of reaction has
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on the performance of stator, and hence the overall turbine. However, in the absence of suitable loss
models for modelling stator performance, particularly for supersonic converging-diverging stators,
such an assumption is considered valid. The meridional velocity ratio and absolute rotor-outlet flow
angle are fixed to ξ = 1 and α5 = 0◦ respectively. Fixing α5 = 0◦ relates the total-to-static isentropic
efficiency ηts to the isentropic velocity ratio ν and the blade-loading coefficient ψ. Therefore, if an
approximation for ηts is made, setting ν equal to:

ν =

√
ηts

2ψ
(25)

ensures zero exit swirl for a specified blade-loading coefficient. Doing this means the design of the
rotor is a function of four variables, namely ψ, φ, d5/d4 and d5h/d5s.

For a defined rotor geometry, rotor inlet conditions, mass-flow rate and rotational speed,
the pressure ratio will be an output from the performance model. Therefore, it is possible that a
particular design will have a different pressure ratio to the design pressure ratio identified from the
cycle optimisation study. During initial optimisation studies where the turbine efficiency was set as the
objective function, the optimisation was found to converge on designs with a high efficiency, but a low
pressure ratio. On the other hand, optimising the rotor design with the power output as the objective
function resulted in a rotor design with a higher pressure ratio, but a lower efficiency. To avoid this,
the authors have introduced a penalty function, which is defined by a Gaussian function of the form:

g(x) = exp
(
−x2

2a2

)
, (26)

where x is the percentage deviation between the predicted and design pressure ratio. Setting
a = 0.1 corresponds to a penalty function values of 1, 0.88, and 0.61 when the percentage deviation is
0%, 5% and 10% respectively. The optimisation is therefore formulated as:

max {g× ηts} = f (x) , (27)

where:
x = [ψ, φ, d5/d4, d5h/d5s] . (28)

The penalty function is necessary since the cycle optimisation and turbine optimisation processes
are completed in separate steps. However, an optimisation model in which both aspects are optimised
simultaneously, for example those reported in Refs. [33,34], would remove this requirement.

4. Case-Study Definition

4.1. Heat Source and Heat Sink

The models developed will now be used to evaluate how the optimal working fluid, cycle conditions
and radial turbine design change as the heat-source temperature increases from 80 ◦C to 360 ◦C.
The heat-source and heat-sink conditions are summarised in Table 1. Since an optimal thermodynamic
cycle is independent of the heat-source heat-capacity rate (i.e., ṁhcp,h), this is arbitrarily defined
as 1 kW/K. Similarly, the heat-sink temperature rise is dependent on the ratio τ = ṁccp,c/ṁhcp,h,
rather than the absolute value of ṁccp,c. For this study, τ = 4.2 is initially assumed.

Table 1. Assumptions for parametric thermodynamic optimisation study.

ṁh cp,h ṁc cp,c Tci
kg/s J/(kg K) kg/s J/(kg K) ◦C

1.0 1000 1.0 4200 15
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4.2. Cycle Optimisation Bounds and Constraints

The bounds and constraints for the cycle optimisation study are summarised in Tables 2
and 3. The most notable bounds that are placed on the optimisation for a subcritical cycle are a
maximum reduced pressure of pr = 0.85, and a minimum superheat of ∆Tsh = 5 K. The former
ensures the cycle operating conditions remain subcritical and sufficiently far away from the critical
point, whilst the latter should ensure the working fluid remains in the vapour phase during the
expansion process. The minimum allowable pinch point is set to 10 K. A condensation pressure
constraint is also introduced, which can be used if the condensation pressure should be kept above a
certain value. More specifically, within this paper, two cases will be considered; (i) pmin ≥ 100 kPa,
and (ii) pmin ≥ 5 kPa. Although, strictly speaking, both cases are constrained, cases (i) and (ii) will be
referred to as constrained and unconstrained respectively, since the 5 kPa constraint is only introduced
to avoid convergence issues when determining the saturation conditions at very low pressures.

Table 2. Bounds for the thermodynamic optimisation study.

Parameter Lower Bound Upper Bound Units

Critical temperature Tcr 323 623 K

Critical pressure pcr 5 50 bar

Acentric factor ω 0 1 -

Polynomial coefficients (cp,id)
A 0 300 J/(mol K)
B 0 1 J/(mol K2)
C −1× 10−3 −1× 10−4 J/(mol K3)

Condensation temperature T1 15 100 K

Reduced pressure (subcritical) pr 0.01 0.85 -

Amount of superheat ∆Tsh 5 200 K

Temperature difference at start of evaporation ∆Tp 10 100 K

Table 3. Constraints and fixed parameters for the thermodynamic optimisation study.

Parameter Value Parameter Value

Pump efficiency, ηp 70% Evaporator pinch constraints Tho − T2 ≥ 10 K

Expander efficiency, ηt 80% Thi − T3 ≥ 10 K

Condensation pressure constraint p1 ≥ pmin Condenser pinch constraints T6 − Tco ≥ 10 K

Polynomial constraints (cp,id) A ≥ 273B + C(273)2 T6′ − Tcp ≥ 10 K
C ≥ −B/(2× 623) T1 − Tci ≥ 10 K

The bounds and constraints for the cp,id polynomial coefficients were defined by evaluating the
variation in the specific-heat capacity at zero pressure for an array of common ORC working fluids
using REFPROP, and this data can be fitted with second-order polynomials. Firstly, it is observed that a
second-order polynomial is sufficient to accurately capture the behaviour of the specific-heat capacity
for each working fluid for temperatures ranging between 0 and 350 ◦C; therefore, there is no need to
use a higher-order polynomial. Furthermore, it is observed that:

cp,id|T=273 K ≥ 0 , (29)

which leads to the first constraint for cp,id given in Table 3. It is also observed that:

dcp,id

dT

∣∣∣∣
T=273 K

≥
dcp,id

dT

∣∣∣∣
T=623 K

≥ 0 , (30)
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which requires C ≤ 0, and leads to the second constraint for cp,id given in Table 3. The limits for B are
set between 0 and 1, since this is found to be the case for all of the working fluids evaluated.

4.3. Turbine Optimisation and Constraints

The bounds and constraints for the turbine optimisation are given in Tables 4 and 5. These are set
according to limits recommended within the literature [39,43]. It is noted that these limits have been
developed for ideal-gas turbines, but in the absence of sufficient information regarding their suitability
for non-ideal gas turbines, these limits are considered valid. Most notably, it is assumed that the
turbine blade is radially fibered, which corresponds to a blade angle of 0◦ at the rotor inlet. In addition,
the relative flow angle at the rotor inlet is constrained to be between −40◦ and −20◦ according to
existing design practice, which implies ψ ≤ 1. Furthermore, to avoid supersonic conditions at the
rotor outlet, a constraint on the rotor outlet relative Mach number is in place (i.e., Ma5w ≤ 0.95).

Table 4. Bounds for the turbine optimisation study.

Parameter Lower Bound Upper Bound

Blade-loading coefficient (ψ) 0.80 1.00
Flow coefficient (φ) 0.10 0.40
Rotor inlet/outlet radius ratio (d5/d4) 0.40 0.80
Rotor hub/shroud radius ratio (d5h/d5s) 0.35 0.65

Table 5. Constraints and fixed parameters for the turbine optimisation study.

Parameter Value Parameter Value

Meridional velocity ratio, ξ 1.0 Rotor inlet blade thickness 0.04r4

Exit swirl, α5 0◦ Rotor hub thickness at outlet 0.02r4

Stator isentropic efficiency, ηn 92.5% Rotor shroud thickness at outlet 0.01r4

Total-to-static efficiency, ηts (Equation (25)) 85% Rotor geometry constraint d5s/d4 ≤ 0.85

Rotor clearance gap 0.4 mm Rotor outlet relative Mach number Ma5w ≤ 0.95

Number of rotor blades 11 Rotor inlet relative flow angle −40◦ ≤ β4 ≤ −20◦

Rotor outlet relative flow angle β5 ≤ −75◦

5. Results and Discussion

5.1. Cycle Analysis Results

For the first study, the optimisation of the fluid and thermodynamic cycle was conducted for a
range of heat-source temperatures according to the bounds given in Table 2. For each heat-source
temperature, the optimisation was completed twice; once for an unconstrained condensation pressure
(p1 ≥ 5 kPa), and once for a constrained condensation pressure (p1 ≥ 100 kPa). It is found that
the working fluid is optimised such that pr = 0.85 and ∆Tsh = 5 K, which reaffirms observations
previously made within the literature [20]. The temperature difference ∆Tp converges to the minimum
value that results in a heat-transfer process that does not violate the minimum evaporator pinch point
constraint at any point, and the location of this pinch point will be discussed later on. It is also found
that the optimal solutions are insensitive to pcr. The remaining optimisation variables are Tcr, ω,
and T1, and these are plotted in Figure 3, along with the power output from the ORC system.

For the unconstrained cases the optimal values of Tcr and T1 both increase with Thi. In fact,
the relationship between Thi and Tcr is linear, which suggests a strong correlation between these two
parameters. In terms of ω, it is observed that, for most cases, ω = 1. This reaffirms the point made in
Section 2.1, which hypothesised that increasing ω facilitates a higher pressure ratio across the same
temperature difference, and this is advantageous in terms of maximising thermodynamic performance.
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The results for the constrained cases show a transition from ω = 1 to ω = 0 as Thi increases. At low
heat-source temperatures, the optimal constrained cycle is the same as the unconstrained cycle with
ω = 1. However, as Thi increases, eventually ω = 1 results in a sub-atmospheric condensation pressure.
Therefore, it is necessary to reduce ω to reduce the ORC pressure ratio, and ensure that p1 ≥ 100 kPa.
This continues as Thi increases further, until ω = 0 is reached. After which, the condensation pressure
constraint can only be satisfied by increasing T1, as observed in the bottom-left plot in Figure 3.
The result of this sudden increase in T1 is a reduction in the optimal Tcr, and a reduction in the
power output; at Thi = 360 ◦C, the constrained cycle generates 52.3 kW, compared to 56.2 kW by the
unconstrained cycle, corresponding to a 6.9% reduction.

For the initial optimisation, ω was included as an optimisation variable based on the principle
that the fluid parameters can be optimised to identify a theoretically optimal fluid, which can then be
matched to a real working with similar properties. However, given the tendency of the optimisation to
identify fluids with ω = 1 or ω = 0, it appears that this approach may not result in the identification of
feasible fluids. A large proportion of ORC working fluids have acentric factors that are within the range
0.1 < ω < 0.5. From the previous results, it is observed that Tcr and the normal boiling temperature
Tb are important parameters governing working-fluid selection. These two parameters have been
determined using REFPROP for a number of common ORC working fluids and are plotted in Figure 4.
In addition, Tb has been calculated using the Peng–Robinson equation of state for different critical
temperatures and acentric factors, assuming pcr = 30 bar. It is observed that setting ω = 0.3 and
pcr = 30 bar is a reasonable approximation that captures the correlation between Tcr and Tb for real
working fluids. Therefore, the cycle optimisation study completed can be repeated using these these
values. The results from this study are shown in Figure 5, and the saturation curves for the optimal
working fluids are shown in Figure 6.

Figure 3. Optimal fluid and cycle parameters for different heat-source temperatures for an unconstrained
(p1 ≥ 5 kPa) and constrained (p1 ≥ 100 kPa) condensation pressure with ω included as an
optimisation variable.

For the unconstrained cases, the optimal cycles again correspond to pr = 0.85 and ∆Tsh = 5 K.
Furthermore, the optimal values of Tcr and T1 share the same trends as observed when ω was a variable.
In comparison, the constrained results are slightly more interesting. Whilst the optimal constrained
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cycles are identical to the unconstrained cycles for Thi ≤ 260 ◦C, at Thi > 260 ◦C, the optimal
critical temperatures flatten off and more superheating is applied to the fluid. This is because a
further increase in Tcr requires an increased condensation temperature to ensure that the condensation
pressure constraint is not violated. This, in turn, causes an increase in the heat-rejection temperature,
and a deterioration in the thermodynamic performance of the cycle. Instead, for the high heat-source
temperatures, it is better to keep Tcr relatively constant, therefore maintaining a similar condensation
temperature, but apply more superheating to the working fluid to best utilise the heat available.

Figure 4. Critical temperature Tcr and boiling temperature Tb of common working fluids available
within the REFPROP program (circles) and the same parameters obtained using the Peng–Robinson
equation of state for different values of ω with pcr = 30 bar (lines).

Figure 5. Optimal working fluid and cycle parameters for different heat-source temperatures for a
subcritical cycle. Results obtained for an unconstrained (p1 ≥ 5 kPa) and constrained (p1 ≥ 100 kPa)
condensation pressure with ω = 0.3.
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Figure 6. Saturation curves for the optimal working fluids obtained from the cycle optimisation for the
unconstrained (left) and constrained (right) condensation pressure cases with ω = 0.3.

The above discussion can be further complemented by an assessment of the temperature
differences within the evaporator at the evaporator inlet (location 2), start of evaporation (location 2′ )
and evaporator outlet (location 3), and these are shown in Figure 7. It is noted that for the majority of
cases all three of these temperature differences are higher than the imposed pinch point, which means
that the pinch point is instead located at a point in between location 2 and 2′. None the less, the minimum
of the three values shown in Figure 7 is indicative of whether the pinch point is closer to location 2, 2′ or 3.
For the unconstrained cycles, it is observed that the pinch point is always located near location 2′.
However, for the constrained case the results are more complicated. When Thi exceeds 260 ◦C,
the pinch point moves towards location 2, which is the result of the flattening off of the optimal critical
temperature as the heat-source temperature is increased. Finally, as Thi approaches 350 ◦C, the pinch
point moves again to location 3, as the degree of superheat becomes sufficiently large.

Figure 7. Temperature differences within the evaporator for the optimal cycles obtained for the
unconstrained (left) and constrained (right) condensation pressure cases with ω = 0.3.

Using the results, physical working fluids that are good candidates for a particular heat-source
temperature can be identified. Considering the unconstrained results for the subcritical cycles
(Figure 5), the linear relationship between the Thi and Tcr can be expressed as:
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Tcr = 0.830Thi + 41.27 , (31)

where Tcr and Thi are both in Kelvin. The coefficients in this expression were obtained using a linear
regression, with a resulting coefficient of determination of R2 = 0.9997. This result is in agreement with
other studies reported within the literature that report a link between the heat-source temperature and
the critical temperature of the working fluid [10,44,45]. However, within the current paper, the authors
have derived a quantitative correlation to identify the optimal critical temperature, based only on the
heat-source temperature. Therefore, in the case of an application where the condensation pressure is
unconstrained, it is hypothesised that Equation (31) can be used to identify a suitable fluid.

For high temperature applications in which the condensation pressure should be above
atmospheric pressure, it is not possible to derive a linear relationship between the critical temperature.
This is because working fluids that may be suitable for higher temperature applications generally have
sub-atmospheric condensation pressures. Therefore, the introduction of the condensation pressure
constraint causes the relationship between Thi and Tcr to deviate from the linear behaviour. Moreover,
as the heat-source temperature increases, the pinch-point location moves, which is a result previously
reported in the literature [46,47]. Interestingly, Preißinger and Brüggemann [47] state that for this
reason it is not possible to derive a linear relationship between the heat-source temperature and
critical temperature. However, it is worth noting that the authors of this previous study focussed
specifically on heat-source temperatures in the range of 300 ◦C to 600 ◦C, for which working fluids
with high normal boiling temperatures are required. However, in this current study, the focus is on
lower temperature applications that range between 80 ◦C and 360 ◦C. It can therefore be stated that
Equation (31) is applicable to the range of heat-source temperatures for which condensation can occur
above atmospheric pressure, which corresponds to Thi < 300 ◦C.

It is worth noting that Equation (31) has been obtained assuming ω = 0.3. To investigate the
sensitivity of the results to variations in ω, a sensitivity analysis considering the effect of ω on the net
power output and fluid critical temperature has been conducted. The results are shown in Figure 8.
From this, it is observed that ω has very little effect on the optimal working-fluid critical temperature.
Moreover, for heat-source temperatures greater than 100 ◦C, the percentage difference in the power
output compared to a working fluid with ω = 0.3 is less than 2%. Therefore, the optimisation is not
that sensitive to variations in ω.

Figure 8. Sensitivity analysis on the effect of ω on Ẇn (left) and Tcr (right) for an unconstrained
(p1 ≥ 5 kPa) subcritical ORC system for different heat-source temperatures. Results are compared to
optimal systems for ω = 0.3.
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It is also worth noting that Equation (31) is based on a fixed heat-capacity ratio of
τ = (ṁcp)c/(ṁcp)h = 4.2. Therefore, the same optimisation study for the subcritical cycle has been
repeated for τ = 1 and τ = 100, and the results are shown in Figure 9. It is observed that reducing
τ results in an optimal working fluid with a higher critical temperature, whilst increasing τ results
in an optimal working fluid with a lower critical temperature. The maximum deviation between the
optimal critical temperature for τ = 100 and τ = 4.2 is only 3.8%. For τ = 1, the maximum deviation
is slightly larger (5.4%); however, this is a relatively extreme case as a low heat-capacity ratio results in
a significantly reduced power output, as shown in the right-hand plot of Figure 9.

Ultimately, the results in Figure 9 suggest that the optimal critical temperature of a working
fluid for a subcritical, non-recuperated ORC is not significantly affected by the relative size of
the available heat sink, compared to the heat source. Moreover, it is reiterated that from a
thermodynamic perspective the optimal working fluid and cycle operating conditions are independent
of the heat-source heat-capacity rate; in other words, the only parameter that changes as the size
of the heat-source changes is the working-fluid mass-flow rate. It can therefore be concluded
that Equation (31) is broadly applicable to waste-heat recovery applications where the heat-source
temperature is below 300 ◦C, and can be used to identify a suitable working fluid for a subcritical,
non-recuperated ORC, based on only the heat-source temperature.

Figure 9. Optimal critical temperature (left) and power output (right) as a function of heat-source
temperature for different heat-capacity ratios (τ = (ṁcp)c/(ṁcp)h). Results obtained for an unconstrained
(p1 ≥ 5 kPa) subcritical cycle.

To confirm the validity of Equation (31), nine physical fluids have been considered with critical
temperatures ranging between 95 ◦C (R1234yf) and 289 ◦C (benzene). Working backwards, the optimal
heat-source temperatures for these fluids have been identified using Equation (31). For each working
fluid, a cycle optimisation was then completed using the Peng–Robinson equation of state model,
with the values for Tcr, pcr, ω, A, B and C being obtained using REFPROP. The results from these
simulations are compared to the theoretically optimal cycles in Figure 10. The results show a maximum
deviation of 18% between the theoretical and real working fluids when Thi < 120 ◦C. At higher
temperatures, the deviation is less significant, reducing to below 5% for Thi > 220 ◦C. It is observed
that for the nine working fluids the same optimal cycles are identified with pr = 0.85 and ∆Tsh = 5 K.
It is also noted that the only fluid with a sub-atmospheric pressure is benzene, which has an optimal
condensation pressure of 57 kPa. Therefore, since cyclopentane appears suitable for heat-source
temperatures of 300 ◦C, and has a condensation pressure greater than atmospheric pressure, these
results confirm that Equation (31) can be used to identify the critical temperature of an optimal working
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fluid for a subcritical cycle, allowing maximum power to be generated from a defined heat source,
provided that Thi < 300 ◦C. Therefore, this correlation can be used to narrow the search space during
working-fluid selection for heat-source tempeatures within range. Future research should investigate
the validity of this correlation for higher temperature heat sources.

The Peng–Robinson model can be validated by completing the same optimisation for the nine
defined working fluids using REFPROP directly. It is again observed that the optimal cycles correspond
to pr = 0.85 and ∆Tsh = 5 K. Furthermore, the maximum deviations between the optimal condensation
temperatures and expander inlet temperatures obtained using Peng–Robinson and REFPROP are
0.41% and 0.1% respectively. After converting these temperatures into the corresponding condensation
pressures, it is observed that the Peng–Robinson model over predicts the condensation pressure, with a
maximum deviation of 3.5% being observed for R1234ze. As a consequence, the Peng–Robinson
model results in power outputs that are slightly higher than those obtained using REFPROP, with a
maximum deviation of 5.9%. These deviations are in line with similar comparisons reported within
the literature [24,25]. However, despite this deviation, it is apparent that both the Peng–Robinson
and REFPROP models identify the same optimal values for the optimisation variables for each
working fluid. This confirms that the Peng–Robinson model is suitable for identifying the optimal
cycle for a given working fluid and heat-source temperature.

Figure 10. Comparison between the results from an integrated working-fluid and cycle optimisation
with ω = 0.3 (line) and cycle optimisations completed for predefined working fluids (markers) for
subcritical cycles. For all optimisation studies, the condensation pressure is unconstrained.

Using the optimisation setup based on REFPROP, it is possible to investigate the result of selecting
a physical working fluid with a different critical temperature to the theoretically optimal value
identified using the Peng–Robinson model. For this, the optimal heat-source temperatures for R1234yf,
isopentane, R1233zd and n-pentane have been considered and the optimisation repeated with different
working fluids. The results are shown in Figure 11. It can be observed that selecting a working fluid
with either a lower critical temperature, or higher critical temperature results in a reduction in the
maximum power that can be output from the system. More specifically, the fluids that produce the
second largest power output correspond to a reduction in power output of 7.2%, 10.0%, 7.9% and
6.7% compared to optimal working fluid. In other words, this confirms that using Equation (31), based
on the results from the Peng–Robinson model, correctly identifies the optimal physical working fluids
that results in the maximum power output from a given heat-source temperature.
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Figure 11. Effect of selecting a working fluid with a non-optimal critical temperature on the power
output from the system. In each plot, fluids are plotted in order of increasing critical temperature,
with the dark blue bars representing the optimal fluid identified using the Peng–Robinson model, from
left to right: Thi = 121 ◦C, 169 ◦C, 206 ◦C and 243 ◦C.

5.2. Turbine Results

In the previous section, a generalised approach to working-fluid selection has been implemented
using the Peng–Robinson equation of state. This has identified optimal working fluids and cycle
operating conditions for heat-source temperatures ranging between 122 ◦C and 343 ◦C. The next step
is to establish how this variation in heat-source temperature affects both the design and performance
of the radial turbine.

As discussed in Section 3, the turbine model requires properties such as molar mass and
viscosity, which cannot be determined using the Peng–Robinson equation of state. Instead, the turbine
optimisation has been conducted with the nine working fluids previously considered, and REFPROP
was utilised for the fluid thermo-physical properties. Therefore, the turbine analysis is not as general as
the approach adopted when evaluating the thermodynamic cycle. Nonetheless, the use of Equation (31)
to transition from a theoretical fluid to a physical fluid ensures that the fluids being considered are an
accurate representation of the theoretical fluid for a particular heat source. Therefore, a generalised
assessment of the turbine performance across a range of heat-source temperatures is still possible.

For each working fluid and optimal cycle identified in the previous section, the turbine
optimisation process described in Section 4.3 was applied. The cycle conditions were set to the optimal
cycle subcritical cycle conditions that were identified when the cycle optimisation was completed
using REFPROP. Furthermore, in order to conduct a fair comparison between the different working
fluids, the mass-flow rate was scaled such that the net power output from the ORC is approximately
25 kW for each working fluid. The design specification for each turbine is summarised in Table 6.

Before discussing the results, it is noted that the optimisation did not converge for the cyclopentane
and benzene cases. The reason for this will be discussed at the end of this section. For the working
fluids that did converge, it was found that the hub/shroud diameter ratio was on the lower limit
(i.e., d5h/d5s = 0.35), suggesting it is advantageous to reduce the hub diameter as much as possible.
However, crowding at the rotor hub should be avoided, and this should be verified during a more
detailed design phase. In terms of the inlet/outlet diameter ratio, the optimal values range between
0.56 and 0.64, and these agree well with results reported in Ref. [43]. The remaining two optimisation
variables are the blade loading and flow coefficients. These two parameters have been well correlated
against turbine isentropic efficiency, providing a good basis for comparison. In Figure 12, the optimal
values of ψ and φ for each working fluid have been superimposed onto the chart found in Ref. [39].
It is observed that the optimal turbine designs correlate very well with performance data within
the literature. More specifically, as the heat-source temperature increases, the optimal value of ψ
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increases, whilst the optimal value of φ reduces. Therefore, the optimal design point moves from the
bottom-right corner to the top-left corner of the design chart as the heat-source temperature increases.
The total-to-static isentropic efficiency also reduces slightly as heat-source temperatures increases,
with a maximum of ηts = 85.2% for the R1234yf turbine, and a minimum of ηts = 82.5% for the
n-pentane turbine. The corresponding isentropic velocity ratio for the optimal turbines also reduce as
the heat-source temperature increases, reducing from ν = 0.698 for R1234yf, to ν = 0.673 for n-pentane.

Table 6. Thermodynamic specification for the nine turbine designs for the optimal subcritical cycle.

Working Fluid Thi T03 p03 p6 ṁw
◦C ◦C bar bar kg/s

R1234yf 120.6 91.7 28.75 8.99 1.910
R1234ze 138.2 106.2 30.90 7.14 1.393

isobutane 168.7 130.1 30.85 5.47 0.527
R245fa 192.0 150.2 31.03 2.88 0.786

R1233zd 206.0 161.2 30.37 2.63 0.742
isopentane 232.0 181.8 28.71 1.93 0.325
n-pentane 243.3 191.1 28.65 1.56 0.293

cyclopentane 293.9 231.9 38.86 1.28 0.231
benzene 354.6 281.0 41.71 0.58 0.181

Figure 12. Comparison between the optimal turbine designs (red markers) and other turbine designs
(white circles) reported within the literature in terms of the blade-loading coefficient ψ and the flow
coefficient φ; original plot taken from Ref. [39].

The rotor geometry for three of the optimal turbine designs are plotted in Figure 13,
with heat-source temperature increasing from left-to-right. There is a significant reduction in rotor
inlet blade height from 3.47 mm for the R1234yf turbine, to 1.56 mm for the n-pentane turbine as the
heat-source temperature increases. This is because a higher heat-source temperature corresponds to
higher pressure ratio, and therefore density ratio across the turbine. Therefore, the flow area at the
rotor inlet, relative to the rotor outlet flow area, must reduce.

On the left-hand side of Figure 14, the breakdown of the main losses within the rotor are plotted as
a function of the heat-source temperature. The trailing-edge loss is not included since this is a separate
loss that applies downstream of the rotor. However, it is observed that the trailing-edge loss increases
with increasing Thi, but this loss is small, relative to the other three loss mechanisms. The results shown
in Figure 14 are useful to understand the role that the different loss mechanisms have in optimal turbine
performance. For a low-temperature ORC system, designed for Thi = 120 ◦C and operating with
R1234yf, the dominant loss mechanism is the passage loss, accounting for 63% of the loss, whilst the
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clearance and windage losses account for 31% and 6%, respectively. For a high-temperature ORC
system, designed for Thi = 240 ◦C and operating with n-pentane, the clearance loss becomes more
dominant owing to the reduced rotor inlet blade height. In this instance, the clearance loss accounts
for 51% of the loss, whilst the contribution from the passage loss reduces to 29%, and the windage
loss contribution increases to 20%. Ultimately, it is believed that Figure 14 could be instrumental in
identifying target areas for future research. For example, targeting reductions in the passage loss for
low-temperature ORC turbines, and reducing the clearance loss associated with higher-temperature
turbines, could be the most direct route to efficiency improvements for small-scale ORC turbines.

Figure 13. Meridional profiles for three of the optimal turbine designs.

Figure 14. Breakdown of the passage, clearance and windage loss within the rotor (left) and variation
in the rotor inlet absolute Mach number and rotor outlet relative Mach number (right) for the nine
optimal turbine designs, plotted as a function of heat-source temperature.

The maximum absolute and relative Mach numbers within the turbine, which occur at the rotor
inlet and rotor outlet respectively, have also been plotted in Figure 14. The rotor inlet absolute
Mach number has an important impact on the stator design. Below Ma < 1.3, a stator with a
converging profile can be used to accelerate the flow to the required speed, albeit with Ma > 1 being
obtained within the rotor-stator interspace. However, for Ma > 1.3, a converging-diverging is required,
which has a more complex design, and cannot easily accommodate off-design operating conditions.
The transition from a converging to a converging-diverging stator occurs when the heat-source
temperature exceeds 165 ◦C. In terms of the rotor outlet relative Mach number, all of the optimal
turbine designs are below Ma < 1. This is not surprising since this was a constraint during the
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optimisation. However, as the heat-source temperature increases, the rotor outlet relative Mach number
also increases, and therefore this must be carefully considered for higher-temperature ORC systems.

Referring to Refs. [31,32], it was shown that high expansion ratios and operating close to the
critical point results in a reduction in turbine efficiency. Within the current paper, it has been shown
that the turbine efficiency for the optimal cycles reduces from 85.2% to 82.5% as the heat-source
temperature increases, which is consistent with the findings in these previous studies. On the other
hand, all of the optimal cycles considered within this paper have high reduced pressures (pr = 0.85).
Therefore, it may be possible to improve turbine efficiency by reducing the evaporation pressure,
or selecting a fluid with a higher critical temperature. However, as shown in Figure 11, doing so can be
expected to lead to a reduction in the maximum power output from the cycle. Therefore, it is necessary
to identify whether the reduction in turbine efficiency that is introduced by operating close the critical
point is offset by the increase in the net power output; this interplay should be investigated further.

Finally, it is worth considering the cyclopentane and benzene cases, for which the turbine
optimisation did not converge. In these cases, it was not possible to identify a turbine design that
met all of the defined constraints. Considering Figure 12, and the accompanying discussion, it was
found that the optimal value of ψ increases as Thi increases, with ψ = 0.940 for n-pentane. This suggests
that, for higher heat-source temperatures, it would be necessary to further increase ψ to be above
1, which, in turn, would require a forward-swept blade instead of the radially-fibered blade that is
considered within this study. Therefore, it appears that the operating boundary for a conventional,
radial-fibered blade with ψ < 1 occurs at Thi = 250 ◦C, as indicated in Figure 14.

6. Conclusions

Many existing ORC studies arrive at an optimal working fluid and turbine design considering
only the specific application in question. However, a generalised approach is more meaningful and
could facilitate a standardised, and streamlined, design process. In this paper, it has been found
that, by coupling the Peng–Robinson equation of state with an ORC model, and then optimising
the working-fluid parameters alongside the thermodynamic cycle, the characteristics of an optimal
working fluid can be identified. Furthermore, this information can be used to identify potential
working-fluid candidates. More specifically, a linear correlation has been derived between the heat-source
temperature and the optimal critical temperature, which is applicable for heat-source temperatures
below 300 ◦C.

Regarding turbine design, it is found that, as the heat-source temperature increases, the optimal
blade-loading coefficient increases, whilst the flow coefficient reduces. Moreover, at heat-source
temperatures exceeding 250 ◦C, a forward-swept blade is required to accommodate blade-loading
coefficients exceeding 1. It is also observed that, as the heat-source temperature exceeds 165 ◦C,
a converging-diverging stator is necessary to achieve the necessary supersonic conditions at the
rotor inlet. In terms of rotor performance, it is found that, for a 120 ◦C heat source, the passage loss
accounts for over 60% of the total loss within the rotor. Comparatively, for a 250 ◦C heat source,
the clearance loss is dominant, accounting for over 50% of the total loss. These two results can
be used inform the most direct routes to efficiency improvements in small-scale ORC turbines for
different heat-source temperatures. Moreover, these results may be broadly applicable to larger-scale
systems, although the relative clearance loss would be expected to reduce, owing to smaller relative
clearance gaps.

In order to improve the performance of ORC systems, it is necessary to further characterise ORC
turbine performance using more advanced numerical and experimental techniques. Currently, as part
of the NextORC project [48], a closed-loop supersonic wind tunnel for organic fluids is currently being
designed and commissioned. Therefore, the optimal working fluids and turbine designs identified
within this paper will form the base cases that will be studied as part of this future work.
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Nomenclature

A area, m2

b blade height, m
BK blockage factor
c absolute velocity, m/s
cp specific-heat capacity, J/(mol K)
cs spouting velocity, m/s
Cw torque loss coefficient
d diameter, m
h enthalpy, J/mol
∆hw windage loss, J/kg
Lc clearance loss, J/kg
Lp passage loss, J/kg
ṁ mass-flow rate, kg/s
Ma Mach number
p pressure, Pa
pr evaporation reduced pressure
PP heat-exchanger pinch point, K
R universal gas constant, J/(mol K)
s entropy, J/(mol K)
T temperature, K
u blade velocity, m/s
Vm molar volume, m3/mol
w relative velocity, m/s
Ẇn net power output, J/s
∆Tp temperature difference at location 2‘, K
∆Tsh amount of superheat, K
Greek symbols
η isentropic efficiency
ν isentropic velocity ratio
ξ meridional velocity ratio
ρ density, kg/m3

τ ratio of heat-capacity rates
φ flow coefficient
ψ blade loading coefficient
ω acentric factor
Ω rotational speed, rad/s
Subscripts
0 total conditions
1–6 cycle and turbine locations
5h outlet hub
5s outlet shroud
c heat sink
cr critical point
h heat source
i inlet
m meridional velocity component
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n stator
o outlet
p pump
s isentropic expansion (stator or rotor)
ss isentropic expansion (whole turbine)
t turbine
ts total-to-static
w working fluid
θ tangential velocity component
Abbreviations
CAMD computer-aided molecular design
ORC organic Rankine cycle
PR Peng–Robinson equation of state
RKS Redlich–Kwong–Soave equation of state
SAFT statistical associating fluid theory
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