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Abstract: The goodness of Infinite Impulse Response (IIR) digital filters design depends on pass
band ripple, stop band ripple and transition band values. The main problem is defining a suitable
error fitness function that depends on these parameters. This fitness function can be optimized by
search algorithms such as evolutionary algorithms. This paper proposes an intelligent algorithm for
the design of optimal 8th order IIR filters. The main contribution is the design of Fuzzy Inference
Systems able to tune key parameters of a revisited version of the Gravitational Search Algorithm
(GSA). In this way, a Fuzzy Gravitational Search Algorithm (FGSA) is designed. The optimization
performances of FGSA are compared with those of Differential Evolution (DE) and GSA. The results
show that FGSA is the algorithm that gives the best compromise between goodness, robustness and
convergence rate for the design of 8th order IIR filters. Moreover, FGSA assures a good stability of
the designed filters.

Keywords: optimization algorithms; IIR filters; gravitational search algorithm; fuzzy systems

1. Introduction

The design of optimal Infinite Impulse Response (IIR) digital filters is a very interesting
challenge. The main techniques to design IIR filters are traditional design technique and optimization
techniques. The first method is commonly known as bilinear transformation approach [1]. The second
approach regards the applications of optimization techniques to design optimal filters. Among linear
optimization algorithms, the steepest-descent and quasi-Newton (QN) algorithms are used for IIR
filters design [1,2]. QN algorithms offer the advantages of robustness and fast convergence. Moreover,
because QN optimization approach is very flexible, it can be used to design filters with arbitrary
amplitude and/or phase responses. QN algorithms have also been used to design linear-phase IIR
filters [3]. Chen et al. [4] proposed a technique for IIR filters design based on the minimization the
error between the order-reduced filter’s response and the desired one in the Hankel-norm sense.
In the optimization algorithm proposed by Lu and Hinamoto [5] for the design of optimal IIR filters,
the coefficients of all sub-filters are jointly optimized through a sequence of linear updates with each
update carried out using second-order cone programming.

IIR filters are used in a wide range of applications where a high-selectivity processing of discrete
signals is needed [6]. Lai and Lin [7] imposed two elliptic constraints on the frequency response
of an IIR filter: the first one to minimize the maximum phase error, whereas the second one to
constrain the maximum magnitude error. Another constrained optimization was introduced by
Nongpiur et al. [8] for the design of IIR Digital Differentiators. The method in [8] minimizes the
group-delay deviation under the constraint that the maximum amplitude-response error must be
below a fixed level. Constraints on the magnitude and phase responses for the design of nearly
linear-phase IIR filters was the main contribution of [9]. Lang [10] presented a method with the
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possibility to specify a maximum radius for the poles of the designed rational transfer function.
A computationally low intensive method for designing IIR multi-Notch filters was proposed by
Duarte et al. [11]. The design of IIR filters may be oriented on magnitude and delay together: by
combining the root-mean-square error function of variable frequency response and a suitable stability
constrained function, the stability problem is overcome [12].

Generally, the problem of designing IIR filters is formulated as a nonlinear optimization problem.
Moreover, the traditional methods based on gradient search can easily be stuck at local minima of
error surface. In order to solve this problem, some methods based on metaheuristic approaches have
been proposed. Due to their fast convergence property, Differential Evolution (DE) algorithms [13]
have been applied to design robustly stable IIR filters [14–16]. Karaboga [17] proposed a technique
to design IIR filters through DE. A seeker-optimization-algorithm based on evolutionary methods
has been proposed for digital IIR filter design [18]. Other evolutionary algorithms such as Particle
Swarm Optimization (PSO) [19] have been used for the design of IIR filters to reconstruct missing
segments of multidimensional data [20]. A multi-swarm PSO with particle reallocation strategy is
applied to design IIR filters with null constraint and specified error in the stop band [21]. Wang and
Chen [22] proposed the use of multi-objective optimization evolutionary algorithms with the aim of
minimizing magnitude response error, phase response error and order of IIR filters. An improved
Immune Algorithm (IA) was proposed by Tsai and Chou to solve the problem of designing optimal
IIR filters [23].

The process of IIR filters’ design optimization is difficult because some constraints should be
satisfied: (i) the determination of the lowest filter order; (ii) the filter stability; and (iii) the minimum
value of passband and stopband ripple magnitudes. Because the Genetic Algorithms (GA) [24] are
able to optimize complex and discontinuous functions that are difficult to analyze mathematically,
some research [25–29] proposed different methods based on GA to solve the digital IIR filter design
problems. A multi-crossover approach to design optimal GA-aided IIR filters was proposed by
Chang [27]. Robust D-Stable IIR filters was designed by using GA where the stability criterion is
embedded in the evolution of each generation [29]. Yu and Xinjie [28] proposed a coevolutionary
GA that evolves coordinately as two different species: the control species and the coefficient species.
A multi-parameter and multi-criterion optimization method based on a quantum genetic algorithm
was proposed by Zhang et al. [25]. Stable IIR filters have been designed with the application of GA [26].

IIR filters’ designing problems can be formulated as a multi-modal optimization problem with
multiple decision variables. The Gravitational Search Algorithm (GSA) is a search method based on a
law of gravity [30] able to optimize multi-modal functions. Saha et al. [31,32] proposed a simple GSA
and a GSA with Wavelet Mutation for the optimization of 8-th order IIR filter design. On the other
hand, GSA has been combined with fuzzy logic for various applications [33–36]. A fuzzy logic-based
adaptive gravitational search algorithm dedicated to the optimal tuning of fuzzy controllers for servo
systems was proposed by Precup et al. [33]. GSA and fuzzy logic have been combined to design
optimal Proportional Integral (PI) controllers for a class of servo systems characterized by saturation
and dead zone static nonlinearities [34]. The idea of enhancing GSA using fuzzy logic is inspired from
the exploration and exploitation principle in meta-heuristics. The fuzzy regulation of GSA parameters
assures this principle. Fuzzy Gravitational Search Algorithms (FGSA) with dynamic alpha parameter
value adaptation for the optimization of modular neural networks in echocardiogram and pattern
recognition have been proposed [35,36]. Moreover, other versions of GSA with a fuzzy dynamic
parameters adaptation have been proposed [37–43]. The improvements of GSA are based on the
dynamic regulation of suitable parameters during the search procedure.

This paper aims to design optimal IIR filters with the help of a revised GSA and the design of
suitable Fuzzy Inference Systems (FIS). The first contribution of the work is the re-definition of a
parameter of GSA able to improve the search performances. The second one is the design of two
FIS’s for GSA parameters adjustment. Both the approaches give rise to a Fuzzy Gravitational Search
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Algorithm (FGSA) with dynamic parameter adaptation. This algorithm is applied to design 8th order
IIR filters.

The paper is organized as follows. Section 2 contains the description of IIR filters design.
The designed algorithm is presented in Section 3. Section 4 illustrates the achieved results. Section 5
contains the paper conclusions.

2. IIR Filter Design

The relation between inputs and outputs of IIR filters is given by Equation (1) [44]:

y(p) +
n

∑
k=1

aky(p− k) =
m

∑
k=0

bkx(p− k), (1)

where x(p) is the filter input, whereas y(p) is the output. The order of filters is defined by n with
n ≥ m. By assuming that a0 = 0, the transfer function of IIR filter can be expressed as in Equation (2):

H(z) =
∑m

k=0 bkz−k

1 + ∑n
k=1 akz−k . (2)

Assuming that z = ejω, it follows that IIR filter frequency response becomes as in Equation (3)

H(ω) =
∑m

k=0 bke−jkω

1 + ∑n
k=1 ake−jkω

, (3)

where ω ∈ [0, π] is the digital frequency.
Generally, the used approach to design IIR filters is to consider a Mean Square Error optimization

problem [45–47]. MSE fitness function can be expressed as in Equation (4)

J1(ω) =
1

Ns
[(d(p)− y(p))2], (4)

where Ns is the number of frequency points used for the computation of the error fitness function;
d(p) and y(p) are the filter’s desired and actual responses, respectively. The actual response y(p) is
calculated through Equation (1), whereas the values of d(s) are set to be very close to ideal filters’
values. The difference between d(p) and y(p) is the error between the desired and the actual filter
responses. The design goal is to minimize the MSE J1(ω) with proper adjustment of filter coefficients
b0, ..., bm, a0, ..., an.

IIR filters’ optimization problem depends on the choice of transfer function coefficients b0, b1, ..., bm

and a0, a1, ..., an. Because the quality of a IIR filter depends on pass band ripple, stop band ripple and
transition band, we propose a new fitness function that takes into account these three parameters.
In particular, a good IIR filter has small pass and stop band ripple, and narrow transition band. In order
to assure such constraints, the fitness function J2(ω) in Equation (5) is defined. In Equation (5), ns is
the number of samples, δp is the pass band ripple, δs is the stop band ripple and |H(ω)| is the absolute
value of H(ω) in Equation (3):

J2(ω) =
ns

∑
i=1

(abs(|H(ωi)| − 1)− δp)
2 +

ns

∑
l=1

(|H(ωl)| − δs)
2. (5)

In particular, the absolute value of H(ω) is calculated for each i = 1, ..., ns with (6)

|H(ωi)| =
∣∣∣∣∣ ∑m

k=0 bke−jkωi

1 + ∑n
k=1 ake−jkωi

∣∣∣∣∣ , (6)
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where the values of ωi are spaced frequency points between 0 and the pass band normalized edge
frequency ωp.

Similarly, for each l = 1, ..., ns

|H(ωl)| =
∣∣∣∣∣ ∑m

k=0 bke−jkωl

1 + ∑n
k=1 ake−jkωl

∣∣∣∣∣ , (7)

where the values of ωl are spaced frequency points between 0 and the stop band normalized edge
frequency ωs. Note that, when i = ns, it follows that ωi = ωns = ωp. In the same way, the stop band
normalized edge frequency ωs is achieved when l = ns; thus, ωl = ωns = ωs.

In order to design optimal IIR filters, a constrained minimization of the error fitness function
defined in Equation (5) is needed. On the other hand, the stability is an important issue for IIR digital
filters design [10,48,49]. Jiang and Kwan [50] proposed a stability constraint with a prescribed pole
radius derived from the argument principle of complex analysis. The optimization of the proposed
fitness function defined in Equation (5) follows the stability constraints in [50].

3. The Fuzzy Gravitational Search Algorithm

The proposed error fitness function in Equation (5) has to be minimized through an optimization
algorithm. The design of our algorithm starts with a suitable definition of GSA parameter, which
supplies the number of agents that apply the force to other individuals [30]. Such GSA parameter is
referred as Kbest and it decreases linearly to 1 over the increment of iterations. The idea is to increase
the convergence speed by defining Kbest as in Equation (8)

Kbest(i) =
⌊

na exp (−β
i

na
)

⌋
, (8)

where i is the i-th iteration, na is the number of agents and β a parameter.
A key parameter in GSA is the gravitational constant G(t) [30], which depends on the initial value

G0, the number of iterations N and the value of parameter α (see Equation (9)):

G(i) = G0 exp(−α
i
N
). (9)

The next step is to design two Fuzzy Inference Systems (FIS) able to adjust β and α parameter
in Equation (8) and Equation (9), respectively. The tuning of these parameters must assure a good
trade-off between exploration and exploitation of the search process. For this aim, we define a quantity
Pp ∈ [0, 1], which gives a measure of the population progress (see Equation (10)),

Pp(i) =

∣∣∣∣∣ J2(ω)(i−1) − J2(ω)(i)

max(J2(ω)(i−1), J2(ω)(i))

∣∣∣∣∣ , (10)

where J2(ω)(i) is the error fitness mean value calculated on the na agents. This computation is
accomplished for each iteration i = 1, ..., N, where N represents the iterations number.

Generally, the accuracy of an FIS depends on the number of membership functions (MF): a higher
membership functions number tends to cause an increase in FIS. Moreover, the number of MFs
has a huge impact on the system complexity; therefore, an optimal trade-off between accuracy and
complexity is needed. Thus, the fuzzy inputs definition for the first FIS depends on this issue. We
define the iterations number N and the population progress Pp as fuzzy inputs with membership
functions Low (L), Medium (M) and High (H) (see Figures 1 and 2). In order to achieve more refined
values of α, nine membership functions for the fuzzy output are defined (see Figure 3). The choice of
triangular/trapezoidal MFs depends on the performance of FIS for a generic system [51].
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Figure 1. Membership functions of the fuzzy input N.
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Figure 2. Membership functions of the fuzzy input Pp.
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Figure 3. Membership functions of the fuzzy output α.

The definition of fuzzy rules for FIS-α depends on GSA behavior. To assure exploration at the
beginning of iterations, the agents must have a huge acceleration: this condition is achieved with low
values of α (see Equation (9)). A lack of improvement means premature convergence: supplying a
lower value of α, the agents escape from local optima. Low values of α are required when GSA lies in
the middle of the procedure and there are no improvements. Very very high values of α are necessary
with improvements at the end of iterations. Table 1 shows FIS-α rules. The architecture of FIS-α is
shown in Figure 4.
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The main step in the design of an FIS is the definition of fuzzy rules. Table 1 shows the fuzzy
rules for FIS-α. The rules are based on the behavior of GSA. At the beginning of iterations, i.e., when
N = L, to assure exploration, the agents must have a big acceleration; therefore, a low value of α is
necessary. In fact, if α is low, then G increases (see Equation (9)), and then the acceleration tends to
increase [30]. On the other hand, an early lack of improvement, that is Pp = H and N = L, is a sign of
premature convergence: with a very very low value of α, the individuals can escape from local optima.
When GSA is at the middle of the procedure (N = M) and there is lack of improvement (Pp = H), the
values of α must be basically low. At the end of the iterations (N = H), if there is an improvement in
the optima research (Pp = L), then α must be very very high. High values of α tend to decrease the
value of the gravitational constant and therefore the acceleration. Figure 4 shows the architecture of
FIS-α to adjust the parameter α.

Table 1. Fuzzy rules for FIS(Fuzzy Inference System)-α.

N Pp α

L L L
L M VL
L H VVL
M L MH
M M M
M H ML
H L VVH
H M VH
H H H

N (3)

Pp (3)

α (9)

FuzzySystem

(mamdani)

9 rules

Figure 4. Architecture of Fuzzy Inference System (FIS) to adjust α.

The second FIS (referred as FIS-β) has the task of adjusting the parameter β of quantity Kbest
defined in Equation (8). This FIS has one input and one output as shown in Figure 5. The fuzzy input
is the number of iterations N that has three triangular/trapezoidal membership functions: Low (L),
Medium (M) and High (H) as in FIS-α (see Figure 1). In this way, FIS-β has three rules and thus we
define three possible values of the fuzzy output β. Figure 6 shows the three triangular/trapezoidal
membership functions Low (L), Medium (M) and High (H) of β. The definition of the fuzzy rules is
based on the fact that there is a tendency for Kbest to decrease with higher iteration number. The base
rule is shown in Table 2 and Figure 5 illustrates the architecture of FIS-β.

The target of the search procedure is to find the best coefficients b0, b1, ..., bm and a0, a1, ..., an of H
with m = n, where n is the order of IIR filter. In order to do this, Algorithm 1 is proposed. Both of the
designed FISs are used in the optimization process.
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N (3)
β (3)

FuzzySystem

(mamdani)

3 rules

Figure 5. Architecture of Fuzzy Inference System to adjust β.
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Figure 6. Membership functions of the fuzzy output β.

Table 2. Fuzzy rules for FIS-β.

N β

L H
M M
H L

Algorithm 1 Fuzzy Gravitational Search Algorithm
1: Random initialization of the coefficients (b0, b1, ..., bn, a0, a1, ..., an) (see S1).
2: Settings of the fuzzy output extrema values and initialization of the first two values of α (see S2).
3: For each iteration from 1 to na (see S3):
4: Search space boundaries control (see S3.1)
5: Agents evaluation (see S3.2)
6: Agents masses calculation (see S3.3).
7: Gravitational constant calculation (see S3.4).
8: Kbest computation (see S3.5)
9: Agents acceleration computation (see S3.6).
10: Population progress calculation (see S3.7).
11: Computation of fuzzy-α (see S3.8).
12: Agents velocity and position computation (see S3.9).
13: Final computation of the best coefficients (see S4).

S1. Initialize randomly the coefficients (b0, b1, ..., bn, a0, a1, ..., an) for each agent in the search space,
where n is the order of IIR filter. Note that the number of coefficients is equal to 2(n + 1) and na is the
number of agents. Let up and low be the extrema of search interval, the matrix of coefficients for all
agents X(na ,2(n+1)) is computed by
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x(i, j) = rand(i, j)(up− low) + low (11)

for each agent i ∈ [1, na]∩ IIN and coefficient j ∈ [1, 2(n + 1)]∩ IIN; rand(i, j) is a function that generates
random numbers between 0 and 1.
S2. Fix the extrema value αin f and αsup of fuzzy output α and the initial value for the first two iterations
α(1) and α(2).
S3. For each iteration from 1 to na, execute the steps from S3.1 to S3.9.
S3.1. Check the search space boundaries for agents according to the coefficients in X; agents that go
out of the search space, are reinitialized randomly, i.e., for the i-th agent such that in the j-th coefficient
x(i, j) > up or x(i, j) < low, compute x(i, j) by using Equation (11).
S3.2. Evaluate the agents; compute the fitness J2(ω) of each agent by passing the coefficients of X to
the test function and select the minimum fitness value among agents.
S3.3. Calculate the masses of each agent, i.e., Equations (12)–(16), where Maj and Mpi are the active
and passive gravitational masses related to agent j and i, respectively, and Mi(t) is the inertial mass of
i-th agent at iteration t [30]:

Mai = Mpi = Mii = Mi, i = 1, 2, ..., na, (12)

mi(t) =
J2(ω)(t) − worst(t)
best(t)− worst(t)

, (13)

Mi(t) =
mi(t)

∑na
j=1 mj(t)

, (14)

best(t) = min
j∈1,...,na

J2(ω)(t), (15)

worst(t) = max
j∈1,...,na

J2(ω)(t). (16)

S3.4. Compute the gravitational constant G (see Equation (9)) according to the value of α(i), with i =
1, 2, ..., na.
S3.5. Compute Kbest as defined by (8); Kbest is computed by changing β by means of FIS-β. The
iteration number t is normalized in [0, 1] through the formula tn = t/N ∈ [0, 1], where tn is the
normalized iteration number. This normalization is necessary because the fuzzy inputs only accept
values in [0, 1]. The normalized iteration number is passed as an input to FIS-β, which gives as
output the parameter βout with values in [0, 1]. This value is normalized between βin f and βsup with
the formula

β = βout · (βsup − βin f ) + βin f . (17)

Therefore, the new value of Kbest is computed by Equation (8).
S3.6. According to Kbest, calculate the acceleration of each agent in gravitational field, see Equations (9)
and (18)–(22),

Fd
ij(t) = G(t)

Mpi(t)×Mai(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)), (18)

Rij(t) = ||Xi(t), Xj(t)||2, (19)

Fd
i (t) =

na

∑
j=1,j 6=i

randjFd
ij(t), (20)
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ad
i (t) =

Fd
i (t)

Mii(t)
, (21)

Fd
i (t) =

na

∑
j∈Kbest ,j 6=i

randjFd
ij(t), (22)

where d = 2(n + 1), with n filter order.
S3.7. Compute the population progress Pp ∈ [0, 1] as defined in Equation (10).
S3.8. The values of normalized iteration number tn and population progress Pp are passed as inputs to
FIS-α, which gives a value of α between 0 and 1, denoted by αout. This value is normalized between
αin f and αsup with the formula

α = αout · (αsup − αin f ) + αin f . (23)

S3.9. Update the velocity v and coefficients in X of i-th agent, with the Equations (24) and
(25), respectively,

vd
i (t + 1) = randi × vd

i (t) + ad
i (t), (24)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1), (25)

where
x1

i = b0,
x2

i = b1,
...,
xn+1

i = bn,
xn+2

i = a0,
xn+3

i = a1,
...,
x2(n+1)

i = an.

S4. Give in output the values of best coefficients (b0, b1, ..., bn, a0, a1, ..., an)opt.
FGSA designed in [35,36] have a more simple fuzzy rule base than FIS-α: the just one fuzzy input

is the number of iterations. A similar approach has been introduced by Sombra [42] with a fuzzy
system characterized by three fuzzy rules to adjust the parameter α of GSA. However, Algorithm 1
guarantees a high accuracy in the computation of α, with a minor adding of complexity compared
to the mentioned approaches. On the other hand, Khabisi and Rashedi [43] designed an FGSA with
36 fuzzy rules, without achieving relevant results. The dynamic Type-2 fuzzy logic α adaptation
proposed in [39] improves the convergence performances with an increase of the system complexity.
The parameter Kbest has been adjusted by Olivas [38] directly as output fuzzy, whereas the proposed
algorithm tunes the parameter β with a new definition of Kbest (see Equation (8)). This fact assures
a better regulation of Kbest during the steps of our FGSA. Moreover, GSA with Wavelet Mutation
proposed in [32] has the drawbacks of the rigorous trials required for the tuning of control parameters
for the wavelet mutation method. Finally, Algorithm 1 supplies a good trade-off between accuracy
and complexity compared with the mentioned approaches.

4. Experimental Results

Algorithm 1 is compared with the application of GSA and DE for the design of IIR filters.
All optimization algorithms are run in the MATLAB environment (R2016a, MathWorks, Natick,
MA, USA) on 2.20 GHz-speed processor. In particular, the fuzzy toolbox of MATLAB is exploited.
This tool gives the possibility of designing Fuzzy Inference Systems based on the Mamdani inference
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method [52]. Because the MATLAB environment allows for referring to objects created by tools
with the MATLAB code, the settings of the designed FISs can be dynamically modified. Moreover,
the parameters of the fuzzy part of Algorithm 1 are computed by using the Center of the Mass
defuzzification method. The MATLAB environment has been also exploited for its workspace data
storage capability.

Referring to FGSA, the number of agents na is set to 50 and the iterations number N is equal to
500. Moreover, αin f = 1, αsup = 20 and βin f = 2, βsup = 4 in Equations (23) and (17), respectively. The
value of α in GSA is 20 (as in [30]), na = 50 and N = 500. In DE, the population size is 50, the crossover
probability is 0.2 and the maximum number of iterations is 500.

Equation (11) computes the values of coefficients in H: we assume a range from low = −2 to
up = +2 with a filter order n = 8, which is b0, ..., b8, a0, ..., a8 ∈ [−2, 2]. The design specifications of
Low Pass (LP), High Pass (HP), Band Pass (BP) and Stop Band (SB) IIR filters are shown in Table 3, with
w frequency width. Moreover, the frequency range from 0 to π is divided into ns = 256 equally spaced
sample points. DE, GSA and FGSA are run for 30 times to get the best solutions and the results in
Tables 4–8 are the average (first sub-row) and standard deviation (second sub-row) on 30 experiments.

Table 3. Design specifications of Low Pass (LP), High Pass (HP), Band Pass (BP) and Stop Band (SB)
IIR filters.

Filter δp δs ωp ωs w

LP 0.01 0.001 0.45 0.50 -
HP 0.01 0.001 0.35 0.30 -
BP 0.01 0.001 0.35 and 0.65 0.3 and 0.7 0.3
SB 0.01 0.001 0.25 and 0.55 0.3 and 0.7 0.4

Table 4. Pass band ripple, stop band ripple and transition band of LP filters.

Algorithm PB-Ripple SB-Ripple tb

Differential Evolution (DE) 0.209371 0.174627 0.430534
0.092159 0.100366 0.188224

Gravitational Search Algorithm (GSA) 0.067816 0.066199 0.120964
0.016867 0.016857 0.029634

Fuzzy Gravitational Search Algorithm (FGSA) 0.065990 0.061591 0.101172
0.022298 0.017547 0.027451

Table 5. Pass band ripple, stop band ripple and transition band of HP filters.

Algorithm PB-Ripple SB-Ripple tb

Differential Evolution 0.301758 0.136288 0.401888
0.154653 0.087169 0.155471

Gravitational Search Algorithm 0.047248 0.057344 0.195117
0.016758 0.010286 0.098803

Fuzzy Gravitational Search Algorithm 0.067245 0.058384 0.217318
0.030699 0.011865 0.073569

Table 6. Pass band ripple, stop band ripple and transition band of BP filters.

Algorithm PB-Ripple SB-Ripple tb

Differential Evolution 0.158257 0.463677 0.014583
0.096243 0.489097 0.413012

Gravitational Search Algorithm 0.067377 0.080152 0.127604
0.024833 0.015516 0.041768

Fuzzy Gravitational Search Algorithm 0.070821 0.076286 0.131966
0.017908 0.017812 0.061376
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Table 7. Pass band ripple, stop band ripple and transition band of SB filters.

Algorithm PB-Ripple SB-Ripple tb

Differential Evolution 0.254731 0.077870 0.248177
0.127932 0.041679 0.136460

Gravitational Search Algorithm 0.078905 0.074704 0.117773
0.022983 0.014319 0.028508

Fuzzy Gravitational Search Algorithm 0.066908 0.083628 0.111458
0.023753 0.026077 0.034889

Table 8. Convergence profile results.

Algorithm fLP fHP fBP fSB

Differential Evolution 0.016140 0.017622 0.021384 0.029527
0.004195 0.005027 0.003965 0.004395

Gravitational Search Algorithm 0.006185 0.004209 0.011853 0.010370
0.004130 0.003159 0.006739 0.004559

Fuzzy Gravitational Search Algorithm 0.004364 0.006941 0.010368 0.011207
0.004154 0.005924 0.006368 0.008748

Table 4 shows that the proposed algorithm gives good results for LP filters because pass band
ripple, stop band ripple and transition band are less than DE and GSA values. This fact is confirmed by
comparing the magnitude response over normalized frequency of DE, GSA and FGSA (see Figure 7) for
LP filters. By comparing FGSA and GSA, the pass band ripple (PB-ripple in the table) is improved by
3%, the stop band ripple (SB-ripple) is reduced by 7% and the transition band (tb) is improved by 16%.
Moreover, the robustness of the proposed approach is analyzed by computing the standard deviation
on 30 experiments. In fact, the robustness depends on standard deviation values: a result is more
robust if the data have a smaller standard deviation. Observing Table 4, we can note that standard
deviation values of GSA and FGSA are about the same, whereas DE results show less robustness than
GSA and FGSA. Finally, the proposed approach shows a good robustness for the design of LP filters.
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Figure 7. Magnitude response over normalized frequency for 8th order IIR Low Pass filter using
Differential Evolution, Gravitational Search Algorithm and Fuzzy Gravitational Search Algorithm.
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Table 5 shows the average pass and stop band ripples and transition band for HP filters. In this
case, FGSA is better than DE. Moreover, FGSA has about the same value of stop band ripple of GSA,
but pass band ripple and transition band are greater than GSA. However, FGSA gives a reasonable
trend of magnitude response over frequency (see Figure 8). As in LP filters’ results, the outcomes on
30 experiments show a good robustness of FGSA (see the standard deviation values in Table 5).
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Figure 8. Magnitude response over normalized frequency for 8th order IIR High Pass filter using DE,
GSA and FGSA.

For BP filters, FGSA and GSA are better than DE (see Table 6). The stop band ripple of FGSA is
less than GSA, whereas pass band ripple and transition band are greater than GSA. Figure 9 shows
a symmetric trend of GSA magnitude response. Moreover, good results of robustness are achieved
(see Table 6).
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Figure 9. Magnitude response over normalized frequency for 8th order IIR Band Pass filter using DE,
GSA and FGSA

Algorithm 1 gives good results for SB filters, where pass band ripple and transition band are better
than DE and GSA (see Table 7). In particular, FGSA reduces the pass band ripple by 15% with respect



Energies 2018, 11, 736 13 of 18

to GSA. Moreover, Figure 10 shows that FGSA has a trend very close to an ideal SB filter. Table 7 shows
low standard deviation values for FGSA: this fact assures a good robustness of the developed method.
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Figure 10. Magnitude response over normalized frequency for 8th order IIR Stop Band filter using DE,
GSA and FGSA.

Usually, the search algorithm computation time is a measure of the procedure convergence speed.
On the other hand, the computation time is not good to evaluate the convergence speed because it
depends on hardware performances, programming language and designer skills. A good way to
evaluate the convergence speed is to consider the objective function evaluations number up to the
minimum value of the function (see [23,31–34,53]). Finally, we consider the ratio between the fitness
function calculations number n f and the evaluations number N: such ratio defines the convergence
rate denoted by cr (see Equation (26)):

cr =
n f

N
. (26)

Table 8 contains the convergence profile results of DE, GSA and FGSA for 8th order LP, HP, BP and
SB IIR filters on 30 experiments. Each row contains the best value of fitness error function and standard
deviation obtained by using the specified algorithm. In the table, fLP denotes the optimal value of
fitness function for the filter LP, fHP denotes the optimal value of fitness function for the filter HP,
fBP denotes the optimal value of fitness function for the filter BP and fSB denotes the optimal value of
fitness function for the filter SB. Note that FGSA shows a better design performance for LP and SB
filters, whereas there is a certain equilibrium between FGSA and GSA for HP and BP filters. Moreover,
DE is the worst IIR filter design algorithm in terms of fitness function minimization. Referring to
robustness, DE, GSA and FGSA have about the same low values of standard deviation of order 10−3

(see Table 8). This fact assures a very good robustness of the proposed approach.
Table 9 shows the convergence rates of DE, GSA and FGSA for 8th order LP, HP, BP and SB

IIR filters. They are referred to as crLP , crHP , crBP and crSB for LP, HP, BP and SB filters, respectively.
The analysis on the convergence rate results shows that FGSA has a convergence rate better than GSA
for LP and HP filters, whereas GSA is better than FGSA for BP and SB filters. However, FGSA gives the
best results because the improvements on convergence rate are 6% and 10% for LP and HP, respectively,
versus 7% and 1% of GSA for BP and SB. Moreover, DE gives the worst values of convergence rate.
Figure 11 shows the trend of the error fitness function over the number of iteration N for LP filters by
using DE, GSA and FGSA. Note that FGSA has a better convergence rate than GSA and DE.
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Finally, FGSA achieves the best compromise between IIR filter design performances and
convergence rate with a good robustness. These facts make FGSA better than DE and GSA for
the optimal design of 8th order IIR filters.

Stability analysis of the designed IIR filters is shown in Figures 11–15, where the circle markers
represent the zeros, whereas the cross markers are the poles. The pole-zero plots demonstrate the
existence of poles within the unit circle, which assures the Bounded Input Bounded Output (BIBO)
stability condition. However, adding constraints to optimization algorithms may cause an increase of
computational complexity. Recently, Pelusi et al. [54] have proposed a Neural and Fuzzy Gravitational
Search Algorithm (NFGSA) able to search local optima with low complexity. The future challenge will
be the application of NFGSA for designing optimal IIR filters with fuzzy stability constraints.

Table 9. Convergence rates of DE, GSA and FGSA for LP, HP, BP and SB IIR filters.

Algorithm crLP crHP crBP crSB

Differential Evolution 0.6900 0.6460 0.9900 0.8660
Gravitational Search Algorithm 0.4840 0.5640 0.5200 0.6360

Fuzzy Gravitational Search Algorithm 0.4560 0.5080 0.5580 0.6440
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Figure 11. Error fitness function for LP IIR filter.
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Figure 12. Pole-zero plot of LP IIR filter.
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Figure 13. Pole-zero plot of HP IIR filter.
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Figure 14. Pole-zero plot of BP IIR filter.
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Figure 15. Pole-zero plot of SB IIR filter.
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5. Conclusions

An intelligent algorithm able to optimize the design of 8th order IIR filters has been described.
Because the quality of a filter depends on pass band ripple, stop band ripple and transition band,
the target of the paper is the optimization of an error fitness function that depends on these parameters.
Such task is accomplished through a suitable optimization algorithm. The proposed algorithm is a
combination between fuzzy techniques and GSA. In particular, two fuzzy systems able to adjust some
parameters of GSA have been designed. Moreover, to improve GSA, one of these parameters has been
re-defined. Our algorithm has been compared with DE and GSA for the design of IIR filters. The results
show that FGSA is the best algorithm to design 8th order IIR filters in terms goodness, robustness
and convergence rate. Moreover, the proposed algorithm always gives a stable filter. Further research
tasks will focus on: (1) the improvement of the fitness function definition; (2) the design of FISs for
other GSA parameters assuring a good compromise between best solution and high convergence
speed for the design of IIR filters; and (3) the comparison with other optimization algorithms such as
Particle Swarm Algorithm and Genetic Algorithms. A future fascinating challenge will be the design
of optimal IIR filters with fuzzy stability constraints.
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