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Abstract: In this paper, an assessment on the health index (HI) of transformers is carried out based
on Neural-Fuzzy (NF) method. In-service condition assessment data, such as dissolved gases, furans,
AC breakdown voltage (ACBDV), moisture, acidity, dissipation factor (DF), color, interfacial tension
(IFT), and age were fed as input parameters to the NF network. The NF network were trained
individually based on two sets of data, known as in-service condition assessment and Monte Carlo
Simulation (MCS) data. HI was also obtained from the scoring method for comparison with the NF
method. It is found that the HI of transformers that was obtained by NF trained by MCS method is
closer to scoring method than NF trained by in-service condition assessment method. Based on the
total of 15 testing transformers, NF trained by MCS data method gives 10 transformers with the same
assessments as scoring method as compared to eight transformers given by NF trained by in-service
condition data method. Analysis based on all 73 transformers reveals that 62% of transformers have
the same assessments between NF trained by MCS data and scoring methods.

Keywords: health index (HI); Neural-Fuzzy (NF); condition assessment; transformers

1. Introduction

Transformers asset management is one of the crucial aspects for utilities. With the current
economic challenges nowadays, there is an urge to carry out comprehensive condition assessment of
transformers in order to avoid early stage failures, which could be costly. With good management
strategies, it enables the utilities to plan the maintenance or replacement of their assets, which
subsequently can reduce the risk of failures and power outages [1]. Nowadays, most of the utilities have
migrated from the conventional time-based to condition-based managements [2]. A number of new
diagnostic techniques have had been developed and implemented in order to support this effort [3].

Conventionally, the primary areas under concern for transformers under normal in-service ageing
are the oil and paper insulations. For oil, there are several parameters that are normally monitored
such as AC breakdown voltage (ACBDV), dielectric properties, acidity, moisture, color, and interfacial
tension (IFT) [4]. Dielectric failures related to oil can be avoided if the ACBDV and dielectric properties
are properly monitored [5]. Meanwhile, moisture and acidity are commonly monitored in the condition
assessment scheme of transformers since these parameters are among the main ageing accelerators
and by-products for oil and paper in transformers [6]. These parameters could also affect the dielectric
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strength of oil and could cause deterioration to the metal parts in transformers [7]. Color and IFT serve
as additional information to determine the state of oil degradation [8].

Furans are among the common parameter used to determine the condition of insulation paper
due to its unique relationship with degree of polymerization [9]. The concentration of furans slowly
increases under normal ageing and will accelerate under extreme conditions, for example, if a local
overheating occurs on the insulation paper. Recently, methanol has been proposed as a potential
diagnostic tool for paper condition [10,11]. This finding is promising since it can serve as additional
parameter to evaluate the health of paper. Both oil and paper conditions are important to be assessed
in order to ensure reliable operation of transformers.

In addition, under normal practice, unusual events, such as incipient faults are also considered
in the overall condition assessment scheme of transformers. These events can be monitored through
dissolved gases in oil. Gases such as hydrogen (H2), methane (CH4), ethane (C2H4), ethylene (C2H6),
acetylene (C2H2), carbon monoxide (CO), and carbon dioxide (CO2) are normally analysed in order to
determine the types and severities of the faults [12]. Based on the analysis, recommendations can be
made to carry out the necessary mitigation actions [13]. Other techniques that are commonly used to
evaluate faults in transformers include frequency response, partial discharge and recovery voltage
methods [14,15]. As part of transformers management practices, external conditions of transformers
are also monitored that include information, such as oil leak as well as the state of the oil seals,
foundations, and tanks [16,17].

Condition assessment of transformers based on the individual parameter is quite complex and
difficult in some cases. Therefore, health index (HI) is proposed, which can assist the utilities to
determine the overall condition of transformers. HI consists of multiple in-service condition assessment
data that is computed based on a set of algorithms. Coupled with the historical information of
transformers and probability failure assessment, HI can be used for maintenance scheduling and
replacement strategies [18]. The conventional computation of HI is known as the scoring method
where it is based on the ranking and scoring approaches where each condition assessment parameter
is given a distinctive weighting factor. These factors are normally determined based on either expert
judgment or utility requirement [19].

In recent years, artificial intelligence (AI) has been introduced as an alternative approach to
determine the HI of transformers. AI can help to overcome previous issues on the existing scoring
method approach such as lack of data and high dependency on expert judgment [1]. In one of the
study in [20], a fuzzy logic (FL) was implemented to determine the HI of transformers with voltage
levels less than 69 kV. The HI of transformers were determined based on 6 inputs parameters that
included ACBDV, acidity, moisture, dissipation factor (DF), dissolved gases and furans [20]. It was
found that the HI of transformers computed based on the FL were in a good agreement with utility’s
HI. Other study using artificial neural network (ANN) also showed the same finding [21]. For the ANN
study, additional input parameters, such as loss angle and total solids, were included in the network
topology where the in-service condition assessment data from 59 transformers were used for training
and 29 transformers for testing. Fuzzy support vector machine (FSVM) was implemented in [19] in
order to solve imbalanced data issues for determining the HI of transformers. Several techniques
were integrated in this study, such as support vector machine, fuzzy C-means, and synthetic minority
over-sampling technique (SMOTE). The study showed that the FSVM with SMOTE was able to
determine the HI of transformers with 88% of accuracy. Other AI study used orthogonal wavelet
network that was based on combination between the wavelet transform and ANN for determining
the HI of transformers [22]. It was found that the HI of transformers obtained by this method
were in line with scoring method. Overall, most of the AI methods reviewed are able to be used
as generic approaches to obtain HI of transformers. However, further advancement can be carried
out to implement Neural-Fuzzy (NF) where its advantages include reducing the dependency on the
pre-determined expert rules and minimizing the uncertainties of the HI computation. The NF can
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optimize the fuzzy inference system (FIS) based on the training of the condition assessment and
HI data.

Currently, majority of utilities are using the scoring method since it can provide sufficient
assessment on the condition of transformers. However, this approach is unique for each utility
in terms of its algorithm and weighting factors. In this study, an alternative generic approach to
determine HI of transformers based on NF is presented. The in-service condition assessment data
from 73 transformers with voltage levels of 33 kV are used for training and testing of the NF network.
In addition, an alternative training approach is carried out based on Monte Carlo Simulation (MCS)
data. Finally, the HI of transformers that are obtained from the NF method are compared with the
scoring method and analysed.

2. Research Work Flow

The workflow of the current study can be seen in Figure 1. Two approaches were implemented
to obtain the HI of transformers. The first approach was based on conventional scoring method
where the HI of transformers was computed through scoring and weighting algorithms. The second
approach was based on NF method. NF network requires a given set of input and output data for
training purpose which is needed for the construction of the FIS. For this approach, 2 training schemes
were implemented to obtain the HI of transformers. The first scheme used the in-service condition
assessment data from the transformers to train the NF network (NF-IS) while the second scheme
utilized the training data obtained from the Monte Carlo Simulation (NF-MCS). Once the FIS was
obtained, the input data were fed and the outputs were compared with HI of transformers obtained by
scoring method.
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3. Health Index Assessment Based on Scoring Method

In this study, the HI of transformers was first computed based on the scoring method for
comparison with the HI obtained by NF method. The HI of transformers was computed based
on scoring method algorithm proposed in [4,16]. Due to the limitation of the data, only four main
parameters were considered, which were oil quality, dissolved gases in oil, furans and age. Under the
oil quality, parameters such as ACBDV, DF, acidity, moisture, color, and IFT were included. Meanwhile,
seven gases (H2, CH4, C2H4, C2H6, C2H2, CO, and CO2) were considered in the HI computation.

For oil quality and dissolved gases in oil, two steps of procedure were carried out before it can be
included in the final HI computation. The first step was to obtain the score and weighting factors for
individual parameters according to the corresponding ranges in [4,16]. The weighting factor varies
according to the importance of each parameter. For example, the weighting factors given to (CO,CO2),
H2, (CH4,C2H6,C2H4) and C2H2 were 1, 2, 3, and 5, respectively. For oil quality, the weighting factors
given to acidity, color/IFT, ACBDV/DF, and moisture were 1, 2, 3, and 4 [4,16]. Once the scores and
weighting factors for all of the parameters were determined, the factors of oil quality or dissolved
gases were computed according to Equation (1) [4,16].

DGF or OQF =
∑n

i=1 Si ×WFi

∑n
i=1 WFi

(1)

where WFi is the weighting factor for individual condition parameter, n is the number of parameter in
each factor and Si is the score for each parameter. The second step was to determine the rating codes
for oil quality and dissolved gases in oil according to ranges in [4]. There are five rating codes of A, B,
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C, D and E which correspond to values of 4, 3, 2, 1, and 0, respectively. For other parameters such as
furans and age, the rating codes were determined directly from [4,16]. Based on the rating codes of
all the parameters, the final HI was computed according to Equation (2). Equation (2) was obtained
based on [4,16] where a few modifications were carried out that included the removal of tap changer
section and the percentage ratios of transformers and tap changers since the focus of this study was
only on transformers.

HI =
∑n

j=1 Kj × HIFj

∑n
j=1 4Kj

(2)

where HIFj is the rating code for each parameter and Kj is the weighting factor for transformers
condition parameter. Kj can be different for each parameter and different utilities [4,16,23].

4. Health Index Assessment Based on Neural Fuzzy Method

4.1. Architecture of the Neural Fuzzy Network

The architecture of the NF network used in this study consisted of five layers, which included the
input, input membership, average nodes, output membership and output layers as shown in Figure 2.
There were three hidden layers for both NF-MCS and NF-IS, represented by the input membership,
average nodes and output membership layers. In each of the hidden layer, there were six and ten
nodes for NF-MCS and NF-IS, respectively. In the inputs layer, 15 inputs were considered which
included furans, H2, CH4, C2H4, C2H6, C2H2, CO, CO2, moisture, ACBDV, DF, acidity, IFT, color,
and age. These parameters were commonly considered to determine HI of transformers. The nodes
represent the antecedents of fuzzy sets rules (If-part). Gaussian membership function was chosen in
this study, as seen in Equation (3) [24].
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O1,i = uAi (x) = e−(x−ci)
2/2σ2

i (3)

where O1,i is the output of first layer nodes, i is the parameter set in the consequent, Ai is the linguistic
labels characterized by appropriate membership functions, uAi is the type of membership function,
which is Gaussian in this study, ci is the centre of the Gaussian function, x is the crisp inputs to node,
and σi is the spread of the membership function. The outputs of this layer were used as inputs for
the antecedent membership functions corresponding to the fuzzified inputs of the system. In this
study, the linguistic labels was defined into five categories known as “very good”, “good”, “moderate”,
“bad”, and “very bad” based on criteria given in [4,16].
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In the input membership layer, the degree of activation (firing strength) of particular fuzzy rules
was computed. The AND operator was applied to obtain the output. The output of the layer can be
determined by Equation (4).

O2,i = uAi (x1)× uBi (x2)× uCi (x3)× uDi (x4)× uEi (x5)× uFi (x6)× uGi (x7)

×uHi (x8)× uIi (x9)× uJi (x10)× uKi (x11)× uLi (x12)× uMi (x13)

×uNi (x14)× uOi (x15)

(4)

where O2,i is the output of second layer nodes, x1 is the furans, x2 is the H2, x3 is the CH4, x4 is the
C2H4, x5 is the C2H6, x6 is the C2H2, x7 is the CO, x8 is the CO2, x9 is the moisture, x10 is the ACBDV,
x11 is the DF, x12 is the acidity, x13 is the IFT, x14 is the color, and x15 is the age. In the average nodes
layer, the firing strength of the rules was normalized based on the ratio of each ith rules to the sum of
all rules that can be obtained by Equation (5) [24].

O3,i = Wi =
Wi

∑3
i=1 Wi

(5)

where O3,i is the output of third layer nodes, Wi is the normalized degrees of activation (firing strength),
and Wi is the degrees of activation (firing strength) of ith rules. The function of output membership
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layer is to optimize the consequent parameters of the rules (Then-part) by computing each ith rules
contribution in term of the total output, as shown in Equation (6).

O4,i = wi(gix1 + hix2 + iix3 + jix4 + kix5 + lix6 + mix7 + nix8 + oix9 + pix10

+qix11 + rix12 + six13 + tix14 + uix15 + vi)
(6)

where O4,i is the output of the fourth layer nodes, wi is the ith nodes output from the previous layer.
The final output layer has a single node where each node belongs to one output in the case of multiple
outputs. The single node evaluates the overall output by summation of all the inputs from the previous
layers. The output of the defuzzification process of FIS was determined based on Equation (7) [24].

O =
4

∑
i=1

wi f i = ∑4
i=1 wi f i

∑4
i=1 wi

(7)

where O is the output of the network and f i is the node function.

4.2. Data Training

The flowchart for the training process of the NF network can be seen in Figure 3. The ratio of
training and testing data was varied in order to optimize the NF network trained based on in-service
condition assessment data. On the other hand, the NF network trained based on MCS data was
optimized by varying the number of training data.Energies 2018, 11, x 6 of 12 
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4.2.1. Training Based on In-Service Condition Assessment Data

In order to optimize the NF network parameters, the training data chosen should be higher than
the testing data. In total, 58 in-service condition assessment data from 73 transformers were randomly
chosen for training the NF network. For testing, 15 in-service condition transformers data were selected
from 73 transformers. The time period of the data was between October 2014 and September 2015.
The HI was first computed using the scoring method since the training of the NF network required the
information of both condition assessment data and its corresponding HI.

4.2.2. Training Based on Monte Carlo Simulation

A set of data was generated based on MCS to train the NF network. MCS is based on iterated
random samplings and it is widely used to evaluate difficult mathematical problems, such as complex
integration [25]. In this study, the generation of training data was carried out through bivariate normal
distribution function as shown in Equation (8) with two-step transformation. The first step was to
generate random pair of data based on bivariate normal distribution function. An assumption was
made of which there was a statistical dependency between these data and each has normal marginal
distribution. The mean vectors were set to 0 while the diagonal and off-diagonal covariance matrices
were set to 1 and 0.72 based on trial and error which gave the closest final data to the in-service
condition assessment and HI data ranges.

f
(

x, µ, ∑
)
=

1√
|∑|(2π)d

e−
1
2 (x−µ)′∑−1(x−µ) (8)

where x and µ are 1-by-d variables, d = 1, 2, 3 . . . , while ∑ is a d-by-d symmetric positive definite
matrix that contains the variances for each variables.

Once the random pair of data were generated, the normal cumulative distribution function in
Equation (9) was applied as the first transformation step to convert each of data having the normal
marginal distribution into normal distribution. Next, the second transformation step of the generated
pairs of data was applied individually to each of the data based on inverse normal cumulative
distribution function in order to get a complete set of data for training the NF network. The mean
and standard deviation for each type of the in-service condition assessment data and computed HI
obtained based on scoring method from the transformers population under study were used in the
inverse normal cumulative distribution function. This procedure is carried out to create the statistical
correlation between the random generated pair of data and the in-service condition assessment data
obtained from the utility. This distribution was chosen since it produced data close to the condition
assessment and HI data ranges after trial and error as compared to other types of distributions.
The final step before training the NF network was to filter the outliers of the generated condition
assessment and HI data. For condition assessment data, the ranges of outliers were obtained from the
transformer population under study, while the HI was bounded between 0 and 100. Figure 4 shows
the simulated MCS data based on the normal distribution for all parameters.

f (x|µ, σ) =
1

σ
√

2π

∫ x

−∞
e
−(t−µ)2

2σ2 dt (9)

where t is the data, µ is the mean and σ is the standard deviation.
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4.3. Membership Function

Tagaki-Sugeno FIS based on subtractive clustering with Gaussian memberships for each input
was used in this study for both training based on in-service condition assessment and MCS data.
The MF parameters were adjusted based on the back-propagation algorithm through training process.
The inputs of HI were mapped based on Tagaki-Sugeno FIS using the set of input MF through
fuzzification process. Next, it used the fuzzified inputs to compute the firing strength of the rule using
AND operator. The AND operator used the minimum MF values and the crisp value of the output
was obtained by defuzzification process by aggregating the output of the rules. Tagaki-Sugeno FIS
had no output MF and in its place, the output was a crisp number (linear or constant) computed each
through summation of the products between the input and constant. Through the training process,
the errors can be reduced to produce the optimal model of FIS. An example of the optimal models of
FIS used in Table 1 for training based on MCS data which had 6 MF can be seen in Figure 5. On the
other hand, 10 MF were obtained through training based on in-service condition assessment data.
The membership functions and its rules were utilized by Tagaki-Sugeno FIS to find the output of HI.
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All of the consequent membership functions were represented by singleton spike. The final output of
the system was the weighted average of all rule outputs, according to Equation (7).
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5. Result and Discussion

For T1, the HI obtained by NF-MCS and NF-IS methods are lower than the scoring method, which
can be seen in Table 1. The HI and assessments based on NF-MCS in Tables 1 and 2 have been obtained
after multiple simulations which give the closest results to scoring method. Multiple simulations have
been carried out for NF-MCS due to fact that MCS will generate a new set of training data for each of
the simulation. The percentage of difference between HI obtained by scoring and NF-MCS methods for
T1 is 27.14% which is slightly lower than NF-IS with percentage of 29.3%. The same pattern is observed
for T2 and T3 with higher percentages of differences between scoring and NF-MCS/NF-IS methods.
It is observed that T1 and T2 are given “very bad” assessments by NF-MCS and NF-IS, which are
reasonable since these transformers have high furans, dissolved gases, moisture and acidity as well as
low IFT and ACBDV. Even though T3 has a good level of moisture, DF, and ACBDV, the concentration
of furans is reasonably high with value of 1.43 ppm. The NF-MCS and NF-IS methods give “bad”
assessment for T3 as compared to “moderate” assessment by scoring method.
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Table 1. HI and assessments of testing transformers based on scoring and NF methods (15 transformers).
HI: health index; NF: Neural-Fuzzy; BDV: breakdown voltage; DF: dissipation factor; IFT: interfacial
tension; IS: inference system; MCS: Monte Carlo Simulation.

Transformer T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Furans (ppm) 3.34 1.68 1.43 1.4 0.6 0.1 0.1 0.13 0.32 0.401 0 0.12 0.08 0.08 0.05

H2 (ppm) 22 98 70 8 12 8 88 180 503 277 11 13 12 14 134

CH4 (ppm) 103 122 6 4 1 2 168 126 7 20 4 2 2 2 32

CO (ppm) 783 781 578 631 17 172 356 473 305 335 395 206 146 127 245

CO2 (ppm) 3501 4784 8551 6535 286 3382 6080 7821 6561 2416 2700 2764 2123 1766 3086

C2H4 (ppm) 18 46 2 116 0 15 24 16 2 1 4 14 6 4 3

C2H6 (ppm) 93 105 3 1 0 0 615 373 15 35 1 0 0 0 44

C2H2 (ppm) 0 5 0 0 2 0 0 0 0 0 0 0 0 0 0

Moisture
(ppm) 35 23 9 10 12 12 4 4 7 7 3 11 10 8 3

BDV (kV) 27 25 57 48 48 26 49 49 55 69 97 57 27 31 94

DF (%) 0.26 0.034 0.008 0.12 0.03 0.004 0.03 0.03 0.02 0.033 0.002 0.008 0.003 0.003 0.003

Acidity (mg
KOH/g) 0.43 0.23 0.15 0.085 0.086 0.03 0.02 0.01 0.03 0.045 0.02 0.031 0.017 0.015 0.014

IFT (mN/m) 16 15 17 22 18 32 25 25 24 23 30 30 32 35 30

Color 7 4 3 5 3 2 1.5 1.5 1 2 1 2 1.5 1 0.5

Age (years) 23 21 11 29 18 16 7 7 4 8 14 16 16 16 4

Scoring
method HI

VB B M B G G M M G G VG VG VG VG VG

28 34.6 55 41.6 76.6 70 66.6 61.6 73 80 100 88.3 86.6 93.3 91.6

NF-IS HI
VB VB B M VG G G G G G G VG VG VG VG

19.8 18 30 65 94 70 71 73 73 80 78 90 88 87 87

NF-MCS HI
VB VB B B M G G G G G VG VG VG VG VG

20.4 22.6 35.5 45 57 80 78 81 71 73 88 85 85.6 91 86

Where: VG = Very Good; G = Good; M = Moderate; B = bad; VB = Very Bad.

Table 2. HI and assessments of transformers based on scoring and NF-MCS methods (58 transformers).

Transformer T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30

Scoring
method HI

M B G G G G VG G VG G B VB M M G
54.8 45.2 71.2 71.2 80.8 80.8 85.6 84.6 85.6 70.2 44.2 29.8 60.6 66.3 79.8

NF-MCS HI
B VB VG G G VG VG M VG VG M VB M VG G
36 29 85.2 74.1 83.1 85 89.4 59 100 87.8 62 19 51 86 83

Transformer T31 T32 T33 T34 T35 T36 T37 T38 T39 T40 T41 T42 T43 T44 T45

Scoring
method HI

G VG VG G B G B G B VG VG M M M M
84.6 85.6 85.6 80.8 49 71.2 39.4 71.2 45.2 100 94.2 59.6 53.8 66.3 56.7

NF-MCS HI
G G VG G B G B VB VG VG VG M M M M
82 80 98 70 39.1 83.8 49.6 23 88.2 90 97.6 56.9 55.5 67.2 54.5

Transformer T46 T47 T48 T49 T50 T51 T52 T53 T54 T55 T56 T57 T58 T59 T60

Scoring
method HI

B M M M G G VG VG VG VG B B G G VG
44.2 59.6 64.4 64.4 74 74 100 88.5 100 100 38.5 44.2 76 79.8 95.2

NF-MCS HI
G M M M G G VG VB M G VB M G VB VG

80.5 60.5 66 69 76 75.6 96 12.1 51 80.2 18.3 50 84.3 24.9 85.1

Transformer T61 T62 T63 T64 T65 T66 T67 T68 T69 T70 T71 T72 T73

Scoring
method HI

VG B B G G M G M M M M M M
85.6 34.6 44.2 83.7 83.7 61.5 71.2 66.3 61.5 54.8 59.6 59.6 50

NF-MCS HI
M B VB M G M G M VG M M M VG

58.5 31 22 60 78.8 50.3 70 62.8 96 50.6 55.7 55.8 95.5

Where: VG = Very Good; G = Good; M = Moderate; B = bad; VB = Very Bad.
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For T4, the HI obtained by NF-MCS and NF-IS are higher than scoring method. The percentage
of difference between HI obtained by scoring and NF-MCS methods is much lower than NF-IS, with
values of 8.2% and 56.3%, respectively. NF-MCS gives “bad” assessment for T4 which is in line with
the scoring method mainly due to the high furans, CO, CO2, and DF. For T5, the HI obtained from
scoring method is closer to NF-IS method than NF-MCS method with percentage of difference of 22.7%
as compared to 25.6%. The scoring and NF-IS methods give “good” and “very good” assessments
for T5. However, NF-MCS gives “moderate” assessment for T5 due to consideration on the furans
concentration of 0.6 ppm and age of 18 years.

The HI obtained by NF-IS method is closer to scoring method than NF-MCS method for T6–T10.
In addition, the HI of T6, T9, and T10 obtained by NF-IS are exactly the same as the scoring method.
Both NF-MCS and NF-IS give “good” assessments to T6–T10. Meanwhile, for scoring method, T7 and
T8 are given “moderate” assessments due to the dissolved gases are is higher than normal condition
as suggested in [26]. Due to the nature of scoring method algorithm, individual parameter, such
as dissolved gases, has high weighting factor that could influence the final computation of the HI.
As compared to T6–T10, the HI of T11–T15 obtained by the NF-MCS method are closer to scoring
method. The NF-MCS gives “very good” assessments for T11–T15 which are in line with the scoring
method. This is expected since the in-service condition data of these transformers are in a “very good”
condition. The same assessments are given by NF-IS, except for T11.

There are a few deviations between HI obtained by NF and scoring methods. These deviations
could be contributed by the lack of the training data for the NF-IS method and the differences on
the concept of the computation for both NF and scoring methods. Based on NF-IS method, eight
transformers have the same assessments as scoring method. On the other hand, the assessments by
NF-MCS method are closer to scoring method with 10 transformers having the same assessments.

Further analysis was carried out to determine the HI and assessments of the remaining
58 transformers based on NF-MCS method as shown in Table 2. The analysis based on NF-IS
method could not be carried out due to the fact that the in-service condition assessment data of
the 58 transformers are used to train the NF network. It is found that NF-MCS method gives
35 transformers with the same assessments as scoring method. The deviations of transformers
assessments between NF-MCS and the scoring methods are due to the differences on the computation
approaches. Scoring method mainly relies on the weighting factors whereby NF-MCS method utilizes
the MCS training data to compute the HI. The NF-MCS method has better flexibility than NF-IS method
since the in-service condition assessment data is not used for training the NF network. In addition, the
NF-MCS can provide larger training data set than NF-IS to cover the range of the testing data.

6. Conclusions

In this paper, the HI of transformers based on NF network is presented. In-service condition data, such
as ACBDV, DF, moisture, IFT, acidity, total dissolved gases in oil, furans, and age are used to determine
HI of transformers. Based on the case study, it is found that the percentage of difference between HI of
transformers obtained by scoring and NF-IS methods can be as high as 56.3%, while for NF-MCS, it is
31.5%. In addition, the condition assessment of transformers obtained by NF-MCS method is closer to
scoring method. Based on 15 testing transformers, 10 transformers have the same assessments for both
scoring and NF-MCS methods, while only eight transformers for NF-IS method. Additional analysis based
on NF-MCS method reveals that 45 out of 73 transformers have the same assessments with scoring method.
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Nomenclature

Si Score for each parameter.
WFi Weighting factor for individual condition parameter.
n Number of parameter in each factor.
Kj Weighting factor for transformers condition parameter.
HIFj Rating code for each parameter.
Oi Output layer.
Ai Linguistic label.
ci Centre of the Gaussian function.
i Parameter set in the consequent.
σi Spread of the membership function.
uAi Type of membership function.
x The crisp inputs to node.
Wi Normalized degrees of activation (firing strength)
Wi Degrees of activation (firing strength) of ith rules
wi ith nodes output from the previous layer
f i The node function.
t Data
µ Mean
σ Standard deviation
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