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Abstract: Mesoporous Mn-doped Fe nanoparticle-modified reduced graphene oxide (Mn-doped
Fe/rGO) was prepared through a one-step co-precipitation method, which was then used to eliminate
ethyl violet (EV) in wastewater. The prepared Mn-doped Fe/rGO was characterized by X-ray diffraction,
X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron
microscopy, scanning electron microscopy, energy dispersive spectroscopy, N2-sorption, small angle
X-ray diffraction and superconducting quantum interference device. The Brunauer–Emmett–Teller
specific surface area of Mn-doped Fe/rGO composites was 104.088 m2/g. The EV elimination by
Mn-doped Fe/rGO was modeled and optimized by artificial intelligence (AI) models (i.e., radial
basis function network, random forest, artificial neural network genetic algorithm (ANN-GA) and
particle swarm optimization). Among these AI models, ANN-GA is considered as the best model for
predicting the removal efficiency of EV by Mn-doped Fe/rGO. The evaluation of variables shows
that dosage gives the maximum importance to Mn-doped Fe/rGO removal of EV. The experimental
data were fitted to kinetics and adsorption isotherm models. The results indicated that the process of
EV removal by Mn-doped Fe/rGO obeyed the pseudo-second-order kinetics model and Langmuir
isotherm, and the maximum adsorption capacity was 1000.00 mg/g. This study provides a possibility
for synthesis of Mn-doped Fe/rGO by co-precipitation as an excellent material for EV removal from
the aqueous phase.

Keywords: ethyl violet; Mn-doped Fe/rGO nanocomposites; mesoporous materials; artificial intelligence;
gradient boosted regression trees

1. Introduction

Decolorization of organic dyes in industrial wastewater is an essential process for achieving a
pollution free environment [1]. Since these dyes are toxic substances and produce unpleasant odors
and non-biodegradable wastes, they pose significant hazards to the environment and the health of
humans. For example, it may affect the growth of plants and pose a carcinogenic threat to humans
and other mammals [1–3]. Triphenylmethane (TPM) dyes are the third largest category in synthetic
dyes after azo and anthraquinone dyes, and they are mainly used in food, paper, cosmetic, leather
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and textile industries [4–7]. It is estimated that about 15% of the total world production of dyes is lost
during the dyeing process, and this quantity is then released into the wastewater [8].

Ethyl violet (EV) (C31H42ClN3, MW = 492.15 g/mol) is a typical cationic dye of triphenylmethane
(Figure 1), which is toxic and has strong coloring ability and is difficult to degrade in the
natural environment. Current approaches to detoxify the dye wastewater include Fenton or
photo-Fenton oxidation, reduction by zero-valence metals, coagulation/flocculation, electrochemical
oxidation, biological treatment, membrane filtration, ozonation, electrochemical degradation and
adsorption [1,9–15]. Among these options, zero-valence metals have attracted considerable attention
in industries due to their ease of synthesis and operation, low cost and high adsorption capacity [9].
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Figure 1. Chemical structure of cationic ethyl violet dye.

Nanoscale zero-valence iron (nZVI) is widely used in the removal of dyes, heavy metals,
trichloroethylene and nitrate wastewater because of its large specific surface area and high
reactivity [16–20]. However, the bulk of the synthesized nZVI tends to agglomerate over time,
which ultimately reduces the specific surface area and reactivity of these iron nanoparticles [21,22].
Bimetallic nanoparticles are formed by the combination of Fe and Mn to improve the reactivity
and function of nZVI, but Mn/Fe nanoparticles are also prone to agglomeration. Graphene oxide
(GO) is a good substrate material for Mn/Fe nanoparticles that can disperse nanoparticles and avoid
agglomeration. GO has a large specific surface area (theoretical value is about 2600 m2/g), good
chemical stability and abundant functional groups and is easily dispersed in water to produce stable
suspensions [23–26]. In addition, it can be obtained from inexpensive bulk graphite and has been
proved to be biodegradable and non-toxic [27,28]. Due to these unique characteristics, this material has
great application prospects in sensors, membrane material, catalysis, electrochemistry, energy storage
devices, cell supercapacitors and other fields [29–36].

At present, artificial intelligence (AI) has led to enormous breakthroughs in big data, automatic
driving, pattern recognition, speech recognition, human-computer games, automatic programming,
computer vision, robots and intelligent searches, which will have a far-reaching impact on human
society [37,38]. Artificial neural network (ANN) is one of the major AI tools, which is inspired by
human brain recognition and can be used for predicting and modeling phenomena [39]. ANN is a
non-linear dynamical system, which can accurately express the complex correlation between inputs
and outputs. The trained ANN models have already worked for the prognosis and optimal routes
in a variety of fields based on appointed parameter settings [40]. The back propagation (BP) neural
network algorithm is a multilayer feedforward network and can be trained according to the forward
propagation of operating signal and the back propagation of error [41]. It is one of the most widely
used neural networks. In recent years, the radial basis function (RBF) neural network has attracted
much attention because of its ability to approximate nonlinear behavior. RBF-NN has the advantages
of simple network structure, fast learning ability and strong approximation ability, and does not
encounter local minimal problems [42]. Genetic algorithm (GA) and particle swarm optimization (PSO)
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have a parallel search strategy and global optimization characteristics, which can facilitate the ANN to
achieve fast convergence and high prediction accuracy [43,44]. As an ensemble learning technology,
random forest (RF) can improve the accuracy of single-model classification methods and solve the
problem of over-fitting [45,46]. The goal of RF is to reduce the correlation among the separate trees by
randomizing and bootstrapping variable selection methods, which results in the reduction of variance
in tree aggregation [42].

The overall objectives of this study were to synthesize mesoporous Mn-doped Fe/rGO
nanocomposites by a co-precipitation method and investigate ultrasonic assisted fast removal of
EV from simulated wastewater. The prepared nanocomposites were characterized by X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission
electron microscopy (HRTEM), scanning electron microscopy (SEM), energy dispersive spectroscopy
(EDS), N2-sorption, small angle X-ray diffraction (SA-XRD) and superconducting quantum interference
device (SQUID). AI tools (ANN-GA, ANN-PSO, RF and RBF) were combined with response surface
methodology (RSM) to optimize the removal efficiency of Mn-doped Fe/rGO nanocomposites for EV.
Various parameters (initial EV concentration, sonication time, pH and amount of adsorbent (Mn-doped
Fe/rGO) on the removal efficiency of EV were examined through batch experiments. The importance
of four factors in the removal process was evaluated by the Garson method, RF, variance analysis and
gradient boosting regression tree (GBRT). The adsorption kinetics and isotherm of the adsorbent for
EV were studied.

2. Materials and Methods

2.1. Chemicals

All chemicals used in this work were of analytical grade. FeSO4 7H2O and H2O2 were obtained
from Chengdu Jinshan Chemical Reagent Co., Ltd. (Sichuan, China). MnCl2 4H2O was supplied by
Tianjin Bodi Chemical Co., Ltd. (Tianjin, China). NaBH4 was purchased from Tianjin Kermel Chemical
Reagent Co., Ltd. (Tianjin, China). HCl, H2SO4 and NaOH were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). C2H5OH was procured from Tianjin Fuyu Fine Chemistry
Engineering Co., Ltd. (Tianjin, China). Graphite powder was provided by Sinopharm Chemical
Reagent (Beijing, China). Ethyl violet (purity > 90%, C31H42ClN3, molecular weight = 492.14 g/mol)
was purchased from Shanghai Acmec Biochemical Co. Ltd. (Shanghai, China), and 1000 mg/L stock
solution of EV was prepared with deionized water.

2.2. Fabrication of Fe–Mn and Mn-doped Fe/rGO

GO was synthesized following the improved Hummers method by Shi et al. [47]. The Mn-doped
Fe/rGO nanocomposites were prepared by a one-step synthesis approach (Figure 2). FeSO4·7H2O
(10 g/100 mL), MnCl2·4H2O (3.60 g/50 mL) and GO suspensions (1.0 g/300 mL) were mixed with
ultrasound for 2 h, which was stirred at room temperature for 12 h. Then, NaBH4 (5.4 g/50 mL)
solution was slowly added under a nitrogen atmosphere. The Mn-doped Fe/rGO nanocomposites
(Mn:Fe = 1:2) were treated with deionized water and ethanol several times and dried in a vacuum
oven at 50 ◦C. Additionally, bimetallic Fe–Mn nanoparticles were synthesized by the same method
without adding GO.
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2.3. Characterization

Phase structures of GO, Fe–Mn and Mn-doped Fe/rGO were measured by X-ray diffraction
(XRD) using a Philips Analytical X-ray (Lelyweg 1 7602, EA, Almelo, The Netherlands) with a Cu-Kα
X-ray source at 40 KV and 40 mA within the 2θ angle range from 5 to 90◦. The X-ray photoelectron
spectroscopy (XPS) was observed by the surface chemical states of the samples using an ESCALAB
250Xi spectrometer (Thermo Electron Corporation, Waltham, MA, USA). Raman spectra were recorded
using a Raman spectrometer (LabRAM HR800, Horiba Jobin Yvon, Paris, France) with a 532 nm laser.
The morphologies of samples were studied by a high-resolution transmission electron microscope
(HR-TEM) and scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS).
A nitrogen adsorption–desorption apparatus at 77 K (Quadrasorb SI, Quantachrome Instruments,
Boynton Beach, Florida, USA) was employed to determine the Brunauer–Emmet–Teller (BET) specific
surface area. The ordered structure of mesoporous Mn-doped Fe/rGO was evaluated using small
angle X-ray diffraction (SA-XRD). The magnetic properties of nanocomposites were estimated by a
superconducting quantum interference device (SQUID).

2.4. Dye Removal Procedure

The EV adsorption experiments were conducted using solutions with varying pH, sonication time
(min), EV concentration (mg/L) and amount of adsorbent (mg) in 100 mL conical flasks, and reactions
were carried out at room temperature using an ultrasonic agitation. Then, initial pH of EV solutions
was adjusted to expected values by 0.1 mol/L HCl and 0.1 mol/L NaOH. The mixed solution was
separated by a magnet and supernatant was obtained. The supernatant liquid was determined using a
UV–VIS spectrophotometer at a wavelength of 595 nm. The dye removal percentage was calculated by
the following equation:

Y(%) = (C0 −Ct)/C0 × 100 % (1)

where Y is the removal percentage of EV, C0 is the initial dye concentration (mg/L) and Ct is the
concentration of unadsorbed dye residual in the solution. The amount of EV removal at equilibrium
was calculated as follows:

qe = (C0 −Ct) ×V/ms (2)

where qe is the removal equilibrium of EV (mg/g), V is the volume of EV solution and ms is the
adsorbent dosage (g).

2.5. Response Surface Methodology

Response surface methodology (RSM) consists of the following three steps: experimental statistical
design, estimation of variable coefficients in empirical formulas and final prediction of response, model
validation and adequacy study [48]. The parameter contributions of Mn-doped Fe/rGO nanocomposites
to the elimination of ethyl violet dye were studied by central composite design (CCD). According to
the principle of central combination design, there are five levels of code values (−α, −1, 0, 1, α) in each
coefficient, which represent the actual operating parameters as presented in Table 1.

Y = β0 +
k∑

i=1

βiXi +
k∑

i=1

βiiX2
i +

k∑
i=1

k∑
i, j=1

βi jXiX j + ε (3)

where Y is the response variable; β0, βi, βii and βij are the constant, the linear, the quadratic and the
interaction coefficients, respectively; ε is error; Xi and Xj are the independent variables.
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Table 1. Four factor, five level central composite design.

Factors
Coded Variable Levels

−α −1 0 1 α

Initial concentration (mg/L) 250 300 350 400 450
Initial pH 3 4 5 6 7

Sonication time (min) 7 10 13 16 19
Dosage (mg) 10 13 16 19 22

Analysis of variance (ANOVA) was the statistical analysis method used to explain the complex
relationship between two dependent variables and four independent variables in the whole set of data.

2.6. Artificial Neural Network (ANN)

BP-ANN is one of the most widely used ANN methods. Generally, computational neural
networks are superior to rule-based and knowledge-based expert systems because they have better
fault tolerance and generalization capabilities [49]. In this study, MATLAB R2016a software was
used for all computations related to neural networks. A non-linear prediction model based on RSM
data was established by using three layers (input layer, hidden layer and output layer) of BP-ANN.
There were four inputs (i.e., initial pH, dosage, initial EV concentration and sonication time) and one
output (i.e., elimination efficiency), as demonstrated in Figure 3. In the 30 experimental data groups of
RSM, network training was conducted with groups 1–24, and network testing was conducted with
groups 25–30. In the process of neural network training, 30 samples were normalized in the range
of 0.1 to 0.9 (Equation (13)) [39]. According to the model results, the calculation equations for mean
square error (MSE) and the R2 correlation coefficient can be written as follows [50]:

y = 2×
(

x− xmin

xmax − xmin

)
− 1 (4)

MSE =
1
N

N∑
i=1

(∣∣∣yprd,i − yexp,i
∣∣∣)2

(5)

R2 = 1−

∑N
i=1 (yprd,i − yexp,i)∑N

i=1 (yprd,i − ym)
(6)

where x is the input variable in a group of variables to be scaled, y is the normalized value of x, xmax

and xmin are the maximum and minimum value of x, respectively, yprd,i is the predicted value by the
ANN model, yexp,i is the experimental value, N is the number of data and ym is the average of the
experimental values.

GBRT is one of the most effective machine learning models, which is suitable for complex nonlinear
relations. For regression problems, GBRT is a combination of gradient boosting and regression trees
for solving problems that uses ensembles of regression trees to reduce the error over a large single-tree
model [51]. The GBRT model (developed with R, version 2.9.2) was used to evaluate the importance of
four parameters, which were measured according to the co-occurrence frequency of these characteristics
in all splits of decision trees [52]. The relative influence of the individual variable was calculated by
the following Garson equation [53,54]:

Iab =

∑n
e

(
|wae |∑m
g |wge|

|web|

)
∑n

z

(∑n
l

(
|wal|∑m
g |wge|

|web|

)) (7)
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where Iab is the relative importance of the jth input variable on the output variable; wx is the connection
weight; a, e and b are the number of neurons in the input layer, hidden layer and output layer, respectively.
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2.7. Optimization Using ANN-GA and ANN-PSO Models

A suitable combination of variables was selected to check the aptness of the model. Experiments
were carried out with the optimal four variables to verify the prediction models as proposed by
ANN-GA and ANN-PSO [55]. GA is a stochastic optimization technology developed based on
genetic mechanisms and Darwin’s theory of evolution [56,57]. Simply, GA involves a randomly
generated initial population and uses genetic operators (selection, mutation and crossover) to modify
the population [56]. The algorithm is used to explore different regions of parameter space and to
determine optimal conditions for removal of EV [58]. Kennedy and Eberhart have proposed the
PSO method, which is an evolutionary computational algorithm [59]. PSO is similar to GA, which
initializes the system with the population of random solutions and also uses the concept of population
and evolutionary iteration to achieve the purpose of optimization [59,60]. In the first step of PSO,
the random position and velocity of each particle were given. The fitness values of each particle was
calculated at the initial location by contrasting the properties of known parameters (i.e., initial pH,
sonication time, initial concentration, adsorbent dosage) and was obtained with the prediction results.
The closeness between simulated and known properties was defined as the fitness value of particles at
any given position, and particles with the highest fitness value were selected as the global optimum
particles in the whole operation [61]. On the basis of evolutionary mechanisms, all particles guided
by the global optimum eventually converged to some system optimum of the optimized problem by
successively executing a certain number of iterations [62].

2.8. Random Forest

Random forest (RF), as an ensemble classifier, consists of multiple decision trees [45,63], which
combines the classification tree and regression tree by a bagging algorithm. In random forests, decision
trees are independent of each other and have different classification results. Decision trees are also called
classification trees, in which leaves and branches are represented in class labels and the connection of
feature vectors leading to class labels, respectively [63]. Decision trees are derived from a decision
tree learning algorithm in which data sets are divided into different subsets according to attribute
value tests. This segmentation process is called recursive partitioning. Each internal node delegates an
input trait, and each node has a child of another input characteristic [63]. The advantages of RF are as
follows: (1) random variable selection seeks to minimize the correlation among trees in the set, which
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gives a lower error rate; (2) in order to obtain fast learning and prevent over-fitting, random selection
of bootstrap samples can be guided to construct bootstrap data sets (sub-training sample sets) [64,65].
The RF model was established using R studio (version 3.4.4.).

2.9. Radial Basis Function Neural Network

Radial basis function (RBF) neural network is a typical feed-forward network, which consists of
three layers, namely the input layer, hidden layer and output layer [66]. The hidden layer contains
many nodes, and each node uses a non-linear activation function (ϕ(r)) [67,68]. The input layer takes
the input parameters as input vectors, from input layer to hidden layer, nonlinear transformation of
input vectors as activation functions of neurons (i.e., radial basis function) and the conversion from
hidden layer to output layer is a linear transfer function [67]. In this work, we investigated four
main parameters (as input data) including initial dye concentration (250–450 mg/L), initial pH (3–7),
sonication time (7–19 min) and dosage (10–22 mg) and EV removal percentage (as output data) with
RBF. The radial basis function is expressed by a Gaussian function as follows [69]:

ϕi j = exp

‖x j − ci‖
2

σ2
j

 (8)

where xj is the input vector, ‖ ‖ is a measure of Euclidean distance and ci and σj are the center and the
spread of jth the RBF, respectively. The output node fk(x) is calculated as follows [69]:

fk(x) =
m∑

j=1

(wkjϕ j(x)) (9)

where wkj is the weight connection between the hidden and output layers.

3. Results and Discussion

3.1. Surface Characterization of Fe–Mn Nanoparticles and Mn-doped Fe/rGO Nanocomposites

X-ray diffraction (XRD) patterns of GO, Fe–Mn and Mn-doped Fe/rGO are illustrated in Figure 4.
GO had a characteristic peak at 11◦ (002), while the peak disappeared for Mn-doped Fe/rGO, indicating
that GO was completely reduced to rGO in the synthesis process. In the Fe–Mn and Mn-doped Fe/rGO
composites, no obvious diffraction peaks of Fe and Mn were observed by XRD, suggesting that Fe and
Mn in the composites existed in an amorphous form [70].

The surface morphology of Fe–Mn nanoparticles and Mn-doped Fe/rGO nanocomposites are
discussed based on SEM images (Figure 5a,b). Figure 5a shows that Fe–Mn spherical particles were
dispersed on the surface of graphene. The average particle size of Mn-doped Fe/rGO (Figure 5c) and
Fe–Mn (Figure 5d) were 82.56 and 119.57 nm, respectively. The EDS measurement confirmed the
composition of Fe–Mn and Mn-doped Fe/rGO (Figure 6). The elemental compositions of C, O, Mn and
Fe in Fe–Mn were 1.50, 2.38, 1.11 and 95.01 wt%, respectively. The elemental composition of C, O, Mn
and Fe in Mn-doped Fe/rGO were 16.67, 8.83, 1.59 and 72.91 wt%, respectively. EDS is a qualitative
and semi-quantitative analysis tool [71], which measures a certain point on the surface of the sample,
and thus its result cannot be used for the whole sample. The ratio of Mn to Fe measured by EDS was
only 1:50 in Mn-doped Fe/rGO, much lower than the theoretical value of Mn-doped Fe/rGO (Mn:Fe =

1:2). The possible reason is that Mn and Fe were not evenly distributed on the rGO and nanoscale Fe
agglomerated on the surface of rGO [72].
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Figure 6. EDS of Fe–Mn (A) and Mn-doped Fe/rGO (B).

Figure 7 displays the Raman spectra of GO and Mn-doped Fe/rGO nanocomposites.
The characteristic D and G peaks appeared at 1354 and 1570 cm−1, respectively. The D peak is
related to the defects and disorder in the lattice structure of graphite materials, while the G peak
is related to the vibration of sp2-bonded carbon and is a doubly degenerate (iTO and LO) phonon
mode (E2g symmetry) at the BZ center [73–76]. The intensity ratio (ID/IG) of Mn-doped Fe/rGO (ID/IG

= 1.5) was higher than that of GO (ID/IG = 1.2), which indicated the creation of smaller sp2-bonded
carbon domains after the reduction process and the increase of disorder in the graphene sheets [77,78].
The surface survey spectra of Fe–Mn and Mn-doped Fe/rGO were measured by XPS, and the spectra of
C1s, O1s, Fe2p and Mn2p are presented in Figure 8. The bonding energies at 284 eV, 531 eV, 641 eV
and 711 eV correspond to the C1s, O1s, Mn2p and Fe2p, respectively. The contents of C, O, Mn and
Fe in Mn-doped Fe/rGO were 76.19, 19.68, 0.826 and 3.305 at%, respectively. The atomic ratio of Fe
and Mn measured by XPS was about Mn:Fe ≈ 1:3, significantly lower than the theoretical value of the
nanomaterials (Mn:Fe = 1:2). The possible reason is that most of the Fe and Mn were loaded in the
pores of nanomaterials, and only a small amount of iron and manganese were exposed on the outer
surface of the nanomaterials [79]. Since XPS can only measure elements in the depth range of about
5 nm on the surface, most of the iron and manganese in the pores of adsorbent were not detected.
Figure 9c,d shows the Mn2p peak of the Fe–Mn and the Mn-doped Fe/rGO. The characteristic peaks
(Figure 9a,b) of Fe0, Fe2p3/2 and Fe2p1/2 at 707, 711.6 and 725.6 eV, respectively, were observed in
the Fe2p XPS spectra. The Fe2p spectra exhibited four peaks at 710.6 eV, 711.9, 723.8 eV and 725.4 eV,
which confirmed the Fe3+ and Fe2+ states in the nanocomposites and revealed the core–shell structure
of nZVI.

The nitrogen adsorption–desorption isotherms of Fe–Mn nanoparticles and Mn-doped Fe/rGO
nanocomposites are shown in Figure 10. The specific surface areas (SBET) were 19.166 m2/g (Fe–Mn)
and 104.088 m2/g (Mn-doped Fe/rGO), respectively, which were due to the high specific surface area
of reduced graphene sheets. The Fe–Mn and Mn-doped Fe/rGO composites of pore size distribution
are shown in Figure 11, and narrow pore size distributions were centered at 1.76 nm and 3.93 nm,
respectively. Mn-doped Fe/rGO exhibited type IV isotherms with H3 hysteresis loops, revealing that
the nanocomposites were mesoporous (2 nm < pore size < 50 nm) materials [80]. Nanocomposites
with large specific surface area can provide more adsorption and reaction sites, improving the dye
removal ability from wastewater.

Figure 12A represents the magnetization curves of the Mn-doped Fe/rGO nanocomposites, which
are typical soft magnetic materials. The soft magnetic properties of nanocomposites are associated
with the very small area encircled by a closed curve [81]. Magnetization increased linearly with
rising magnetic field and then reached saturation; the value of saturation magnetization (Ms) was
47.0514 emu/g for Mn-doped Fe/rGO. The magnetic properties of nanocomposites allow them to
be easily and rapidly segregated from dye wastewater. Small angle X-ray diffraction (SAXRD) and
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high-resolution transmission electron microscopy (HR-TEM) of Mn-doped Fe/rGO nanocomposites are
given in Figure 12B,E, respectively. Mn-doped Fe/rGO showed a well-resolved diffraction peak at 0.71◦

of 2θ angles, a large and repetitive lattice commonly conducive to the presence of diffractions at small
angles, indicating that the nanocomposites may have been composed of an ordered structure [82]. From
the HR-TEM image of Figure 12C–E, it can be observed that the regularly ordered structure appeared
in Figure 12A, while the disordered structure emerged in Figure 12B. Therefore, the Mn-doped Fe/rGO
nanocomposites were determined to be partially ordered mesoporous materials.Processes 2020, 8, x 10 of 31 
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Figure 9. XPS analyses of high resolution spectra of Fe2p for Fe–Mn nanoparticles (NPs) (a) and Mn-
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Figure 11. Pore size distribution of Fe/Mn (a) and Mn-doped Fe/rGO (b).
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Figure 12. Magnetization curves of Mn-doped Fe/rGO (A), small angle X-ray diffraction (SAXRD)
patterns of Mn-doped Fe/rGO (B), HR-TEM (C–E) images with different magnifications of Mn-doped
Fe/rGO nanocomposites.

3.2. Central Composite Design (CCD)

Four variables were studied at initial concentration (250–450 mg/L), initial pH (3–7), sonication
time (7–19 min) and dosage (10–22 mg). Removal efficiency was measured as response, and the
maximum and minimum were 92.46% and 60.09%, respectively. In the CCD and ANOVA programs
used, 30 sets of data were used to predict the four independent variables (X1 = A, X2 = B, X3 = C, X4

= D), and the experimental data were analyzed by quadratic multiple regression analysis. Table 2
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compares the predicted values with the experimental results, and the relationship between removal
efficiency and variables factors are given as follows:

Y = 87.20 − 3.68 A + 1.92 B + 3.32 C + 5.07 D + 0.12 AB − 0.097 AC +

0.21 AD + 0.084 BC + 0.73 BD − 0.27 CD − 1.37 A2
− 0.34 B2

− 3.75 C2
− 3.14 D2 (10)

Table 2. Central composite design matrix for ethyl violet (EV) removal.

Run
No.

Initial Concentration
(mg/L) Initial pH Sonication

Time (min) Dosage (mg) Removal Efficiency
(%)

Prediction Efficiency
(%)

1 350 5 13 16 88 87
2 300 6 10 13 76 75
3 350 3 13 16 83 82
4 300 4 10 19 80 82
5 400 4 10 13 67 65
6 300 4 16 19 85 88
7 400 4 16 13 72 72
8 350 5 13 16 86 87
9 300 6 16 13 82 82

10 300 4 16 13 80 80
11 400 6 10 19 82 80
12 350 5 13 22 87 85
13 350 5 13 16 86 87
14 400 4 10 19 75 75
15 300 6 10 19 87 86
16 400 6 16 19 85 86
17 400 6 16 13 77 75
18 350 5 13 16 90 87
19 300 6 16 19 92 93
20 450 5 13 16 71 74
21 350 7 13 16 86 90
22 350 5 19 16 80 78
23 400 6 10 13 70 67
24 400 4 16 19 80 80
25 250 5 13 16 90 89
26 350 5 13 16 87 87
27 350 5 13 10 60 64
28 300 4 10 13 74 73
29 350 5 13 16 86 87
30 350 5 7 16 61 66

The sufficiency of the model was tested by ANOVA, and the fitting of the second-order polynomial
equation with the experimental data was tested (Table 3). The value of “Prob. > F” was used to test
the null hypothesis (p < 0.05), which implied that the model was significant. The regression model
established for removal of EV by Mn-doped Fe/rGO based on A, B, C and D was significant (p < 0.05)
and the lack of fit values was not significant (F = 4.4, p = 0.0578) showing that the regression model
was valid for the removal of EV. The values of “Prob. > F” for linear effect of A, B, C, D and quadratic
effect of A2, D2, C2 were less than 0.05; thus, these terms were significant. The results in Table 3 display
a high R2 (0.9379) for EV, thus demonstrating dependability in the evaluation of EV removal efficiency
by Mn-doped Fe/rGO.
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Table 3. Results of ANOVA for response surface quadratic model.

Source Sum of Squares df Mean Square F Value p-Value

Model 1899.59 14 135.68 16.19 <0.0001 significant
A 325.24 1 325.24 38.8 <0.0001
B 88.05 1 88.05 10.5 0.0055
C 265.14 1 265.14 31.63 <0.0001
D 617.02 1 617.02 73.6 <0.0001

AB 0.24 1 0.24 0.028 0.8685
AC 0.15 1 0.15 0.018 0.8953
AD 0.68 1 0.68 0.081 0.7802
BC 0.11 1 0.11 0.014 0.9087
BD 8.63 1 8.63 1.03 0.3264
CD 1.2 1 1.2 0.14 0.71
A2 51.24 1 51.24 6.11 0.0259
B2 3.09 1 3.09 0.37 0.553
C2 385.56 1 385.56 45.99 <0.0001
D2 271.17 1 271.17 32.35 <0.0001

Residual 125.75 15 8.38
Lack of Fit 112.92 10 11.29 4.4 0.0578 not significant
Pure Error 12.83 5 2.57
Cor Total 2025.33 29

R2 = 0.9379

Cor total: total of all information corrected for the mean.

Figure 13 illustrates the correlation between the experimental and predicted values.
The distribution of data points was relatively close and had a linear behavior, which indicated
that there was sufficient consistency between predicted and experimental values. Figure 14 displays
the normal probability plot of the residual. The maximum number of points fell on a straight line,
which indicates that the residual obeyed a normal distribution and the prediction of the RSM model
was accurate. The effects of four factors on the EV removal efficiency were compared by using the
perturbation plot (Figure 15). The results show that the elimination of EV was more sensitive to
adsorbent dosage and initial concentration than sonication time and initial pH. The interaction between
the two dependent and the four independent variables can be represented by the three-dimensional
response surface and contour diagrams (Figure 16). It can be seen from Figure 16A,a that the maximum
decolorization of EV was in the pH range of 4 to 6. Within the scale of experiment, the removal
efficiency of dye increased with the increasing amount of adsorbent and decreased with increasing
initial ethyl violet concentration (Figure 16C,c).
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3.3. Back Propagation Artificial Neural Network (BP-ANN) 

Under the ANN modeling method, it is an important step to determine the optimal number of 
hidden layer neurons. The optimal number of neurons was determined by MSE, and the minimum 
MSE value was 0.0005, as presented in Figure 17. Additionally, Figure 18 shows that the BP-ANN 
training was stopped when the epoch reached 1453, the gradient reached 5.5214 × 10−6, the best 
training performance was 0.0030709 and the correlation coefficient (R2) was 0.99403 (Figure 19). The 
high R2 value and low MSE value indicated goodness of the ANN model performance. 
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Under the ANN modeling method, it is an important step to determine the optimal number of
hidden layer neurons. The optimal number of neurons was determined by MSE, and the minimum
MSE value was 0.0005, as presented in Figure 17. Additionally, Figure 18 shows that the BP-ANN
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Figure 19. Predicted vs. experimental values of the normalized removal of EV from the BP-ANN.

3.4. Optimization for the Removal of EV by RSM, ANN-GA and ANN-PSO

Both ANN-GA and ANN-PSO can obtain global optimal solutions through iterative optimization
processes. Figure 20 shows for ANN-GA and ANN-PSO gradual convergence; when the iteration values
were 5 and 8 the maximum predicted values were 92.75% and 90.11%, respectively. The optimization
conditions for the four parameters were found to be dosage (GA 17.55 mg and PSO 17.20 mg), sonication
time (GA 13.19 min and PSO 13.95 min), initial pH (GA 6.1 and PSO 5) and initial concentration
(GA 299.22 mg/L and PSO 371.23 mg/L). The developed models from ANN-GA, ANN-PSO and RSM
were compared and validated using the predicted optimal conditions (Table 4). The results show that
the average values of absolute errors of ANN-GA, ANN-PSO and RSM models were 0.72%, 1.28%
and 1.53%, respectively. Compared with the RSM model, ANN-based models had a high R2 value.
In a word, the ANN-GA model was considered to be the best one for predicting the removal of EV by
Mn-doped Fe/rGO.
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value, and the R2 value of BP-ANN was 0.99403. According to the results, the RBF-NN and BP-ANN 
models can be used to predict the elimination of EV from the aqueous phase by Mn-doped Fe/rGO. 

Figure 20. Genetic algorithm (GA) and particle swarm optimization (PSO) chart predicted optimum
value of EV removal efficiency.

Table 4. Comparison of the confirmatory results with predicted results.

Process Parameters
Optimization

ANN-GA ANN-PSO Response Surface
Methodology (RSM)

Initial concentration (mg/L) 299.22 371.23 300
Initial pH 6.1 5 6

Sonication time (min) 13.19 13.95 14.32
Dosage (mg) 17.55 17.20 18.62

Decolorization efficiency of model (%) 92.75% 90.11% 94.18%
Experimental verification values (%) 92.03% 88.83% 92.65%
Average values of absolute errors (%) 0.72% 1.28% 1.53%

R2 0.99403 0.9379
MSE 0.0005

3.5. Comparison of RF, RBF and BP-ANN

Combined with RSM data, 30 sets of experimental values were predicted by RF and BP-ANN
(Figure 21). The mean absolute errors of BP-ANN and RF were 1.55% and 4.56%, respectively.
In this study, BP-ANN was more suitable than RF to optimize the parameters for the removal of EV by
Mn-doped Fe/rGO nanocomposites. Figure 22 demonstrates that the network had a high R2 (0.95415)
value, and the R2 value of BP-ANN was 0.99403. According to the results, the RBF-NN and BP-ANN
models can be used to predict the elimination of EV from the aqueous phase by Mn-doped Fe/rGO.
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3.6. Comparison among Analysis of Variance, GBRT, Garson Method and RF

Relative variable importance analysis is one of the advantages of GBRT and RF models
(Figures 23 and 24). The Garson method for calculating the influence of each input variable on
the output variable using weight and bias is shown in Table 5. The high importance score of variables
indicates that the contribution of variables is significant to dye removal prediction [83]. Table 6 gives
the factor importance obtained from F value, Garson method, GBRT and RF, which shows that the
dosage had the maximum importance to the EV removal by Mn-doped Fe/rGO.
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Table 5. The weights and biases of input layers (wi and bi) and hidden layers (wj and bj).

Number of Neurons
wi bi

Input Bias
wj

Hidden Weights
bj

Hidden BiasInput Weights

A B C D

1 1.901923065 0.366456135 −0.653955781 1.420846441 −2.489591174 −0.930289741

0.149904727

2 1.309510183 1.345913921 0.27228768 −1.611714128 −1.936348691 −0.26791453
3 −1.358393495 −1.004381258 −0.631064845 1.716335276 1.383106208 0.145250088
4 0.835468192 −0.017592712 −1.268234245 1.972645308 −0.829863725 −0.328025674
5 0.491800507 −1.471722414 1.875969756 0.520544991 −0.276621242 −0.496795294
6 −0.213896428 1.474611835 −1.322999207 −1.492483021 −0.276621242 0.127936272
7 0.978450096 −0.885530436 1.591737282 −1.386689545 0.829863725 0.612899558
8 1.812375002 0.731347696 1.323745446 −0.791321431 1.383106208 0.861938074
9 −2.371460889 −0.698563644 −0.177167065 0.234218125 −1.936348691 0.669754604

10 −1.325902143 −0.668065352 1.592629016 1.207174065 −2.489591174 0.812121353

Table 6. Comparison among F value, Garson method, GBRT and RF of factors importance.

F test Garson GBRT RF

Factors F Value Order Relative Influence (%) Order Relative Influence (%) Order % IncMSE Order IncNodePurity Order

Initial concentration 38.8 2 29.96 2 22.34 3 12.76 3 282.69 3
Initial pH 10.5 4 16.51 4 14.64 4 4.54 4 127.76 4

Sonication time 31.63 3 22.64 3 25.01 2 13.63 2 411.46 2
Dosage 73.6 1 30.89 1 38.00 1 21.81 1 551.58 1
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3.7. Adsorption Isotherms

The adsorption isotherm for adsorption EV onto Mn doped Fe/rGO was studied under the
conditions of different dye concentrations (300–1000 mg/L), sonication time of 23 min and pH of 5.
The data were fitted to the Langmuir, Freundlich and Temkin equations to find a model suitable for
explaining the adsorption mechanism [84]. The Langmuir isotherm model is given by linear Equation
(11) and nonlinear Equation (12) [85–88] as follows:

Ce

qe
=

1
kLqm

+
Ce

qm
(11)

qe =
qmkLce

1 + kLce
(12)

where Ce (mg/g) is the equilibrium EV concentration in solution (mg/L); qe is the amount of EV adsorbed
at equilibrium (mg/g); qm is the maximum adsorption capacity of dye per gram of adsorbent (mg/g);
and KL is a constant related to adsorption rate (L/mg). The Langmuir equation was further analyzed
and the dimensionless equilibrium parameter (RL) was calculated, which is given by Equation (13) [89]
as follows:

RL =
1

1 + KLC0
(13)

where C0 (mg/L) is the initial EV concentration; the RL value indicates the adsorption properties of
the dye with the sorbent. If the RL value is equal to 0 or 1, the adsorption is irreversible and linear,
respectively; if the value is >1, the adsorption process is unfavorable; and if the value lies between 0
and 1, this indicates the adsorption process is favorable [89].

The Freundlich equilibrium isotherm equation is an empirical relationship describing the
multi-layer and heterogenous adsorption of adsorbed intermolecular interactions [84]. The linear and
nonlinear forms of the Freundlich Equation (14) and Equation (15) are expressed as follows [90,91]:

Inqe = InkF +
1
n

InCe (14)

qe = kF(ce)
1/n (15)

where kF = Freundlich isotherm constant (mg/g) and 1/n = adsorption intensity. The linear Temkin
equation is expressed as follows [86]:

qe = BT ln KT + BT ln Ce (16)

where KT and BT are the Temkin constants.
The adsorption isotherm of EV is illustrated in Figure 25, and Table 7 lists the values of Langmuir,

Freundlich and Temkin constants and the correlation coefficient (R2) values. The Langmuir RL values
were 0.01585–0.05093, indicating that the adsorption of EV by Mn-doped Fe/rGO was favorable, and the
value of maximum adsorption capacity was 1000.00 mg/g. The constant of 1/n in the Freundlich model
is related with the adsorption intensity, which varies with the heterogeneity of materials [92]. The value
of 1/n was 0.0442 (<0.5), which indicates that the adsorption was favorable. The experimental data
were fitted with linear and nonlinear models with the Freundlich and Langmuir models. The R2 given
in Table 7 shows that the linear model was better than nonlinear fitting, and compared with the other
two models the Langmuir model could better describe the adsorption of EV onto Mn-doped Fe/rGO.
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Table 7. Freundlich, Langmuir and Temkin isotherm parameters for the removal of EV by Mn-doped Fe/rGO.

Isotherms Models Parameters Value of Parameters Obtained
by the Linear Fitting

Value of Parameters Obtained
by the Nonlinear Fitting

Freundlich
Kf (mg/g) 705.7775 698.97

1/n 0.0442 0.0462
R2 0.8503 0.8049

Langmuir

KL (L/mg) 0.06211 0.05494
qm (mg/g) 1000.00 13,417.92

R2 0.9945 0.7642
RL 0.01585−0.05093

Temkin
KT (L/g) 1.2 × 108

BT 37.395
R2 0.7491

3.8. Kinetics Studies

Four models (pseudo-first-order [93], pseudo-second-order [94,95], intraparticle diffusion [96,97]
and Elovich [98]) were investigated in the adsorption of EV by Mn-doped Fe/rGO. The parameters of
the four models and calculated values of qt versus t are presented in Table 8 and Figure 26, respectively.
It can be seen from this figure that the adsorption of EV onto the nanocomposites increased with
sonication time until the equilibrium was attained after 23 min. The adsorption system adsorbed EV
rapidly within 7 min. During the rapid adsorption process, the adsorbent diffused from the bulk
phase to the outer membrane around the adsorbent surface and then was gradually adsorbed until
it reached equilibrium [89]. The R2 values for pseudo-first-order, pseudo-second-order, intraparticle
diffusion and Elovich were 0.9509, 0.9969, 0.7926 and 0.9246, respectively. The results indicated
that the pseudo-second-order equation (R2 = 0.9969) could fit the experimental data better than the
other models.
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Table 8. Kinetic parameters for the removal of EV on Mn-doped Fe/rGO.

Kinetic Models Equations Parameters Values of Parameters

Pseudo-first-order log(qe − qt) = log qe −
k1t

2.303

k1 (1/min) 0.2034
qe (mg/g) 807.4209

R2 0.9509

Pseudo-second-order t
qt
= 1

k2qe2 +
t
qe

k2 (g/mg/min) 0.37 × 10−3

qe (mg/g) 909.0909
R2 0.9969

Intraparticle diffusion qt = kdt0.5 + C
kd (mg/g/min1/2) 115.09

C (mg/g) 305.97
R2 0.7926

Elovich qt =
1
β ln(αβ) + 1

β ln t
α (mg/g/min) 715.2812
β (g/mg) 5.209 × 10−3

R2 0.9246
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4. Conclusions

Mesoporous Mn-doped Fe/rGO nanocomposites were successfully synthesized in this work
with a one-step co-precipitation method, characterized by XRD, XPS, Raman, HR-TEM, SEM, EDS,
N2-sorption, SA-XRD and SQUID techniques and used for EV elimination. The SBET of Mn-doped
Fe/rGO composites was 104.088 m2/g, and narrow pore size distributions centered at 3.93 nm. Mn-doped
Fe/rGO demonstrated a well-resolved peak at 0.71◦ of 2θ angles of SA-XRD, and partially ordered
pores were clearly observed in HR-TEM images. The results show that the Mn-doped Fe/rGO
nanocomposites were partially ordered mesoporous materials. The effects of experimental parameters
(initial EV concentration, sonication time, initial pH and amount of adsorbent (Mn-doped Fe/rGO))
on the elimination efficiency of EV were studied by using AI tools (ANN-GA, ANN-PSO, RF and
RBF). The mean absolute errors of BP-ANN and RF were 1.55% and 4.56%, respectively, and the R2

values of RBF and BP-ANN were 0.95415 and 0.99403, respectively. According to the results, random
forest optimization is not as effective as BP-ANN, while the RBF and BP-ANN models were suitable



Processes 2020, 8, 488 27 of 31

for predicting the EV removal. The developed models from ANN-GA, ANN-PSO and RSM were
compared and validated using the predicted optimal conditions. The results indicated that the absolute
errors of ANN-GA, ANN-PSO and RSM models were 0.72%, 1.28% and 1.53%, respectively. Therefore,
ANN-GA is considered as the best model for the prediction of the EV elimination by Mn-doped Fe/rGO.

The factor importance was analyzed by F test, Garson method, GBRT and RF. It can be seen that
dosage gives the maximum importance to Mn-doped Fe/rGO EV elimination. The isotherms and kinetic
models were investigated in the adsorption of EV onto Mn-doped Fe/rGO. The results illustrated that
the adsorption of EV accords with Langmuir isotherm and pseudo-second-order models, respectively.
The RL values were 0.01585–0.05093, indicating that the adsorption of EV by Mn-doped Fe/rGO is
favorable, and the value of maximum adsorption capacity is 1000.00 mg/g. The Mn-doped Fe/rGO
composites is an effective adsorbent for removal of dyes in water because of its easy synthesis, large
adsorption capacity, high specific surface area and good magnetic property (saturation magnetization
was 47.0514 emu/g).
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