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Abstract: Synchronous-reference-frame phase-locked loop (SRF-PLL) is widely used in grid
synchronization applications. However, under unbalanced, distorted and DC offset mixed grid
conditions, its performance tends to worsen. In order to improve the filtering capability of
SRF-PLL, a modified three-order generalized integrator (MTOGI) with DC offset rejection capability
based on conventional three order generalized integrator (TOGI) and an enhanced delayed signal
cancellation (EDSC) are proposed, then dual modified TOGI (DMTOGI) filtering stage is designed
and incorporated into the SRF-PLL control loop with EDSC to form a new hybrid filter-based PLL.
The proposed PLL can reject the fundamental frequency negative sequence (FFNS) component,
DC offset component, and the rest of harmonic components in SRF-PLL input three-phase voltages
at the same time with a simple complexity. The proposed PLL in this paper has a faster transient
response due to the EDSC reducing the number of DSC operators. A small-signal model of the
proposed PLL is derived. The stability is analyzed and parameter design guidelines are given.
Experimental results are included to validate the effectiveness and robustness of the proposed PLL.

Keywords: harmonic; DC offset; three order generalized integrator (TOGI); delayed signal
cancellation; phase locked loop

1. Introduction

The accurate estimation of grid voltage phase is the key technology in the control of the three-phase
grid-connected power converter. With the continuous innovation and development of new energy
power generation technologies such as solar energy and wind energy, the operation of the grid becomes
more and more complicated. Imbalances and frequency fluctuations in the grid voltage are caused by
sudden failure in the grid and sudden change of grid load [1,2]. Thus, to achieve a quick and accurate
of estimation of grid voltage phase under adverse grid conditions such as grid voltage imbalance and
distortion is an issue of focus in the field of new energy grid-connections [3,4].

To deal with phase estimation problem under non-ideal grid voltage, many PLL methods have
been proposed by scholars. Most of these methods are based on the synchronous reference frame
PLL (SRF-PLL). The conventional SRF-PLL has excellent phase tracking capability and dynamic
performance under ideal grid conditions. However, when the grid voltage is unbalanced and distorted,
an oscillation will be introduced into the phase estimation [5,6].

To eliminate the effect of fundamental frequency negative sequence (FFNS) component and
harmonic components under unbalanced and distorted grid conditions, a variety of advanced
PLLs have been proposed such as dual second-order generalized integrator PLL (DSOGI-PLL),
dual three-order generalized integrator PLL (DTOGI-PLL), and multi-complex-coefficient filter
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PLL (MCCF-PLL). Reference [7] proposed a grid-connected synchronization method based on a
second-order generalized integrator. First, the second-order generalized integrator generated the
quadrature signal, then the symmetrical component approach was used to calculate the positive and
negative sequence voltage components. This approach does not require reference frames rotating and
is more simple to implement than the DTOGI-PLL and MCCF-PLL, but synchronization errors are
greater in the case of grid voltage with harmonic distortion. Reference [8] proposed a DTOGI-PLL
that uses two third-order generalized integrator bandpass filters instead of the SOGI structure in
DSOGI-PLL. The DTOGI-PLL has a better inherent filtering characteristic than the DSOGI-PLL by using
a complex transfer function with high-order denominator. In reference [9], the fundamental frequency
positive sequence (FFPS) and FFNS components are separated using the amplitude-frequency and
phase-frequency asymmetric characteristic of complex-coefficient filter (CCF), and specific order
harmonics are selectively eliminated or extracted by multiple CCFs in parallel. The main problem of
the above PLLs is that they only mitigate but do not completely eliminate influence of all the major
harmonic components. In order to completely reject all the dominant harmonics without degrading
the dynamic performance, some scholars have used some linear filtering techniques in SRF-PLL,
such as delayed signal cancellation operator [10,11]. The DSC-PLL is widely used in grid-connected
synchronization technology under distorted grids due to its easy digital implementation and excellent
filtering capability. Most of the DSC-based PLLs cascade multiple DSCs to improve the filtering
performance whether in the phase control loop of the PLL or before the input of the PLL [12].
The number of DSCs depends on eliminated the harmonic components. Reference [13] proposed
a generalized DSC structure cascading five DSC operators with delay factors n = 2; 4; 8; 16; 32
(which is briefly called the GDSC 2, 4, 8, 16, 32), and combined it into the control outer loop of
the conventional SRF-PLL. The delay caused by the DSCs structure is the sum of multiple DSC
delays, therefore, the dynamic response of the system will be significantly degraded. Reference [14]
proposed a frequency adaptive generalized DSC (GDSC) operator, but its structural nonlinearity is
so high that it is difficult to ensure the stability of the entire system. In reference [15], an efficient
GDSC (EGDSC) is proposed based on the non-frequency adaptive GDSC structure with additional
frequency and phase error compensation units, which increases the system stability and reduces the
computational complexity.

In addition, another problem in designing PLL is the existence of DC offsets in the input voltage
which can cause fundamental frequency oscillation errors in the phase and frequency estimates of
PLL [16–20]. In order to eliminate the phase and frequency estimation error caused by DC offset,
reference [21] proposed a SO-SOGI-QSG filter consisting of two cascaded SOGI filter units, this method
can completely remove the components of −50 Hz in the dq-frame and effectively eliminate the
influence of DC offset. Reference [22] proposed a frequency-adaptive filtering MAF unit in stationary
frame system to obtain and eliminate constant DC offset components. However, in reference [23],
a modified MAF filtering unit was used to quickly eliminate constant and slow speed changing DC
offset components within 1 ms. These methods can effectively eliminate the effects of DC offset,
but increase the system response time and additional computational burden.

This paper proposes a modified TOGI (MTOGI) structure that based on the conventional TOGI to
block DC offset components completely, and also provides an enhanced DSC (EDSC) operator based
on modified DSC approach to eliminate harmonic components. Then a dual modified TOGI (DMTOGI)
filter stage is designed. The DMTOGI is transformed to the dq-frame and cascaded with EDSC to form
a new hybrid filter which is incorporated into the SRF-PLL control inner loop. The hybrid filter can be
employed to eliminate the FFNS component, the DC offset components and all harmonic components
of the SRF-PLL input three-phase grid voltage. Because the EDSC can reduce the number of DSC
operators and improve the transient response of the system, so the proposed PLL can extract the
grid voltage synchronization signal quickly and accurately when the grid voltage is unbalanced and
severely distorted. The effectiveness of the proposed PLL under non-ideal grid voltages is confirmed
through experimental results.
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2. PLL Input Voltage Component Analysis

Assuming that the PLL three-phase input voltages are under adverse conditions, it means that the
voltage contains the fundamental voltage component, the DC offset component, and each harmonic
component. The three-phase input voltage after Fourier transform can be expressed as

Uk = U0k + U1k cos(ωt + θk1) +
∞

∑
n=2

Unk cos(nωt + θkn) (1)

where k = a,b,c, U0k is the DC offset component, U1k is the amplitude of the fundamental voltage, Unk is
the amplitude of the n-th harmonic component; θk1 is the phase angle of the fundamental component;
θkn is the phase angle of n-th harmonic component.

In PLLs, the three-phase voltages even harmonics are eliminated in the αβ-frame after the Clark
transformation. 3nth harmonics are decoupled and centered on the 0 axis. So three-phase voltage
in the αβ-frame only contain +1th, −5th, +7th, −11th, +13th, . . . voltage components [24]. The DC
offset component in the αβ-frame still behaves as a DC voltage component, which is on the 0 axis.
Under unbalanced grid conditions, the fundamental negative-sequence component appears as −1th
voltage component in the αβ-frame.

When the voltage signal is transformed to the dq-frame after Park transformation, the frequency of
each harmonic voltage component is changed. The dq-frame can be obtained by rotating the αβ-frame
at a speed of 2π50 rad/s counterclockwise, and then the +1th, −5th, +7th, −11th, +13th, . . . voltage
components in αβ-frame are shown as 0th,−2th,±6th,±12th, . . . voltage components in dq-frame [25].
The DC offset component behaves as a −1th voltage component.

Table 1 summarizes the above conclusions and provides the dominant components of the grid
voltage. As shown in Table 1, some frequency components are negative, which means that the voltage
components of the grid are negative sequence voltage. It can be observed that the FFNS component
and the DC offset component in the αβ-frame are voltage components at −50 Hz and 0 Hz, which are
presented as voltage components at −100 Hz and −50 Hz in the dq-frame. Therefore, blocking FFNS,
DC offset and all harmonic components in SRF-PLL inner loop means to eliminate voltage components
at −50 Hz, −100 Hz, ±300 Hz, ±600 Hz, . . . in dq-frame.

Table 1. Dominant components of the grid voltage.

Harmonic order . . . −11 −6 −1 0 +1 +7 +13 . . .
αβ-frame (Hz) . . . −550 −250 −50 0 50 350 650 . . .

Harmonic order . . . −12 −6 −2 −1 0 +6 +12 . . .
dq-frame (Hz) . . . −600 −300 −100 −50 0 300 600 . . .

3. DMTOGI Design Based on Complex Vector Filter

This section proposes a MTOGI filter unit with DC offset rejection capability and constructs and
designs the DMTOGI filter using the complex vector filter approach.

3.1. Complex Vector Filter Overview

The Clark transformation is actually the process of converting three independent quantities of
the three-phase grid voltage or current into one rotating vector. This rotating vector in the αβ frame
system can be expressed as follow in the s domain.

vαβ(s) = vα(s) + jvβ(s) (2)

where, vα(s) is the α-axis real domain expression which denotes the real part of the voltage vector and
vβ(s) is the β-axis real domain expression which denotes the imaginary part of the voltage vector.
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Referencing the complex domain vector representation of the grid voltage, the concept of
a complex vector filter can be introduced. The complex vector filter is actually a double-input
dual-output complex transfer function. The complex vector filter is shown in Figure 1, where H(s) is
the transfer function of the complex vector filter with the following expression [26]

H(s) = R(s) + jQ(s) (3)

where R(s) is the real part of the transfer function and Q(s) is the imaginary part of the transfer function.
According to Figure 1, Equations (2) and (3), we can obtain the output of the complex vector

filter vo,αβ(s)
vo,αβ(s) = H(s)vαβ(s)

=
(

R(s)vα(s)−Q(s)vβ(s)
)
+ j
(
Q(s)vα(s) + R(s)vβ(s)

)
= vo,α(s) + jvo,β(s)

(4)

where
vo,α(s) = R(s)vα(s)−Q(s)vβ(s) (5)

vo,β(s) = Q(s)vα(s) + R(s)vβ(s) (6)
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Figure 1. Complex vector filter. (a) Description of complex vector filter; (b) Implementation diagram of
the complex vector filter.

The implementation of the complex vector filter based on the real domain transfer function is
shown in Figure 1b.

It can be seen from Equation (4) that when a complex domain vector and complex filter multiplied,
it can be understood as the multiplication of two vectors. The amplitude–frequency characteristic
and phase–frequency characteristic of the complex vector filter can be obtained by substituting s = jω
into H(s).

3.2. Design of MTOGI

The conventional TOGI structure in reference [8] is shown in Figure 2a, which has one input and
two outputs. The two outputs are the direct axis component and quadrature axis of the filtered signal.
The transfer function of conventional TOGI is

Rc(s) =
v′(s)
v(s)

=
2k1ω̂2s

s3 + k2ω̂s2 + (2k1 + 1)ω̂2s + k2ω̂3 (7)

Qc(s) =
qv′(s)
v(s)

=
2k1ω̂3

s3 + k2ω̂s2 + (2k1 + 1)ω̂2s + k2ω̂3 (8)

where v is the input signal of TOGI, q is the phase shift factor with 90◦, ω̂ is the estimate value of
the grid voltage frequency, v′ and qv′ are the direct and quadrature versions of the input signal v,
respectively, k1 and k2 are dynamic coefficients. It can be observed that Rc(s) has a zero at s = 0,
so the DC offset can be completely rejected. However, the output of v′ does not contain the DC offset
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component. From the structure Figure 2a, v′ eliminates the DC component by inverse feedback to the
input signal. As shown in Figure 2a, since Qc(s) is a low-pass filter, once the input signal v contains
any DC component, the output signal qv′ will be affected by DC offset, which causes the amplitude
detection error of the input voltage signal and affects the following phase angle lock.
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To reject the DC offset completely, as shown in Figure 2b, the same structure as the conventional
TOGI is employed in this paper, but the quadrature signal qv′ is taken from different points to construct
a modified TOGI(MTOGI). The modified TOGI transfer function is

Rm(s) =
v′(s)
v(s)

=
2k1ω̂2s

s3 + k2ω̂s2 + (2k1 + 1)ω̂2s + k2ω̂3 (9)

Qm(s) =
qv′(s)
v(s)

= − 2k1ω̂s2

s3 + k2ω̂s2 + (2k1 + 1)ω̂2s + k2ω̂3 (10)

The transfer function of Rm(s) is same as Rc(s), and the transfer function of Qm(s) is changed.
There is zero at s = 0 in Qm(s), it means that there is zero at 0 Hz, and the DC component in the
quadrature axis signal (qv′) can be rejected completely.

3.3. DMTOGI Filter Structure

In this paper, two TOGIs in DTOGI filter stage are replaced with MTOGI in Figure 2b, and a dual
modified TOGI (DMTOGI) filter is proposed. The modified filtering stage can reject grid voltage FFNS
component and DC Offset without increasing calculation burden.

Figure 3 shows the DMTOGI structure, and the expression of Figure 3 is written as[
v̂+α,1
v̂+β,1

]
=

1
2

[
Rm(s) −Qm(s)
Qm(s) Rm(s)

][
vα

vβ

]
(11)

where vα, vβ are the voltage signal in αβ-frame after Clark transformation to the three-phase voltage
vabc. v̂+α,1 and v̂+β,1, which only contain voltage positive sequence component, are the output after
vα
′ and vβ

′ undergoing the interleaved positive sequence components calculation. According to the
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complex vector filter Equations (4) and (11), the DMTOGI filter in the αβ frame (called αβDMTOGI)
can be written as a complex vector transfer function

αβDMTOGI(s) =
1
2
(Rm(s) + jQm(s)) =

−jk1ω̂s(s + jω̂)

s3 + k2ω̂s2 + (2k1 + 1)ω̂2s + k2ω̂3 (12)

Figure 4 shows the bode plots for αβDMTOGI and DTOGI. The grid estimated frequency ω̂ is
50 Hz. In the Figure 4, the red curve belongs to DTOGI(s), the blue curve is αβDMTOGI(s), and the
values of k1 and k2 are 2.33 and 3.18, respectively [8]. According to Table 1 and Figure 4, it is found that
the voltage disturbance component of −50 Hz in αβ-frame is eliminated using DTOGI, indicating that
it can only reject the FFNS component of the grid voltage. While the voltage disturbance components
at −50 Hz and 0 Hz in αβ-frame are completely eliminated by using αβDMTOGI. The gain of the FFPS
component at 50 Hz is 0, and the phase is 0. This means that both the FFNS component and the DC
offset of the grid voltage can be completely rejected by αβDMTOGI, and the amplitude and phase of
the FFPS component are not affected at all.
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αβDMTOGI eliminates the interference of FFNS component and DC offset component completely
by using complex vector filter. However, αβDMTOGI can only restrain the high-frequency harmonics
to some degree, but the harmonics components cannot be completely filtered, which can be seen
in Figure 4.
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4. Design of Enhanced DSC

The transfer function of the conventional DSC in s domain is

DSCn(s) =
1 + ej2π/ne−(T/n)s

2
(13)

where n is the delay factor and T is the grid voltage fundamental period. n is the only adjustable
parameter in conventional DSC [11].

In this paper, a new Modified DSC (MDSC) operator is employed [27], its transfer function is

MDSC(s) =
1 + ej2π/ns e−(T/n)s

2
(14)

Unlike conventional DSC, MDSC has n, ns two parameters that can be adjusted to meet the
requirements of the frequency characteristics. The role of ns is to shift the frequency characteristics of
the conventional DSC on the frequency axis. The time domain implementation of MDCS is shown
in Figure 5.
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In this paper, the two parameters of MDSC, n and ns are set to be 6 and 2, respectively. The transfer
function of the corresponding MDSC is

MDSC(s) =
1− e−(T/6)s

2
(15)

The corresponding time domain implementation of the Figure 5 can be simplified to the Figure 6.
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Figure 7 is the bode plot of the MDSC and DSC6. It can be observed that the frequency
characteristic of the MDSC can be seen as the frequency characteristic of the DSC6 moving left 200 Hz
on the frequency axis. As also can be seen in Figure 7, MDSC can completely block the harmonic
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components at±300 Hz, ±600 Hz and other frequencies in the dq frame, but at the same time, the FFPS
component at 0 Hz is also blocked.Energies 2018, 11, x FOR PEER REVIEW  8 of 18 
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In order to retain the FFPS completely, this paper proposes an enhanced DSC (EDSC) by using
the first-order low-pass filters (LPF) in parallel with the MDSC. The implementation form is shown in
the Figure 8.
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LPF expression is kc/s + kc, kc for the cutoff frequency, kc = σω̂. Because LPF and MDSC are in
parallel, the transfer function of EDSC is

EDSC(s) =
1− e−(T/6)s

2
+

σω̂

s + σω̂
=

s + 3σω̂− e−(T/6)s(s + σω̂)

2(s + σω̂)
(16)

where ω̂ is the estimated frequency of the grid and ω̂ is 50 Hz. σ is the bandwidth adjustment
coefficient, considering the low-pass filter response speed and bandwidth width, the value of σ is set
to be 0.7. The bode plot of the EDSC is shown in Figure 9.

Conventional DSC-based PLLs usually adopt cascading multiple DSCs structure, but the EDSC
has only one DSC operator, which can improve system response speed and significantly reduce the
computational burden of the PLL. It can be seen from Figure 9, the FFPS magnification at 0 Hz is 1,
and the phase is 0. In dq frame, it means that the magnitude and phase of the grid voltage FFPS are
not affected.



Energies 2018, 11, 703 9 of 18
Energies 2018, 11, x FOR PEER REVIEW  9 of 18 

 

 

Figure 9. Bode diagram of EDSC. 

5. Hybrid Filter in the Proposed PLL 

5.1. Design of Hybrid Filter Based on DMTOGI and EDSC 

In order to eliminate the effects of high frequency harmonics to the SRF-PLL completely, 
αβDMTOGI is transformed into the dq-frame to achieve the dqDMTOGI, which is cascaded with the 
EDSC to form a hybrid filter. Then incorporate the hybrid filter into the SRF-PLL control inner loop 
to form a new three-phase PLL. Figure 10 shows the structure of the proposed PLL. 

 

Figure 10. Block diagram of the proposed PLL in this paper. 

According to Table 1, dqDMTOGI is used to reject FFNS component at −100 Hz and the DC 
offset component at −50 Hz in dq-frame, and other harmonic components are rejected by EDSC. 

The proposed approach of this paper transforms DMTOGI to the dq-frame and its transfer 
function in the dq-frame can be obtained by substituting s in αβDMTOGI (s) for ω̂js+  [24]. 

2 2 3
1 1 1

3 2 2 3
2 1 2 1

ˆDMTOGI( ) DMTOGI( )
ˆ ˆ ˆ- 3 2

ˆ ˆ ˆ( 3) [2( 1) 2 ] 2

dq s s j
jk s k s j k

s k j s k j k s j k

αβ ω
ω ω ω

ω ω ω

= +
+ +=

+ + + − + +
(17)

The frequency characteristics of αβDMTOGI(s) and the proposed dqDMTOGI(s) are shown in 
Figure 11. The red curve belongs to αβDMTOGI(s), whose notch frequencies are 0 Hz and −50 Hz. 
The blue curve belongs to dqDMTOGI(s), whose notch frequencies are −100 Hz z and −50 Hz. It can 
be observed that the characteristic curve of dqDMTOGI(s) is shifted left 50 Hz by corresponding to 
the characteristic curve of αβDMTOGI(s). 

According to Figure 1 and Equation (4), the real part R(s) and the imaginary part Q(s) of 
complex transformation function can be achieved after mathematical manipulation to the 
dqDMTOGI(s) as 

3 3 2 4 2 5 2 6
1 2 1 1 2 1

6 5 2 4 3 3 4 2 5 2 6
5 4 3 2 1 1

ˆ ˆ ˆ ˆ4 4 4( )
ˆ ˆ ˆ ˆ ˆ ˆ4
k k s k s k k s kR s

s s s s s s k
ω ω ω ω

θ ω θ ω θ ω θ ω θ ω ω
+ + +=

+ + + + + +  
(18)

Figure 9. Bode diagram of EDSC.

5. Hybrid Filter in the Proposed PLL

5.1. Design of Hybrid Filter Based on DMTOGI and EDSC

In order to eliminate the effects of high frequency harmonics to the SRF-PLL completely,
αβDMTOGI is transformed into the dq-frame to achieve the dqDMTOGI, which is cascaded with
the EDSC to form a hybrid filter. Then incorporate the hybrid filter into the SRF-PLL control inner loop
to form a new three-phase PLL. Figure 10 shows the structure of the proposed PLL.
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Figure 10. Block diagram of the proposed PLL in this paper.

According to Table 1, dqDMTOGI is used to reject FFNS component at −100 Hz and the DC offset
component at −50 Hz in dq-frame, and other harmonic components are rejected by EDSC.

The proposed approach of this paper transforms DMTOGI to the dq-frame and its transfer function
in the dq-frame can be obtained by substituting s in αβDMTOGI (s) for s + jω̂ [24].

dqDMTOGI(s) = αβDMTOGI(s + jω̂)

= −jk1ω̂s2+3k1ω̂2s+j2k1ω̂3

s3+(k2+j3)ω̂s2+[2(k1−1)+j2k2]ω̂2s+j2k1ω̂3

(17)

The frequency characteristics of αβDMTOGI(s) and the proposed dqDMTOGI(s) are shown in
Figure 11. The red curve belongs to αβDMTOGI(s), whose notch frequencies are 0 Hz and −50 Hz.
The blue curve belongs to dqDMTOGI(s), whose notch frequencies are −100 Hz z and −50 Hz. It can
be observed that the characteristic curve of dqDMTOGI(s) is shifted left 50 Hz by corresponding to the
characteristic curve of αβDMTOGI(s).

According to Figure 1 and Equation (4), the real part R(s) and the imaginary part Q(s) of complex
transformation function can be achieved after mathematical manipulation to the dqDMTOGI(s) as

R(s) =
k1k2ω̂3s3 + 4k1

2ω̂4s2 + 4k1k2ω̂5s + 4k1
2ω̂6

s6 + θ5ω̂s5 + θ4ω̂2s4 + θ3ω̂3s3 + θ2ω̂4s2 + θ1ω̂5s + 4k1
2ω̂6 (18)
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Q(s) = − k1ω̂s5 + k1k2ω̂2s4 + 2(k1 + 5)ω̂3s3 + 4k1k2ω̂4s2 + 2k1(k1 + 2)ω̂5s
s6 + θ5ω̂s5 + θ4ω̂2s4 + θ3ω̂3s3 + θ2ω̂4s2 + θ1ω̂5s + 4k1

2ω̂6 (19)

where θ5 = 2k2, θ4 = k2
2 + 4k1 + 5, θ3 = 4(k1k2 + 2k2), θ2 = 4(k1

2 + k1 + k2
2), θ1 = 8k1k2, k1 = 2.33,

k2 = 3.18.
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As the part cascaded with dqDMTOGI, the transfer function of EDSC has been given by
Equation (16). Furthermore, the transfer function of the hybrid filter consisted with dqDMTOGI
and EDSC can be written as

H(s) = dqDMTOGI(s)EDSC(s) =
−jk1ω̂s2+3k1ω̂2s+j2k1ω̂3

s3+(k2+j3)ω̂s2+[2(k1−1)+j2k2]ω̂2s+j2k1ω̂3
s+3σω̂−e−(T/6)s(s+σω̂)

2(s+σω̂)

(20)

According to (20), Figure 12 shows the frequency response curve of the proposed hybrid filter.
It can be found that the hybrid filter H(s) can block the FFNS component, DC offset component
and other harmonic disturbance components of the grid voltage completely in Table 1. The FFPS
component of the grid voltage in the dq-frame (the component at 0 Hz in the dq frame) without any
frequency shifted, and the amplification factor is 1.
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5.2. Small-Signal Model

The SRF-PLL based on DMTOGI and EDSC in this paper has been proposed in Figure 10.
Figure 13 shows the small-signal model of the proposed PLL. According to the modeling method in
reference [26], the real part R(s) of dqDMTOGI(s) is employed instead of dqDMTOGI for mathematical
modeling. Its modeling accuracy will be verified later by simulation
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It is complicated to analyze and design PLL due to the high-order components in Equation 
(21). According to the reduction equivalent approach of higher-order PLL system in reference [28], 
this paper adopts the Pade approximation reduction approach in reference [29] to equivalent R(s) 
EDSC(s) as the first order transfer function. 
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5.3. Parameter Design Guidelines

The system open-loop transfer function in Figure 13 is

Gol(s) = θ̂+1
∆θ+1

= R(s)EDSC(s) kps+ki
s2 =

k1k2ω̂3s3+4k1
2ω̂4s2+4k1k2ω̂5s+4k1

2ω̂6

s6+θ5ω̂s5+θ4ω̂2s4+θ3ω̂3s3+θ2ω̂4s2+θ1ω̂5s+4k1
2ω̂6

s+3σω̂−e−(T/6)s(s+σω̂)
2(s+σω̂)

kps+ki
s2

(21)

In Equation (21), EDSC(s) contains the delay link. This paper adopts the first-order Pade
approximation approach to make the following equivalent of the Gol(s) delay link as

e−(T/6)s ≈ 1− sT/12
1 + sT/12

(22)

So

EDSC(s) = 1−e−(T/6)s

2 + σω̂
s+σω̂ ≈

sT/12
1+sT/12 + 220

s+220 = s
s+600 + 220

s+220 = s2+440s+132,000
s2+820s+132,000 (23)

It is complicated to analyze and design PLL due to the high-order components in Equation (21).
According to the reduction equivalent approach of higher-order PLL system in reference [28], this paper
adopts the Pade approximation reduction approach in reference [29] to equivalent R(s) EDSC(s) as the
first order transfer function.

R(s)EDSC(s) =
k1k2ω̂3s3+4k1

2ω̂4s2+4k1k2ω̂5s+4k1
2ω̂6

s6+θ5ω̂s5+θ4ω̂2s4+θ3ω̂3s3+θ2ω̂4s2+θ1ω̂5s+4k1
2ω̂6

s2+440s+132,000
s2+820s+132,000 ≈

138.44
s+138.44

(24)

The system open loop transfer function is

Gol(s) ≈ 138.44
s + 138.44

kps + ki

s2 (25)

Applying the symmetric optimal design method in reference [16] to design the PI controller
parameters for Equation (25), the two parameters of the PI controller are

kp = C/b ki = C2/b3 (26)

where C = 138.44, b is the parameter that affects the phase margin of the system. Usually, b is set
to be 1 +

√
2, the corresponding controller parameters kp and ki are 57.3 and 1363.1, respectively.

Figure 14 shows the system open-loop transfer function bode plot. The phase margin is 46.8◦ and the
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corresponding frequency is 9.58 Hz. The amplitude margin is 16.9 dB, the corresponding frequency is
46.5 Hz, so the system stability can be ensured.Energies 2018, 11, x FOR PEER REVIEW  12 of 18 
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5.4. Accuracy of Small-Signal Model

To verify the accuracy of the small-signal model, this section verifies the small-signal model and
the actual proposed PLL waveform by establishing a simulation comparison under MATLAB/Simulink.
In the simulation, the phase error under phase jump of 10◦ and frequency jump of +1 Hz are compared
respectively, as shown in Figure 15. It can be seen that the small-signal can describe the proposed PLL
in this paper precisely.
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6. Experimental Results

To verify the tracking performance of the PLL under adverse grid conditions, phase jump,
frequency step change, DC offset injection, unbalanced and distorted grid voltages experiments are
carried out in this paper. The experiments are based on the DSP TMS320F28335. Arbitrary waveform
generator manufactured by this DSP is used to generate three-phase voltage signals. The sampling
frequency of the whole experiment is 10 kHz. The three-phase voltage nominal frequency is set to
be 50 Hz, and the amplitude is normalized to 1 p.u. In the programming, the Adams–Bashforth
method in [30] is used to ensure the accuracy of the discrete system model and avoid algebraic loop.
The corresponding relation between the integral link of the continuous domain and the discrete
domain is

1
s
⇔ Ts

12
23z−1 − 16z−2 + 5z−3

1− z−1 (27)



Energies 2018, 11, 703 13 of 18

Since the proposed PLL method is based on the DTOGI-PLL structure and EDSC approach, for the
sake of comparison, DTOGI-PLL [8] and EGDSC-PLL [15] which is a new DSC approach with optimal
dynamic performance in recent years are also implemented. The k1 and k2 in reference [8] were selected
to obtain similar dynamic characteristics to DSOGI-PLL, but [8] did not specifically design them, so we
select the parameters of DSOGI-PLL in reference [24] to design DTOGI-PLL specifically. The parameter
design processes of the EGDSC-PLL is presented in [15]. The control parameters of the PLLs included
in the experiments are summarized in Table 2.

Table 2. PLLs’ control parameters.

Parameters Proposed-PLL DTOGI-PLL EGDSC-PLL

Damping coefficient, ξ — 1 1
Bandwidth adjustment coefficient, σ 0.7 — —

Proportional coefficient, kp 57.3 141.2 440
Integral coefficient, ki 1363.1 9928 48,361

6.1. Phase Jump

Figure 16 shows the experimental waveforms when the grid voltage undergoes a phase jump of
+40◦. It can be seen from Figure 16 that the proposed PLL in this paper has the shortest settling time,
which is around 0.9 cycles. The other two PLLs settling time is about 20 ms. The settling time of the
three PLLs meets the requirements of grid regulation for transient response of grid-connected devices.
However, DTOGI-PLL has grid frequency estimation overshoot which will violate the grid frequency
fluctuation restrict [31].
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6.2. Frequency Step Change

Figure 17 shows the experimental waveforms when the grid voltage undergoes a frequency step
change of +5 Hz. It can be observed from Figure 17b, the proposed PLL achieves the accurate estimate
of the grid frequency after approximately 1.5 cycles, whereas DTOGI-PLL and EGDSC-PLL take a
longer time. There is frequency overshoot of +2.5 Hz and +0.5 Hz for DTOGI-PLL and EGDSC-PLL,
respectively. However, the proposed PLL has no overshoot problem in frequency estimation. As can
be seen in Figure 17c, the proposed PLL recovers the phase tracking of the grid after approximately
1.5 cycles, the response speed is faster than the other two PLLs.
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6.3. DC Offset Inject

To evaluate the performance of the three PLLs when the grid voltage is mixed with DC
components, the dc offset injection experiment is implemented. The injected value of phase A is
0.2 p.u., the injected value of phase B is 0.1 p.u., and the injected value of phase C is −0.2 p.u.
Figure 18 shows the voltage waveform when the grid voltage is mixed with DC offset.

As shown in Figure 18, when the DC offset is injected into the three-phase voltages, both the
phase estimation error and the frequency estimation of the three PLLs appear fluctuation. Taking the
frequency shift less than 0.2 Hz as the standard, the proposed PLL recovers the accurate phase and
frequency tracking in the shortest time, and the EGDSC-PLL is slightly slower. Since DTOGI-PLL
does not have the ability to reject DC offset, its frequency estimation and phase error have a 50 Hz
fundamental frequency oscillation.
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6.4. Unbalanced and Distorted Grid Voltages

To evaluate the performance of the three PLLs when the grid voltage is distorted, the grid voltage
distortion experiment is implemented. The injected harmonic voltage parameters are summarized in
Table 3. In order to test the performance of the PLL when the grid frequency is changed, the frequency
of the grid undergoes a +5 Hz frequency step change. Figure 19 shows the voltage waveform when
the grid voltages are distorted.

It can be seen from Figure 19 that the proposed PLL can eliminate the effects of harmonic
components completely. However, DTOGI-PLL filter stage is consisted of a low-pass filter, which can
only suppress and not completely eliminate the harmonic interference. Therefore, both the frequency
estimation and the phase estimation have an oscillation error caused by harmonics. In addition,
EGDSC-PLL also has 2 Hz frequency estimation and 1◦ phase estimation oscillation errors because
the filtering stage of EGDSC-PLL is composed of multiple DSCs, and they do not adopt frequency
adaptive implementation.

Table 3. Parameters of grid voltages.

Voltage Component (in αβ-Frame) Amplitude (p.u.)

Fundamental positive sequence 1
Fundamental negative sequence 0.1
5th harmonic negative sequence 0.1
7th harmonic positive sequence 0.05

11th harmonic negative sequence 0.05
13th harmonic positive sequence 0.05
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6.5. Summary of Experimental Results

The dynamic performance of the proposed PLL is superior to the other two methods, and the
reason is that the settling time of the proposed PLL is the shortest in the dynamic response process of
all experiments. The proposed PLL can completely block the DC offset and harmonic caused by the
non-ideal voltage and eliminate the oscillation error in phase and frequency estimation. Compared to
the other two PLLs, the frequency estimation overshoot of the proposed PLL is the smallest when the
grid voltage undergoes frequency step change.

The transient response of DTOGI-PLL is not as good as the other two PLLs, but it meets the
requirement for grid connected equipment transient response. However, the biggest defect of DTOGI
PLL is that it cannot block the harmonic under the non-ideal grid voltage condition completely.
This is the reason that the filtering stage of DTOGI-PLL can be considered as a low pass filter.
Another disadvantage is that DTOGI-PLL does not have DC offset rejection capability which cannot
remove the influence of DC offset caused by grid voltage or signal acquisition stage.

The settling time of EGDSC-PLL is longer than the proposed PLL, but shorter than DTOGI-PLL.
Owing to the EGDSC-PLL being composed of multiple DSCs which do not adopt frequency
adaptive implementation, so the EGDSC-PLL has some frequency estimation and phase estimation
oscillation errors.

7. Conclusions

In this paper, a MTOGI structure that can completely reject the DC offset component is proposed.
In addition, an EDSC that can block the dominant harmonic components while reducing the number
of DSC operators is also proposed. A new hybrid filter based-PLL is designed using the DMTOGI filter
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and the EDSC, the proposed PLL can block the FFNS component, the DC offset, and the dominant
harmonics simultaneously. Compared with the conventional method, the proposed PLL has strong
disturbance rejection ability, good filtering effect, and faster transient response. Simulation and
experimental results verify the correctness and feasibility of the proposed PLL.
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