
A New Hybrid Prediction Method of Ultra-Short-Term Wind Power
Forecasting Based on EEMD-PE and LSSVM Optimized by the GSA

Authors: 

Peng Lu, Lin Ye, Bohao Sun, Cihang Zhang, Yongning Zhao, Jingzhu Teng

Date Submitted: 2020-06-23

Keywords: heuristic algorithm, least squares support vector machine (LSSVM), wind power prediction, ensemble empirical mode
decomposition-permutation entropy (EEMD-PE)

Abstract: 

Wind power time series data always exhibits nonlinear and non-stationary features, making it very difficult to accurately predict. In this
paper, a novel hybrid wind power time series prediction model, based on ensemble empirical mode decomposition-permutation entropy
(EEMD-PE), the least squares support vector machine model (LSSVM), and gravitational search algorithm (GSA), is proposed to
improve accuracy of ultra-short-term wind power forecasting. To process the data, original wind power series were decomposed by
EEMD-PE techniques into a number of subsequences with obvious complexity differences. Then, a new heuristic GSA algorithm was
utilized to optimize the parameters of the LSSVM. The optimized model was developed for wind power forecasting and improved
regression prediction accuracy. The proposed model was validated with practical wind power generation data from the Hebei province,
China. A comprehensive error metric analysis was carried out to compare the performance of our method with other approaches. The
results showed that the proposed model enhanced forecasting performance compared to other benchmark models.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2020.0658
Citation (this specific file, latest version): LAPSE:2020.0658-1
Citation (this specific file, this version): LAPSE:2020.0658-1v1

DOI of Published Version:  https://doi.org/10.3390/en11040697

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



energies

Article

A New Hybrid Prediction Method of Ultra-Short-Term
Wind Power Forecasting Based on EEMD-PE and
LSSVM Optimized by the GSA

Peng Lu 1, Lin Ye 1,* ID , Bohao Sun 2, Cihang Zhang 1, Yongning Zhao 1 ID and Jingzhu Teng 1

1 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
lupeng@cau.edu.cn (P.L.); zhangch@cau.edu.cn (C.Z.); zyn@cau.edu.cn (Y.Z.); tengjingzhu@cau.edu.cn (T.Z.)

2 China Electric Power Research Institute, Haidian District, Beijing 100192, China; hobson_choice@126.com
* Correspondence: yelin@cau.edu.cn; Tel.: +86-010-6273-7842

Received: 31 December 2017; Accepted: 9 February 2018; Published: 21 March 2018
����������
�������

Abstract: Wind power time series data always exhibits nonlinear and non-stationary features,
making it very difficult to accurately predict. In this paper, a novel hybrid wind power time
series prediction model, based on ensemble empirical mode decomposition-permutation entropy
(EEMD-PE), the least squares support vector machine model (LSSVM), and gravitational search
algorithm (GSA), is proposed to improve accuracy of ultra-short-term wind power forecasting.
To process the data, original wind power series were decomposed by EEMD-PE techniques into a
number of subsequences with obvious complexity differences. Then, a new heuristic GSA algorithm
was utilized to optimize the parameters of the LSSVM. The optimized model was developed for wind
power forecasting and improved regression prediction accuracy. The proposed model was validated
with practical wind power generation data from the Hebei province, China. A comprehensive error
metric analysis was carried out to compare the performance of our method with other approaches.
The results showed that the proposed model enhanced forecasting performance compared to other
benchmark models.

Keywords: wind power prediction; ensemble empirical mode decomposition-permutation entropy
(EEMD-PE); least squares support vector machine (LSSVM); heuristic algorithm

1. Introduction

As a clean renewable energy, wind energy is regarded as a good alternative to deal with
environmental problems and energy crises [1,2]. According to a report published by the World
Wind Energy Association (WWEA), worldwide wind capacity reached 54 GW by the end of 2017,
with a growth rate of 11.8% [3]. The total installed capacity is reported in Figure 1. The intermittent
nature of wind power generation has posed a big challenge for maximizing the utilization of the wind
power industry [4]. It is of practical significance to optimize the wind power prediction algorithm and
make it more suitable for the operation and wind conditions of a specific wind farm.
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Figure 1. Total installed wind power from 2005 to 2017 worldwide. 
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hybrid models, and (d) spatial correlation models. Physical models take into account parameters 
such as topography, temperature, and pressure, at the location of the wind farm, which are often 
utilized in short-term forecasting 6–72 h ahead and long-term forecasting with multiple weather 
variables. Typical physical wind power forecasting systems, among others, are the Prediktor system, 
developed by the Risoe National Laboratory in Denmark [12]; Previento, developed by the 
University of Oldenburg in Germany [13]; and eWind, developed by AWS True Wind Inc. (New 
York, NY, USA) [14]. Statistical models are built based on historical power/speed time series data, 
which establishes a functional relationship between historical data and forecast data [15]. These 
models analyze the relationship between various explanatory variables and online measurements. 
The well-known pure statistical models are the autoregressive (AR) model [16], autoregressive 
moving average (ARMA) model [17], autoregressive integrated moving average (ARIMA) model 
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autoregressive integrated moving average with exogenous variables (ARMAX) model [20]. 
However, statistical models based on the assumption that linear structures exist among time series 
data cannot capture non-linear patterns very well. 

Individual models lack the ability to deal with big data and fail to capture the majority of the 
complex characteristics of the original wind power series data [21]. To make use of the advantages 
of statistical and physical models, a number of hybrid models with data pre-processing techniques, 
error post-processing techniques, and parameter selection and optimization techniques, have been 
proposed. 

Data pre-processing techniques involve analyzing and processing data make original time 
series into multiple sequences or matrices, which have more obvious characteristics. Therefore, to 
some extent, pre-processing techniques can improve forecasting accuracy. Wavelet decomposition 
[22–26] and empirical mode decomposition [27–29] are the prevailing data pre-processing 
techniques, which can analyze the original wind power series in time and frequency domains. De et 
al. [25] compared the hybrid artificial neural networks (ANN) method. Case studies show that 
wavelet decomposition (WD)-LSSVM performs better than WD-ANN. Zhang et al. [29] used 
variational mode decomposition (VMD) to process original wind power series, then established a 
novel combined model based on machine learning methods. Zhao et al. [30] analyzed the 
characteristics of the outliers caused by wind curtailment, then, a data-driven outlier elimination 
approach, combining quartile method and density-based clustering method was proposed; 
however, variational mode decomposition (VMD) is prone to mode mixing problems. Niu et al. [31] 
used empirical mode decomposition (EMD) to decompose original wind speed data, then, a novel 
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Wind power forecasting is difficult to achieve due to its intermittency and stochastic fluctuation,
which brings great challenges to power system operation and control [5,6]. Over the past few
decades, a large amount of research has been devoted to the development of effective and reliable
wind speed/power forecasting methods, models, and tools [7]. Generally, these methods can be
broadly divided into four major models [8–11]: (a) physical models, (b) statistical models, (c) hybrid
models, and (d) spatial correlation models. Physical models take into account parameters such as
topography, temperature, and pressure, at the location of the wind farm, which are often utilized
in short-term forecasting 6–72 h ahead and long-term forecasting with multiple weather variables.
Typical physical wind power forecasting systems, among others, are the Prediktor system, developed
by the Risoe National Laboratory in Denmark [12]; Previento, developed by the University of
Oldenburg in Germany [13]; and eWind, developed by AWS True Wind Inc. (New York, NY, USA) [14].
Statistical models are built based on historical power/speed time series data, which establishes a
functional relationship between historical data and forecast data [15]. These models analyze the
relationship between various explanatory variables and online measurements. The well-known pure
statistical models are the autoregressive (AR) model [16], autoregressive moving average (ARMA)
model [17], autoregressive integrated moving average (ARIMA) model [18], seasonal autoregressive
integrated moving average (SARIMA) model [19], and the autoregressive integrated moving average
with exogenous variables (ARMAX) model [20]. However, statistical models based on the assumption
that linear structures exist among time series data cannot capture non-linear patterns very well.

Individual models lack the ability to deal with big data and fail to capture the majority
of the complex characteristics of the original wind power series data [21]. To make use of the
advantages of statistical and physical models, a number of hybrid models with data pre-processing
techniques, error post-processing techniques, and parameter selection and optimization techniques,
have been proposed.

Data pre-processing techniques involve analyzing and processing data make original time series
into multiple sequences or matrices, which have more obvious characteristics. Therefore, to some
extent, pre-processing techniques can improve forecasting accuracy. Wavelet decomposition [22–26]
and empirical mode decomposition [27–29] are the prevailing data pre-processing techniques,
which can analyze the original wind power series in time and frequency domains. De et al. [25]
compared the hybrid artificial neural networks (ANN) method. Case studies show that wavelet
decomposition (WD)-LSSVM performs better than WD-ANN. Zhang et al. [29] used variational mode
decomposition (VMD) to process original wind power series, then established a novel combined
model based on machine learning methods. Zhao et al. [30] analyzed the characteristics of the
outliers caused by wind curtailment, then, a data-driven outlier elimination approach, combining
quartile method and density-based clustering method was proposed; however, variational mode
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decomposition (VMD) is prone to mode mixing problems. Niu et al. [31] used empirical mode
decomposition (EMD) to decompose original wind speed data, then, a novel hybrid forecasting
model based on the general regression neural network (GRNN) method, optimized by the fruit fly
optimization algorithm (FOA), was proposed. Ye et al. [32] discussed EMD, EEMD, complementary
ensemble empirical mode decomposition (CEEMD), and complete empirical mode decomposition
with adaptive noise (CEEMDAN). Their results showed that the proposed CEEMDAN-support vector
regression (CEEMDAN-SVR) model out-performed the other models.

Error post-processing (EP-P) techniques use estimated error, which is obtained from a forecasting
model, to correct final forecasting results. Huang et al. [33] proposed a new, real-time decomposition
model based on the feature selection and error correction of wind speed forecasting, which improved
prediction accuracy. Platon et al. [34] used an advanced technique to estimate surface wind gusts, then,
combined dynamic and statistical techniques into the wind power forecasting model. Liang et al. [35]
improved wind speed forecasting performance using a correlation analysis method to analyze
multi-step forecast errors and proposed a novel hybrid wind speed prediction model based on error
forecast correction. Federica et al. [36] employed a principal component analysis (PCA), combined
with post-processing, to reduce computational costs and forecast errors. Li et al. [37] proposed a
new combined approach based on Extreme Learning Machine (ELM) and an error correction model,
which improved prediction accuracy over a short-term time scale (6–72 h).

Parameter selection and optimization techniques can improve prediction accuracy and reduce
prediction time through the training model. Xiao et al. [38] employed a new hybrid prediction
model based on a modified bat algorithm (BA) with the conjugate gradient (CG) method to
multi-step wind speed prediction, which optimized the initial weights of the neural networks.
Wang et al. [39] proposed a novel combined forecasting model based on a multi-objective bat
algorithm (MOBA), multi-step-ahead wind speed forecasting. Huang et al. [40] proposed a novel
forecasting model, using a quantum particle swarm optimization (PSO) algorithm, to receive
higher forecast accuracy levels. Chang et al. [41] compared the persistence method, the back
propagation artificial neural network (BP) model, and radial basis neural network (RBF) model.
Case studies showed that the proposed forecasting method was more accurate and reliable than
the other three models. The clonal selection algorithm (CSA) [42], gravitational search algorithm
(GSA) [43], particle swarm optimization (PSO) [44,45], simplified swarm optimization (SSO) [46],
and cuckoo search algorithm (CS) [47], among others, are the prevailing methods to optimize the
parameters of wind power/speed forecasting models.

Spatial correlation models characterize the relationship between the wind power or speed of a
target wind farm and a reference wind farm at different spatial locations. Zhou et al. [48] proposed a
spatial and temporal correlation model and it was found that this model could improve ultra-short-term
wind power forecasting accuracy. Tascikaraoglu et al. [49] proposed a novel method, which first utilized
a Wavelet Transform (WT) method to decompose the wind speed data into more stationary components
and then used a spatio-temporal model on each of the subseries to incorporate both the temporal and
spatial information for wind speed forecasting. Ye et al. [50] analyzed uncertainty and dependence in
wind power output, and employed a physical spatio-temporal correlation model. They found that this
method outperformed statistical models.

In this paper, a novel combine model is proposed based on ensemble empirical mode
decomposition, permutation entropy, least squares support vector machine, and gravitational search
algorithm for ultra-short wind power forecasting. To investigate the effectiveness of the model,
the proposed method will be thoroughly tested and benchmarked on real wind power data from Hebei,
China. The main contributions of this research will be as follows:

(1) Using pre-processing techniques to deal with the complex wind power time series.

The ensemble empirical mode decomposition-permutation entropy will be used to analyze the
original wind power series, by which the original wind power time series will be translated into some
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new, relatively stable subsequences. Ensemble empirical mode decomposition can decompose original
wind power time series into a series of intrinsic mode functions (IMF) with different characteristic
scales; however, it fails to capture weak changes in time series. Permutation entropy will be used to
reconstitute subsequences by similar principles, which can promote weak time signals.

(2) Employing the LSSVM forecasting model, optimized by GSA.

LSSVM will be employed as the basic forecasting model, due to the features of regression
for wind power prediction. To improve the forecasting accuracy and stability of LSSVM directly,
the hyper-parameters of LSSVM will, firstly, be optimized by GSA to obtain the best hyper-parameters.

(3) Using comprehensive error metrics to assess the performance of the proposed model.

The error indicators, in this paper, will include the normalized mean absolute of errors (NMAE),
normalized root mean square error (NRMSE), and Pearson correlation coefficient (R). In this paper,
we will also introduce two improvement percentage error indexes, ξNMAE(%) and ξNRMSE(%).

The remainder of the paper will be organized as follows: the details of the proposed hybrid
model based on EMD-PE-LSSVM-GSA for wind power forecasting will be illustrated in Section 2.
Forecasting performance evaluation indicators will be described in Section 3. Experimental examples
will be presented in Section 4. The resulting analysis and forecasting performance of the proposed
method, compared with other methods, will be given in Section 5. Finally, conclusions will be given in
Section 6.

2. Proposed Methodology

The approaches used, including ensemble empirical mode decomposition, permutation entropy,
the least squares support vector machine model, and gravity search algorithm, are described in this
section. The EEMD-PE-LSSVM-GSA wind power prediction process is shown in Figure 2.

Energies 2018, 11, x FOR PEER REVIEW  4 of 24 

 

will be used to reconstitute subsequences by similar principles, which can promote weak time 
signals. 

(2) Employing the LSSVM forecasting model, optimized by GSA. 

LSSVM will be employed as the basic forecasting model, due to the features of regression for 
wind power prediction. To improve the forecasting accuracy and stability of LSSVM directly, the 
hyper-parameters of LSSVM will, firstly, be optimized by GSA to obtain the best hyper-parameters. 

(3) Using comprehensive error metrics to assess the performance of the proposed model. 

The error indicators, in this paper, will include the normalized mean absolute of errors 
(NMAE), normalized root mean square error (NRMSE), and Pearson correlation coefficient (R). In 
this paper, we will also introduce two improvement percentage error indexes, NMAE(%)ξ  and 

NRMSE(%)ξ . 

The remainder of the paper will be organized as follows: the details of the proposed hybrid 
model based on EMD-PE-LSSVM-GSA for wind power forecasting will be illustrated in Section 2. 
Forecasting performance evaluation indicators will be described in Section 3. Experimental 
examples will be presented in Section 4. The resulting analysis and forecasting performance of the 
proposed method, compared with other methods, will be given in Section 5. Finally, conclusions 
will be given in Section 6. 

2. Proposed Methodology 

The approaches used, including ensemble empirical mode decomposition, permutation 
entropy, the least squares support vector machine model, and gravity search algorithm, are 
described in this section. The EEMD-PE-LSSVM-GSA wind power prediction process is shown in 
Figure 2. 

 Original wind power  time series

Ensemble Empirical Mode 
Decomposition

Permutation entropy to analyze

Reconstitute 
subsequences1

Reconstitute 
subsequences 2

Reconstitute 
subsequences K

Optimized-LSSVM 
forecasting model 1

Optimized-LSSVM 
forecasting model 2

Optimized-LSSVM 
forecasting model K

Merger all the forecasting model

Final forecasts  
Figure 2. The procedure of the new proposed prediction model. 

Figure 2. The procedure of the new proposed prediction model.



Energies 2018, 11, 697 5 of 23

2.1. Ensemble Empirical Mode Decomposition (EEMD)

EMD is frequently subject to a mode mixing problem, where a portion of the IMF may have
properties that are quite similar to adjacent IMFs. EEMD is based on EMD and is an algorithm-based
method of processing signals, which can be used to developed to solve the mode mixing problem [51].
White noise is added to the wind power time series at different scales. In order to solve the EMD mode
mixing problem, a detailed explication is given in [52], as follows:

(1) Add white noise series to the original wind power series:

xnew,i(t) = x(t) + wi(t) (1)

where x(t) is the original wind power series, and wi(t) is the white noise series. Then, find the
corresponding EMD components.

(2) Find the local maxima and minima of xnew,i(t).
(3) Find the upper envelope xnew,iu(t) and lower envelope xnew,il(t).
(4) Calculate the mean of the wind power time series with white noise and the difference between

xnew,iu(t) and xnew,il(t).

m(i) =
xnew,iu(t) + xnew,il(t)

2
(2)

di(i) = xnew,i(t)−m(i) (3)

(5) Repeat Steps 1–3 with d(i) instead of xnew,i(t), until m(i) ≤ δ (where δ is the acceptable error).
Then, take c1

i (i) = di(i) as the first EMD component of xnew,i(t), and the residual is as follows:

w1
i = xnew,i(t)− c1

i (i) (4)

(6) The wind power time series x(t) can be decomposed as follows:

x(t) =
n

∑
i=1

cm
i + wn

i (5)

where cm
i represents the IMFs, and wn

i is the final residue.

2.2. Permutation Entropy (PE)

In the case of nonlinear analysis, the complexity of the signal can be effectively determined
according to its entropy values [53], such as scale entropy, sample entropy, and multi-scale entropy.
Permutation entropy is widely used in sequence complexity and nonlinear analysis because of its high
robustness, efficiency, and simplicity.

This method’s motivation is the classification of the complex system. The larger the permutation
entropy value, the higher the time series randomness of the sequence and the more likely another
pattern will occur. Conversely, the smaller the permutation entropy value, the lower the time
series randomness of the subsequence and the less likely another pattern will occur. The algorithm
implementation process of PE is given below.

For L time series samples, { x(i), i = 1, 2, 3, . . . , K} , the time series are reconstructed by
m-dimension phase space.

X(i) = [x(i), x(i + τ), . . . , x(i + (m− 1)τ)] (6)

where m is the embed dimension of the wind power time series, and τ is the delay time.

[x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤, . . . ,≤ x(i + (jm − 1)τ)] (7)
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where j1, j2, . . . , jm represents the index number of the column in which each element in the
reconstruction vector resides. Each vector can be mapped to a set of symbols.

S(g) = [j1, j2, . . . , jm] (8)

where g = 1, 2, . . . , k, k ≤ m!
We calculated the probability of occurrence for each symbol sequence,

P1, P2, . . . , Pk, ∑k
l=1 Pl , where:

k

∑
l=1

Pl = 1 (9)

In the form of Shannon entropy, the permutation entropy of the wind power time series can be
expressed as:

Hp(m) = −
k

∑
l=1

Pl ln Pl (10)

When Pl = 1
m! , Hp(m) reaches the maximum ln(m!), the standardized processing can be

achieved by:

Hp =
Hp(m)

ln(m!)
(11)

Permutation entropy values were used to evaluate the complexity of each IMFs signal, and the
adjacent entropy values were used to reconstitute IMFs into new subsequences (RS).

2.3. Least Squares Support Vector Machine (LSSVM)

The support vector machine (SVM) is an effective machine algorithm for data classification and
regression [54]. SVM can overcome data over-fitting problems and improve generalization performance
by minimizing structural risk instead of empirical risk. The standard SVM uses nonnegative errors
in the cost function and inequality constraints, while the LSSVM uses square errors and equality
constraints. Therefore, LSSVM is a variation of the standard SVM.

Considering the wind power training dataset, (xi, yj), i = 1, . . . , NL, NL is the number of training
datasets, xi ∈ Rd is the input vector, yi ∈ R is the corresponding output, and d is the dimension of xi.
The optimal decision function can be constructed by mapping the input space into the high-dimension
feature space as follows:

f (x) = ωT ϕ(x) + b (12)

where ϕ(x) is the nonlinear function, ω is the weight, and b is the bias.

R =
1
2
‖ω‖2 + γRe (13)

where ‖ω‖ is the model complexity, γ is the regularization parameter to balance the complex degree
and approximation accuracy of the model, and Re is the empirical risk function. The objective function
of LSSVM can be framed:

minZ(ω, ξ) =
1
2
‖ω‖2 + γ

t

∑
i=1

ξ2
i (14)

s.t.yi = ωϕ(xi) + ξi + b i = 1, 2, . . . , N (15)

L(ω, b, ξ, λ) =
1
2
‖ω‖2 + γ

t

∑
i=1

ξ2
i −

t

∑
i=1

λi(ωϕ(xi) + ξi + b− yi) (16)

where λi(1, 2, . . . , N) represents the Lagrange multipliers.
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Based on the Karush-Kuhn-Tucker (KKT) conditions, Equation (15) is given by:
ω−∑t

i=1 λiξ
2
i = 0

∑t
i=1 λi = 0

λi − λiξi = 0
ωϕ(xi) + ξi + b− yi = 0

(17)

Based on Equation (15) the following expression can be derived:[
0 IT

I J + I/γ

][
b
λ

]
=

[
0
y

]
(18)

where I = [1, 1, . . . , 1]T is a t× 1 dimensional vector, λ = [λ1, λ2, . . . , λt]
T is the coefficient matrix,

y = [y1, y2, . . . , yt]
T is the output matrix, K(xi, yj) = ϕ(xi)

T ϕ(xj), and K is the kernel function on the
basis of Mercer’s condition. The regression function of the LSSVM model can be described as:

f (x) =
t

∑
i=1

λiK(xi, yi) + b (19)

The radial basis function is selected as the kernel function, which is given as follows:

K(xi, yj) = exp

[
−‖xi − yi‖2

2σ2

]
(20)

where σ is the kernel parameter.

2.4. Gravitational Search Algorithm (GSA)

The GSA was first proposed in 2009 [55] and is a population optimization algorithm based on
the law of gravity and Newton’s second law. The algorithm searches for the optimal solution by
moving the particle position of the population. That is, as the algorithm iterates, the particles move
continuously in the search space by the gravitation between them.

Assuming that the optimization problem can be given in (14) and (15), the particle’s position is
the solution. The position of particle i is defined as:

Xi = (x1
i , . . . , xd

i , . . . , xn
i ) (21)

Step 1: Initialize the speed and position of random particles and calculate the fitness of
each particle.

Step 2: Calculate the gravitational constant G(t) and the inertia mass of each particle:

G(t) = G0 × e−α/T (22)

mi(t) =
f iti(t)− worst(t)
best(t)− worst(t)

(23)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(24)

where G0 is the initial gravitational constant, α is the decay rate, T is the maximum generation, and

best(t) = min
j∈(1,...,n)

f itj(t), worst(t) = max
j∈(1,...,n)

f itj(t).
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Step 3: Calculate the resultant particle force, which can be given as:

Fd
ij(t) = G(t)

Mpi(t)×Maj(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (25)

where Fd
ij(t) is gravitation with the particles i and j, with dimension, d, at the t generation; Mpi(t) is the

passive gravitational mass related to particle i; ε is the small constant; xd
i (t) and xd

j (t) is the position of
dimension, d, of particles i and j at the t generation; Rij(t) = ‖xi(t), xi(t)‖2 is the Euclidean distance
between particles i and j.

Step 4: Calculate accelerated speed. According to Newton’s second law, the acceleration is
obtained as follows:

ad
i (t) =

Fd
i (t)

Mii(t)
(26)

Step 5: Update speed and position:

vd
i (t + 1) = rand · vd

i (t) + ad
i (t) (27)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (28)

where randj is a random number with a uniform distribution [0,1].
Step 6: Check the termination condition. Terminate the optimization if the stopping criteria

requirements are met, and, if not, repeat the procedure from step 2 to 5 until the termination condition
requirements are met.

2.5. The Proposed Method for Wind Power Forecasting

The flowchart of the proposed hybrid model based on EEMD-PE-LSSVM-GSA is illustrated in
Stage 1: EEMD process
To build an effective prediction model, the features of the original wind power datasets must be

fully analyzed and considered. EEMD techniques can be used to decompose the original wind power
time series, x(t), into new, relatively stable subsequences, xi(t), (i = 1, 2, 3, . . .).

Stage 2: PE process
PE techniques can be used to analyze the intrinsic mode signals, xi(t), (i = 1, 2, 3, . . .),

and reconstitute subsequences by combination stacking, to give reconstituted subsequences,
RS =

[
x1j, x2j, . . . , xnj

]
+ · · ·+ [x1m, x2m, . . . , xnm], (j, m < i = 1, 2, . . .).

Stage 3: Optimize parameters in the LSSVM process
The LSSVM forecasting model can be employed to forecast the reconstituted subsequences,

RS =
[
x1j, x2j, . . . , xnj

]
+ · · ·+ [x1m, x2m, . . . , xnm], (j, m < i = 1, 2, . . .), and the RBF kernel functions

can be chosen to initialize the LSSVM.
(1): Initialize: Setting the parameters of GSA, the particle number is L, gravitational constant is

G0, attenuation rate is α, and the dimensions of GSA are d.
(2): Calculate: Calculate the fitness function Ff itness as follows:

Ff itness =

√√√√ 1
N

N

∑
i=1

(xi − x̂i )
2 (29)

where xi is the real wind power value, x̂i is the forecasting value, and N is the number of samples.
(3): Update: The states are updated as follows:{

xd
i (t + 1) = xd

i (t) + vd
i (t + 1)

vd
i (t + 1) = randi × vd

i (t) + ad
i (t)

(30)
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where xd
i (t) is the position of the particle, vd

i (t) is the speed of search, and randi is a uniform random
variable, with a value in the range of [0, 1].

(4): Selection: If the iteration reaches its maximum, or the Ff itness reaches its minimum, the best
hyper parameters (σ and γ) and corresponding kernel parameters can be found.

(5): Validation: Output wind power prediction values for every new subsequence. The wind
power forecasting errors, in terms of different criteria, are computed to validate the method. The results
are compared with that of other methods. The best parameters of the optimized model will be obtained.

Stage 4: Hybrid process
Combine all the reconstituted subsequences of forecasting results and output the final

forecasting results.
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3. Performance Criterion

In this paper, the error indexes include the normalized mean absolute of errors (NMAE),
which reflects actual prediction error, normalized root mean square errors (NRMSE), which reflects
large forecasting deviations, and the Pearson correlation coefficient. They are defined, respectively,
as follows:

NMAE =
1
N

N

∑
i=1

|xi − x̂i |
PInst

× 100% (31)

NRMSE =
1

PInst

√√√√ 1
N

N

∑
i=1

(xi − x̂i )
2 × 100% (32)

R =
N∑ xi x̂i −∑ xi∑ x̂i√

∑ xi
2 − (∑ xi)

2
√

∑ x̂i
2 − (∑ x̂i )

2
(33)

where xi is the actual wind power value, x̂i is the forecasting value, PInst is the installed wind power
capacity, and N is the number of samples.

Additionally, this paper introduces two percentage error indexes, which are defined as follows:

ξNMAE(%) =
NMAE2 −NMAE1

NMAE1
× 100% (34)
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ξNRMSE(%) =
NRMSE2 −NRMSE1

NRMSE1
× 100% (35)

where a negative value of ξNMAE(%) means model 2 decreases |ξNMAE|% NMAE value relative to
model 1, and a positive value of ξNRMSE(%) means model 2 increases |ξNRMSE|% NRMSE value relative
to model 1.

4. Experimental Examples

4.1. Dataset Description

In this paper, a total of 5760 samples were collected from a wind farm in Hebei, China.
Considering the influence of seasonal factors, the whole dataset was divided into four parts, Datasets
A, B, C, and D, which were independently used to verify the effectiveness of the proposed method.
Dataset A was from 1–15 January 2016, Dataset B was from 1–15 April, Dataset C was from 1–15 July,
and Dataset D was from 1–13 October. Wind power generation data were 15 min averaged values.
The forecasting methods were applied over very short time horizons, of up to 4 steps (i.e., 1 h) ahead,
with each step being 15 min. The samples are shown in Figure 4.Energies 2018, 11, x FOR PEER REVIEW  11 of 24 
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4.2. Data Processing

EEMD-PE was used to analyze the wind power series, by which the wind power time series
could be translated into new, relatively stable subsequences. EEMD was also used to decompose the
wind power time series into a series of IMFs with different characteristic scales. Then, PE was used to
analyze the IMFs.

There were two important EEMD parameters: the number of the ensemble and the amplitude
of the added white noise. In this experiment, 200 groups of white noise signals were added, with a
standard deviation was 0.2. There were twelve independent IMF compositions. Decomposition results
are shown in Figure 5.Energies 2018, 11, x FOR PEER REVIEW  12 of 24 
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The PE parameters (m and τ) have an impact on simulation time and prediction accuracy; if the
parameter m is too large, prediction accuracy will be reduced, and if the parameter τ is too small,
the simulation time will become longer. Therefore, we discuss the processing of the two parameters.

A number of different parameter values were chosen to forecast the series. It is known that the
higher the embedded dimensions, the more complex the structure will be and the more modeling
time will be spent. Considering the forecast time and model complexity, m = 3, 4, 5, 6, 7 and
τ = 0.1, 0.5, 1 models are discussed for (1–4)-step-ahead wind power forecasting, and the errors are
shown in Table 1.

In Table 1, the NRMSE of m = 3 and τ = 1 are the smallest among all parameters; then,
error increases slowly with the dimension of embedding. Performance evaluation, using NMAE and
NRMSE, shows that m = 3 and τ = 1 is better than other parameters. When m = 7 and τ = 1,
the NRMSE of the testing sample is 3.0773, which is the largest level of error, and the modeling time is
10.9929. Comparative analysis shows that increasing the embedded dimension and computation time
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impacts on the prediction at different time scales. Considering prediction accuracy and simulation
time, m = 3 and τ = 1 are selected to predict wind power.

Table 1. The NRMSE and NMAE of the testing sample with different values of m and τ.

τi τ=0.1 τ=0.5 τ=1

Indicator NRMSE NMAE Modeling
Time (s) NRMSE NMAE Modeling

Time (s) NRMSE NMAE Modeling
Time (s)

3 2.9778 1.9901 9.9635 2.9813 1.9601 10.1566 2.9738 1.9601 10.7045
4 2.9886 1.9783 10.3289 3.0112 1.9605 10.2562 3.0685 1.9978 10.0467
5 3.0137 1.9644 10.5294 2.9867 1.9384 10.3086 3.0334 1.9824 11.7248
6 3.0152 1.9735 10.4951 2.9863 1.9583 10.3605 2.9744 1.9463 10.5937
7 3.0548 2.0172 11.0421 3.1121 1.9858 11.6372 3.3363 2.0956 11.8948

average 3.0100 1.9847 10.4718 3.0078 1.9606 10.5434 3.0773 1.9964 10.9929

Wind power time series data has nonlinear and non-stationary features. It can be seen from
Figure 5 that there are a lot of IMF components after decomposition. If the LSSVM model is used to
build each component respectively, the computing time will increase significantly. PE technology can
be used to evaluate complexity of each IMF signal.

In order to forecast ultra-short-term wind power effectively, this paper used PE technology to
analyze the complexity features of each IMF component. The PE values of all IMFs are shown in
Figure 6. In Figure 6, the IMF component frequency decreases from high to low, and the PE value also
decreases, which verifies that the PE theory is effective. The PE value indicates the stochastic degree of
the time series, where a smaller PE value means more regular time series, and a larger PE value means
more randomness. To reduce the computing complexity of the proposed method, according to the PE
values, the IMFs were classified and merged to reconstituted subsequences. From IMF 1 to IMF 11
and residue (r), the PE values gradually decreased from 1.7916 to 0.6320. IMF 1 was assigned to RS I,
since it had the highest frequency. IMF 2 and IMF 3 PE value differences were about 0.2~0.3, so they
could be set as RS II. IMF 4 and IMF 5 PE value differences were about 0.1, and, thus, could be set as RS
III. IMF 5~IMF 11+r PE value differences were about 0.02~0.06, and were set as RS IV. The reconstituted
subsequences processed by PE are shown in Figure 7.
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4.3. Parameter and Training Dataset Settings

4.3.1. The Parameter Setting of the Forecasting Models

The simulation was done on a Windows 7 PC with a 64-bit, 2.20 GHz Intel Core i3 2330M CPU,
and 6 GB of memory. The wind power forecasting experiments were employed in MATLAB R2014a.

The experimental parameters [43] are shown in Table 2.Energies 2018, 11, x FOR PEER REVIEW  14 of 24 
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Table 2. Setting the experimental parameters.

Model Experimental Parameters Default Value

GSA

particle number 30
maximum evolutionary generation number 30

gravitational constant 100
attenuation rate 10

range of the test function [0.01, 100]
dimension of the test function 2

LSSVM
value range of kernel parameter c [0.01, 10]

value range of parameter γ [0.1, 1200]

RBFNN

training precision 0.0001
neuron number of the input layer 1

neuron number of the hidden layer 3
neuron number of the output layer 1

The optimal parameters, which result from using RBF kernel functions in the LSSVM model,
is shown in Table 3.

Table 3. Optimal kernel function parameters.

Types of Kernel Function Penalty Factor Kernel Function Parameters

RBF γ = 101.628 σ = 0.1184
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4.3.2. Length of Training Datasets

The length of training datasets is an important factor affecting prediction accuracy.
The 1-step-ahead NRMSE of different forecasting methods, with training Datasets A and B,
are presented in Figure 8.Energies 2018, 11, x FOR PEER REVIEW  15 of 24 
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In Figure 8, for Datasets A and B, the NRMSE values for six models tended to decrease with the
length of the training dataset.

For Dataset A, the NRMSE of each method varied irregularly when the length of the training
dataset increased from 100 to 700. The values in this interval could not be selected as the length of
the training dataset. In the range of 700–1400, the trend of NRMSE became flat. The proposed model
was most insensitive to training dataset length, and the NRMSE of the proposed approach remained
almost unchanged as the dataset length was greater than 700, which shows the proposed model was a
simple, but powerful forecasting method.

For Dataset B, the NRMSE for each method varied irregularly when the length of training dataset
increased from 100 to 600. Similarly, the values in this interval could not be selected as the length of the
training dataset. In the range of 600–1400, the trend of NRMSE became flat, and the other five methods
remained unchanged after 1000. However, the EEMD-PE-LSSVM model kept decreasing at 1000.

Taking into account the sensitivity of each method to the data, 1000 data points, as the length of
the training set, was appropriate.

5. Results and Discussion

The proposed hybrid model was employed to forecast ultra-short-term wind power, and the
corresponding results from the proposed model and other contrast models are discussed in the
following section.

5.1. Experiment 1: The Comparison Results of the Proposed Model and Other Models

Ultra-short-term wind power for 1-step, 2-step, 3-step and 4-step-ahead prediction was
implemented for Datasets A, B, C, and D. Results from the analyses will be clearly demonstrated in
Tables 4–7 to reveal the effectiveness of each model.

To further verify the applicability, performance, and superiority of the proposed hybrid model,
the wind power data from Datasets A, B, C, and D were employed for modeling, with five
alternative forecasting models (the SVM model, RBF model, LSSVM model, EEMD-LSSVM model,
and EEMD-PE-LSSVM model) that were compared with the proposed hybrid model. The results are
shown in Figures 9–12 and Tables 4–7.
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In Figures 9–12, it can be seen that the error of prediction results for the proposed model was much
smaller than the SVM model, RBF model, LSSVM model, EEMD-LSSVM model, and EEMD-PE-LSSVM,
which implies that the proposed method performs much better than other five models. The prediction
results of the EEMD-PE-LSSVM model lagged behind the proposed model for all forecasting time
horizons. The forecasting results of the RBF model were the worst compared to the other models.Energies 2018, 11, x FOR PEER REVIEW  16 of 24 
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In order to test the accuracy of wind power forecasting, NRMSE, NMAE, R, ξNMAE(%),
and ξNRMSE(%) were used in this paper, for Datasets A, B, C, and D with 1-step-ahead and 4-steps-ahead.
Detailed numerical analysis is given in Tables 4–7.

It can be observed from Tables 4–7 that the NRMSE and NMAE values of the proposed method
were the lowest and the R values were the highest, compared with other models for (1–4)-step-ahead
prediction during the entire evaluation period, which demonstrates the superior performance of
the proposed method. For all the forecasting horizons investigated in this paper, the proposed
method always reached the minimum values of NRMSE and NMAE and the maximum value
of R. This indicates that the proposed model significantly outperforms benchmark models. Thus,
the proposed model is an effective tool for wind power forecasting.



Energies 2018, 11, 697 17 of 23

Table 4. The values of NRMSE, NMAE and R for six models in Dataset A.

Indicator NRMSE (%) NMAE (%) R (%)

Time horizon 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step
RBF 6.6432 8.3647 9.0717 10.7424 4.3353 5.6122 6.5253 7.6562 90.67 86.57 81.63 75.78
SVM 5.5528 7.1953 8.6525 10.1627 4.3245 5.5247 6.6472 7.7864 94.87 90.72 85.89 80.20

LSSVM 6.2582 7.8868 9.1352 10.1816 5.0344 6.2646 7.1246 7.8225 93.65 85.53 77.73 71.21
EEMD-LSSVM 5.5714 8.4635 10.5156 12.0235 4.1735 6.3327 7.9133 8.9266 95.7 91.46 86.3 82.24

EEMD-PE-LSSVM 4.5363 6.9125 8.5431 9.7176 3.3664 4.3626 5.9448 8.9611 96.75 92.32 88.9 84.35
Proposed 4.1884 6.7376 7.3766 9.0113 3.1867 4.1885 5.3326 8.6643 99.46 98.96 97.99 97.68

Table 5. The values of NRMSE, NMAE and R for six models in Dataset B.

Indicator NRMSE (%) NMAE (%) R (%)

Time horizon 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step
RBF 5.1226 6.4646 6.9672 7.5973 3.4726 4.5874 4.9797 5.3514 96.05 96.19 94.46 93.44
SVM 5.6434 6.5854 7.3128 8.3364 4.5374 5.1553 5.6744 6.1772 94.47 96.30 95.09 93.90

LSSVM 7.2826 8.3536 8.7153 8.9557 6.5156 7.2438 7.4639 7.5716 97.9 96.32 95.3 94.61
EEMD-LSSVM 5.6447 8.1175 9.3537 10.2974 4.0737 5.7973 6.7243 7.5343 96.62 92.88 90.56 88.58

EEMD-PE-LSSVM 4.5356 6.6436 7.8475 8.7764 3.8383 5.7538 6.8929 7.9927 98.25 96.22 94.76 93.36
Proposed 4.3235 6.3164 7.5626 8.9962 2.9927 4.5847 5.9927 6.3338 99.81 99.49 99.42 99.26

Table 6. The values of NRMSE, NMAE and R for six models in Dataset C.

Indicator NRMSE (%) NMAE (%) R (%)

Time horizon 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step
RBF 9.4631 9.8434 9.4552 12.1662 5.3172 5.4662 5.6846 7.7175 92.05 87.07 87.95 83.39
SVM 4.9958 6.2820 7.2430 8.3250 4.0549 4.7668 5.4573 6.1938 98.32 96.71 95.30 95.30

LSSVM 6.7291 7.8755 8.5629 9.4239 5.8439 6.5553 6.9874 7.4729 98.09 95.54 94.24 92.74
EEMD-LSSVM 4.3984 6.9439 8.8273 10.2339 3.1895 4.5649 5.6227 6.4657 98.08 95.00 91.85 89.00

EEMD-PE-LSSVM 3.4629 5.6243 7.1929 8.3749 2.8136 4.2865 5.4144 6.2728 99.04 97.44 95.77 94.25
Proposed 3.9255 5.2738 6.2736 8.1817 2.5687 4.0292 5.2535 6.1093 99.92 99.85 99.49 99.26

Table 7. The values of NRMSE, NMAE and R for six models in Dataset D.

Indicator NRMSE (%) NMAE (%) R (%)

Time horizon 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step 1-step 2-step 3-step 4-step
RBF 5.7482 6.6848 6.2486 9.1483 4.0141 4.6735 4.0979 6.2376 97.03 96.58 95.21 91.00
SVM 4.4814 5.1492 5.7937 6.8674 3.7321 3.9372 4.1503 4.6592 99.03 98.11 96.95 95.49

LSSVM 6.6836 7.1152 7.5974 8.2797 6.1482 6.2483 6.4237 6.7349 99.2 98.15 97.18 96.11
EEMD-LSSVM 3.2975 5.6603 6.3875 7.7385 2.2579 3.3714 4.1872 4.8933 98.89 96.95 95.03 93.25

EEMD-PE-LSSVM 3.1542 5.2385 6.1969 7.5508 1.9632 3.1385 3.9653 4.6587 99.45 98.46 97.44 96.48
Proposed 2.8432 5.1474 6.0947 6.3749 1.1869 4.9532 4.3978 5.9485 99.93 99.8 99.59 99.20
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5.2. Experiment II: Comparison Results of Improvement Percentage Error Indexes and Modeling Time

In order to compare performance differences between the combined model and other benchmark
models, ξNMAE(%) and ξNRMSE(%) were utilized in this study. By using this type of criterion,
the improvement percentage values of the proposed model and benchmark models are given in
Figure 13.

The histogram of ξNMAE(%) and ξNRMSE(%) for all models regarding Datasets A, B, C, and D
for (1–4)-step-ahead wind power forecasting are shown in Figure 13. For Dataset A, except for
the 1- and 4-step-ahead forecasting, the ξNRMSE(%) values of the proposed method compared with
EEMD-PE-LSSVM were positive, which shows that the performance of the proposed model was
worse than the EEMD-PE-LSSVM model. In the 1-step-ahead forecasting, the negative value of
ξNRMSE(%) for the proposed method, compared with the RBF model, was minimal, which indicates
that the forecasting performance of the proposed model was powerful. In the 2-, 3- and 4-step-ahead
forecasting, the proposed method, compared with the EEMD-LSSVM model, performed best.

In (1–3)-step-ahead forecasting, the proposed method had a positive value of ξNMAE(%) compared
with EEMD-PE-LSSVM, which shows that the proposed model was worse than the EEMD-PE-LSSVM
model. In the 4-step ahead forecasting, the proposed model was slightly worse than the RBF, SVM,
and LSSVM models.

There were similar results for Datasets B, C, and D, which shows that the proposed model was
effective for ultra-short-term wind power prediction.

As demonstrated in Figure 13, we can derive the following conclusions: (a) heuristic algorithms
have good optimization capabilities in wind power forecasting; (b) hybrid models obtain better
performance compared with individual and other combined models without optimization; and (c) the
proposed model performed the best among all of the studied models.

The simulation time of the 4-step-ahead wind power forecasting, with regard to Datasets A, B, C,
and D, for all methods, is given in Table 8. Although the simulation time of the proposed method had
higher time consumption than the other prediction models, it achieved the best prediction accuracy,
and this simulation time is acceptable in practical implementation.

Table 8. The simulation time for all methods.

Approaches Proposed EEMD-PE-LSSVM EEMD-LSSVM LSSVM SVM RBF

Dataset A 158.4554 130.6064 129.5019 30.4655 12.5090 14.5357
Dataset B 158.1473 130.3876 129.4410 30.3430 11.6306 13.1059
Dataset C 159.9275 132.2656 129.4538 28.4974 12.6486 14.9028
Dataset D 154.4916 127.4774 126.4261 27.3058 11.4950 12.6474
Average 157.75545 130.18425 128.7057 29.152925 12.0708 13.79795
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6. Conclusions

A new hybrid prediction method of ultra-short-term wind power forecasting, based on EEMD-PE
and LSSVM optimization by GSA, was proposed in this paper. The EEMD method was used to
decompose raw wind power data time series into a series of IMFs with different scales to solve
the mode mixing problem. To effectively reduce the computational complexity of the combined
forecasting method, PE was introduced into the complexity assessment of each IMF component,
based on the PE value, then the IMF components were recombined to generate new subsequences
with significant differences in complexity. The GSA model was utilized to optimize the parameters
of LSSVM, which avoided the choice of parameters; then, the optimized model was used in wind
power forecasting, which improved regression prediction accuracy. For a fair, clear, comparative
study, the proposed method was tested on a practical wind farm (in Hebei, China) and compared
with several other models, including the EEMD-PE-LSSVM, EEMD-LSSVM, LSSVM, SVM, and RBF
models. The results of the experiments indicated that the proposed model satisfactorily forecasted
ultra-short-term wind power for the different datasets.

Acknowledgments: This work was supported by the National Natural Science Foundation of China
(Project No. 51477174, 51677188, and 51711530227), National Key Research and Development Program of China
(Project No. 2017YFB0902200), Project of State Grids Corporation of China (Project No. 5201011600TS), and the
Open Fund of State Key Laboratory of Operation and Control of Renewable Energy and Storage Systems
(Project No. TSTE-00833-2016).

Author Contributions: Peng Lu designed the research and wrote the paper; Lin Ye provided professional
guidance; Bohao Sun, Jingzhu Teng, Cihang Zhang, and Yongning Zhao translated and revised this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

x(t) the original wind power series NRMSE the normalized root mean square error
wi(t) the white noise series NMAE the normalized mean absolute error
xnew,i(t) the wind power series with white noise R pearson correlation coefficient
N the total number of data EMD empirical mode decomposition
S(g) a set of symbols EEMD ensemble empirical mode decomposition
Pk the probability of each symbol sequence VMD variational mode decomposition
Hp(m) the permutation entropy WT wavelet Transform
RS reconstitute subsequences WD wavelet decomposition
ϕ(x) is the nonlinear function SVM support vector machine
ω the weight LSSVM least squares support vector machine
b the bias RBF radial basis neural network
Re the empirical risk function GA genetic algorithm
G(t) the gravitational constant SSO simplified swarm optimization
G0 the initial gravitational constant CSA clonal selection algorithm
α the decay rate PSO particle swarm optimization
T the maximum generation FFA firefly optimization algorithm
ad

i (t) acceleration GSA gravitational search algorithm
vd

i the speed of particle ith in dimension MOBA multi-objective bat algorithm
xd

i the position of particle ith in dimension BP back propagation artificial neural network
xi the actual wind power value BA bat algorithm
x̂i the forecasting value

References

1. Zhao, Y.; Ye, L.; Li, Z.; Song, X.; Lang, Y.; Su, J. A novel bidirectional mechanism based on time series model
for wind power forecasting. Appl. Energy 2016, 177, 793–803. [CrossRef]

2. Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. A comprehensive review on wind turbine power
curve modeling techniques. Renew. Sustain. Energy Rev. 2014, 30, 452–460. [CrossRef]



Energies 2018, 11, 697 21 of 23

3. World Wind Market Has Reached 486 GW from Where 54 GW Has Been Installed Last Year. Available online:
http://www.wwindea.org/11961-2/ (accessed on 23 January 2018).

4. Ren, G.; Liu, J.; Wan, J.; Guo, Y.; Yu, D.; Yan, J. Overview of wind power intermittency: Impacts, measurements,
and mitigation solutions. Appl. Energy 2017, 204, 47–65. [CrossRef]

5. Liu, Y.Q.; Sun, Y.; Infield, D.; Zhao, Y.; Han, S.; Yan, J. A hybrid forecasting method for wind power ramp
based on orthogonal test and support vector machine (ot-svm). IEEE Trans. Sustain. Energy 2017, 8, 451–457.
[CrossRef]

6. Jiang, Y.; Chen, X.Y.; Yu, K.; Liao, Y.C. Short-term wind power forecasting using hybrid method based on
enhanced boosting algorithm. J. Mod. Power Syst. Clean Energy 2017, 5, 126–133. [CrossRef]

7. Alencar, D.B.D.; Affonso, C.D.M.; Oliveira, R.L.D.; Rodríguez, J.M.; Leite, J.; Filho, J.R. Different models for
forecasting wind power generation: Case study. Energies 2017, 10, 1976.

8. Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed
and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [CrossRef]

9. Dong, L.; Wang, L.J.; Khahro, S.F.; Gao, S.; Liao, X.Z. Wind power day-ahead prediction with cluster analysis
of nwp. Renew. Sustain. Energy Rev. 2016, 60, 1206–1212. [CrossRef]

10. Chang, W.Y. A literature review of wind forecasting methods. J. Power Energy Eng. 2014, 2, 161–168.
[CrossRef]

11. Genikomsakis, K.N.; Lopez, S.; Dallas, P.I.; Ioakimidis, C.S. Simulation of wind-battery microgrid based on
short-term wind power forecasting. Appl. Sci. 2017, 7, 1142. [CrossRef]

12. Landberg, L.; Watson, S.J. Short-term prediction of local wind conditions. Bound.-Layer Meteorol. 1994, 70,
171–195. [CrossRef]

13. Focken, U.; Lange, M.; Waldl, H.-P. Previento-a wind power prediction system with an innovative upscaling
algorithm. In Proceedings of the European Wind Energy Conference, Copenhagen, Denmark, 2–6 July 2001.

14. Development and Testing of Improved Statistical Wind Power Forecasting Methods. Available online:
digital.library.unt.edu/ark:/67531/metadc829494/ (accessed on 23 January 2018).

15. Aggarwal, S.K. Wind power forecasting: A review of statistical models. Int. J. Energy Sci. 2013, 3, 1–10.
16. Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. Linear and non-linear autoregressive models for

short-term wind speed forecasting. Energy Convers. Manag. 2016, 112, 115–124. [CrossRef]
17. Jiang, W.; Yan, Z.; Feng, D.H.; Hu, Z. Wind speed forecasting using autoregressive moving

average/generalized autoregressive conditional heteroscedasticity model. Eur. Trans. Electr. Power 2012, 22,
662–673. [CrossRef]

18. Abdelaziz, A.Y.; Rahman, M.A.; El-Khayat, M.M.; Hakim, M.A. Short term wind power forecasting using
autoregressive integrated moving average approach. J. Energy Power Eng. 2013, 7, 2089.

19. Fang, T.; Lahdelma, R. Evaluation of a multiple linear regression model and sarima model in forecasting
heat demand for district heating system. Appl. Energy 2016, 179, 544–552. [CrossRef]

20. Maggina, A. Market-Based Accounting Research (Mbar) Models: A Test of Arimax Modeling; Springer: New York,
NY, USA, 2015; pp. 279–298.

21. Costa, A.; Crespo, A.; Navarro, J.; Lizcano, G.; Madsen, H.; Feitosa, E. A review on the young history of the
wind power short-term prediction. Renew. Sustain. Energy Rev. 2008, 12, 1725–1744. [CrossRef]

22. Kiplangat, D.C.; Asokan, K.; Kumar, K.S. Improved week-ahead predictions of wind speed using simple
linear models with wavelet decomposition. Renew. Energy 2016, 93, 38–44. [CrossRef]

23. Liu, H.; Tian, H.Q.; Li, Y.F. Comparison of new hybrid feemd-mlp, feemd-anfis, wavelet packet-mlp and
wavelet packet-anfis for wind speed predictions. Energy Convers. Manag. 2015, 89, 1–11. [CrossRef]

24. Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-term wind speed forecasting using wavelet transform and support
vector machines optimized by genetic algorithm. Renew. Energy 2014, 62, 592–597. [CrossRef]

25. Giorgi, M.G.D.; Campilongo, S.; Ficarella, A.; Congedo, P.M. Comparison between wind power prediction
models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial
neural network (ANN). Energies 2014, 7, 5251–5272. [CrossRef]

26. Jyothi, M.N.; Rao, P.R. Very-short term wind power forecasting through adaptive wavelet neural
network. In Proceedings of the 2016 Biennial International Conference on Power and Energy Systems:
Towards Sustainable Energy (PESTSE), Bangalore, India, 21–23 January 2016; pp. 1–6.

27. Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified emd-based
artificial neural network model. Renew. Energy 2012, 37, 241–249. [CrossRef]



Energies 2018, 11, 697 22 of 23

28. Fan, G.F.; Peng, L.L.; Zhao, X.; Hong, W.C. Applications of hybrid emd with pso and ga for an svr-based
load forecasting model. Energies 2017, 10, 1713. [CrossRef]

29. Zhang, Y.; Liu, K.; Qin, L.; An, X. Deterministic and probabilistic interval prediction for short-term
wind power generation based on variational mode decomposition and machine learning methods.
Energy Convers. Manag. 2016, 112, 208–219. [CrossRef]

30. Zhao, Y.; Ye, L.; Wang, W.; Sun, H.; Ju, Y.; Tang, Y. Data-driven correction approach to refine power curve of
wind farm under wind curtailment. IEEE Trans. Sustain. Energy 2018, 9, 95–105. [CrossRef]

31. Niu, D.; Liang, Y.; Hong, W.-C. Wind speed forecasting based on emd and grnn optimized by foa. Energies
2017, 10, 2001. [CrossRef]

32. Ren, Y.; Suganthan, P.N.; Srikanth, N. A comparative study of empirical mode decomposition-based
short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy 2014, 6, 236–244. [CrossRef]

33. Jiang, Y.; Huang, G. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition,
feature selection and error correction. Energy Convers. Manag. 2017, 144, 340–350. [CrossRef]

34. Patlakas, P.; Drakaki, E.; Galanis, G.; Spyrou, C.; Kallos, G. Wind Gust Estimation by Combining a Numerical
Weather Prediction Model and Statistical Post-Processing; EGU: Munich, Germany, 2017.

35. Liang, Z.; Liang, J.; Wang, C.; Dong, X.; Miao, X. Short-term wind power combined forecasting based on
error forecast correction. Energy Convers. Manag. 2016, 119, 215–226. [CrossRef]

36. Davò, F.; Alessandrini, S.; Sperati, S.; Monache, L.D.; Airoldi, D.; Vespucci, M.T. Post-processing techniques
and principal component analysis for regional wind power and solar irradiance forecasting. Sol. Energy
2016, 134, 327–338. [CrossRef]

37. Li, Z.; Ye, L.; Zhao, Y.; Song, X.; Teng, J.; Jin, J. Short-term wind power prediction based on extreme learning
machine with error correction. Prot. Control Mod. Power Syst. 2016, 1. [CrossRef]

38. Xiao, L.; Qian, F.; Shao, W. Multi-step wind speed forecasting based on a hybrid forecasting architecture and
an improved bat algorithm. Energy Convers. Manag. 2017, 143, 410–430. [CrossRef]

39. Wang, J.; Heng, J.; Xiao, L.; Wang, C. Research and application of a combined model based on multi-objective
optimization for multi-step ahead wind speed forecasting. Energy 2017, 125, 591–613. [CrossRef]

40. Huang, M.L. Hybridization of chaotic quantum particle swarm optimization with svr in electric demand
forecasting. Energies 2016, 9, 426. [CrossRef]

41. Chang, W.Y. Short-term wind power forecasting using the enhanced particle swarm optimization based
hybrid method. Energies 2013, 6, 4879–4896. [CrossRef]

42. Chitsaz, H.; Amjady, N.; Zareipour, H. Wind power forecast using wavelet neural network trained by
improved clonal selection algorithm. Energy Convers. Manag. 2015, 89, 588–598. [CrossRef]

43. Yuan, X.; Chen, C.; Yuan, Y.; Huang, Y.; Tan, Q. Short-term wind power prediction based on LSSVM–GSA
model. Energy Convers. Manag. 2015, 101, 393–401. [CrossRef]

44. Osório, G.J.; Matias, J.C.O.; Catalão, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy
inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual
information. Renew. Energy 2015, 75, 301–307. [CrossRef]

45. Dong, Z.; Yang, D.; Reindl, T.; Walsh, W.M. A novel hybrid approach based on self-organizing maps, support
vector regression and particle swarm optimization to forecast solar irradiance. Energy 2015, 82, 570–577.
[CrossRef]

46. Yeh, W.C.; Yeh, Y.M.; Chang, P.C.; Ke, Y.C.; Chung, V. Forecasting wind power in the mai liao wind farm
based on the multi-layer perceptron artificial neural network model with improved simplified swarm
optimization. Int. J. Electr. Power Energy Syst. 2014, 55, 741–748. [CrossRef]

47. Xiao, L.; Shao, W.; Yu, M.; Ma, J.; Jin, C. Research and application of a hybrid wavelet neural network model
with the improved cuckoo search algorithm for electrical power system forecasting. Appl. Energy 2017, 198,
203–222. [CrossRef]

48. Zhou, H.; Xue, Y.; Guo, J.; Chen, J. Ultra-short-term wind speed forecasting method based on spatial and
temporal correlation models. J. Eng. 2017, 2017, 1071–1075.

49. Tascikaraoglu, A.; Sanandaji, B.M.; Poolla, K.; Varaiya, P. Exploiting sparsity of interconnections in
spatio-temporal wind speed forecasting using wavelet transform. Appl. Energy 2016, 165, 735–747. [CrossRef]

50. Ye, L.; Zhao, Y.; Zeng, C.; Zhang, C. Short-term wind power prediction based on spatial model. Renew. Energy
2017, 101, 1067–1074. [CrossRef]



Energies 2018, 11, 697 23 of 23

51. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Chi, C.T.; Liu, H.H.
The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. Math. Phys. Eng. Sci. 1998, 454, 903–995. [CrossRef]

52. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.
Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]

53. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett.
2002, 88, 174102. [CrossRef] [PubMed]

54. Wu, Q.; Peng, C. Wind power grid connected capacity prediction using lssvm optimized by the bat algorithm.
Energies 2015, 8, 14346–14360. [CrossRef]

55. Xing, B.; Gao, W.J. Gravitational Search Algorithm; Springer International Publishing: Berlin, Germanuy, 2014;
pp. 355–364.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

