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Abstract: The insect cell-baculovirus vector system has become one of the favorite platforms for
the expression of viral vectors for vaccination and gene therapy purposes. As it is a lytic system, it
is essential to balance maximum recombinant product expression with harvest time, minimizing
product exposure to detrimental proteases. With this purpose, new bioprocess monitoring solutions
are needed to accurately estimate culture progression. Herein, we used online digital holographic
microscopy (DHM) to monitor bioreactor cultures of Sf9 insect cells. Batches of baculovirus-infected
Sf9 cells producing recombinant adeno-associated virus (AAV) and non-infected cells were used to
evaluate DHM prediction capabilities for viable cell concentration, culture viability and AAV titer.
Over 30 cell-related optical attributes were quantified using DHM, followed by a forward stepwise
regression to select the most significant (p < 0.05) parameters for each variable. We then applied
multiple linear regression to obtain models which were able to predict culture variables with root
mean squared errors (RMSE) of 7 × 105 cells/mL, 3% for cell viability and 2 × 103 AAV/cell for 3-fold
cross-validation. Overall, this work shows that DHM can be implemented for online monitoring
of Sf9 concentration and viability, also permitting to monitor product titer, namely AAV, or culture
progression in lytic systems, making it a valuable tool to support the time of harvest decision and for
the establishment of controlled feeding strategies.

Keywords: AAV-adeno-associated virus; insect cell-baculovirus; cell culture monitoring; digital
holographic microscopy; process analytical technology

1. Introduction

After the FDA launched the Process Analytical Technology (PAT) initiative in 2004 [1], an increased
effort was put in place by the manufacturers of biological products to comply with PAT requirements.
The PAT initiative is a guidance for the pharmaceutical industry for the development of new products
and production processes, with the main focuses on: (i) increasing product and process knowledge
through the identification of the product critical quality attributes and the process parameters affecting
it; and (ii) monitoring in real-time the identified critical process parameters and the product quality
characteristics, ensuring manufacturing robustness and an increased quality assurance to achieve the
required levels of compliance [1–3].
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Label-free methodologies are preferred, especially in biopharmaceutical processes, since they allow
the monitoring of cell culture without adding any compounds which would influence cellular behavior.
Most cell culture monitoring methods employing label-free methodologies are based on spectroscopic
techniques, which have been widely used for cell culture process monitoring. Examples include the
use of dielectric spectroscopy and turbidimetry/light scattering probes for the determination of cell
concentration [4,5], as well as the use of Raman [6,7], infrared [8] and fluorescence [9] spectroscopy,
which allow the quantification of metabolites based on direct spectra quantification, but also the
indirect determination of cell concentration and product formation based on chemometric analysis.

A label-free alternative to spectroscopic techniques is imaging-based cell culture monitoring. Since
cells are mostly transparent, these systems rely on several strategies to generate the needed image
contrast [10,11]. One example of an imaging technique with proven demonstrations for live cell imaging
is Digital Holographic Microscopy (DHM) [12]. Briefly, DHM provides quantitative phase imaging (QPI),
quantifying the phase shift of the light after it has passed through the object of focus, such as cells. This
light phase difference is encoded in a hologram which is used to construct high-resolution intensity and
quantitative-phase images of the cell while also providing quantitative parameters related with light
phase and intensity [11,13]. The way light is scattered after interacting with cells depends on factors
such as cell thickness, circularity or intracellular composition [10,11,14,15]. As such, DHM can be used to
extract important information from the cell state and has proven useful for several cell-based applications:
identification of morphological parameters distinguishing between epithelial and mesenchymal cells [13],
detecting cell division in endothelial cells [15] and developing cell proliferation [12] or cytotoxic
assays [16]. In particular, infected cells will have different intracellular structure than uninfected
cells [3,17,18]. Furthermore, as demonstrated by Ugele and colleagues, DHM-based detection of the
intracellular composition of infected erythrocytes even allowed to distinguish between different infection
phases in the malaria P. falciparum life cycle [17]. The ability to detect infected cells as well as cell
concentration and viability makes DHM inherently attractive to monitor the progress of infection-based
biopharmaceutical production systems, such as the insect cell-baculovirus system [19].

Insect cells are one of the preferred hosts for viral vector manufacturing for vaccines and
gene therapy purposes, since they can be grown in suspension to high cell densities in serum free
media [20,21]. However, to maximize product yields it is determinant to infect cells at low cell
concentration, to prevent the so-called “cell density effect”, a drop on the specific productivity of the cell
when infection takes place at a high cell concentration, reviewed in Palomares et al. [22]. The optimal
cell concentration for infection and the definition of “low” and “high” cell concentration are dependent
on the cell type, culture medium used and recombinant product being expressed [23,24]. Moreover,
baculovirus is a lytic virus, which can lead to the release of intracellular proteases into the culture
medium, possibly degrading the recombinant product after it has been released into the medium.
As such, both culture viability and cell concentration are critical process parameters for this system.

Our group and others have addressed ways to monitor this system using fluorescence [9] or
dielectric [3,20,25,26] spectroscopies, as well as using image-based technologies, in particular for
measuring the progress of baculovirus infection [27–29]. DHM can go one step further, by monitoring
not only the cell diameter increase after baculovirus infection, but also the evolution profile of several
cell characteristics, allowing to explore the possibility to observe baculovirus or AAV-induced changes
in suspension insect cells in real-time.

In this work, we used the iLine F differential DHM system (DDHM) (Ovizio Imaging Systems
SA/NV) for real-time monitoring of a Sf9 culture infected with baculovirus, expressing recombinant
adeno-associated virus (AAV) type 2. AAV is widely used as a gene therapy viral vector, due to its lack
of known pathogenicity, broad tissue tropism coupled with long-term transgene expression and ability
to withstand harsh manufacturing conditions [30]. Estimation of AAV titer in real-time is desirable in
order to harvest when its concentration is higher. Moreover, monitoring this system in real-time can
support the time of harvest decision, an important process variable to consider giving the lytic nature
of the baculovirus and consequential release of proteases to the medium when cells start lysing.
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Since DDHM can be used to detect infected cells, we further explored this capability for monitoring
the AAV titer in our cultures along with the development of predictive models for viable cell
concentration and viability. Using the culture-related morphologic and optical attributes quantified
with iLine F, we used forward stepwise regression to find the attributes associated with viable cell
concentration, viability and intra and extracellular AAV titer. We validated this approach using leave
one batch out (LOBO) and 3-fold cross-validation strategies. As such, we demonstrate that DDHM
can be used not only for monitoring Sf9 cell concentration and viability but also for assessing AAV
production kinetics in the insect cell system.

2. Materials and Methods

2.1. Cell Line and Culture Medium

Spodoptera frugiperda Sf9 cells were obtained from Thermo Fisher Scientific (No. 11496015) and
routinely cultivated in 500 mL glass Erlenmeyer flasks with 50 mL working volume of SF900-II medium
(GibcoTM), at 27 ◦C with an agitation rate of 100 rpm in an Innova 44R incubator (orbital motion
diameter = 2.54 cm, Eppendorf). Cell concentration and viability were determined using a Cedex
HiRes Analyzer (Roche).

2.2. AAV and Baculovirus Infection and Titration

We used the two baculovirus system for AAV production (reviewed in Merten [31]).
The recombinant Autographa californica nucleopolyhedrovirus encoding the green fluorescence

protein (GFP) transgene under the control of the cytomegalovirus promoter (CMV-GFP) and flanked
by AAV2 inverted terminal repeats (ITR) regions was kindly provided by Généthon and was titrated
and amplified in house, as described for the rep/cap baculovirus (below).

The plasmid containing AAV2 rep and cap genes was a gift from Robert Kotin (Addgene plasmid
#65214) [32]. Recombinant baculovirus was produced using the Bac-to-Bac® Baculovirus Expression
System (Invitrogen), according to the manufacturer’s instructions. Baculovirus amplification was
performed as described elsewhere [9].

Recombinant adeno-associated virus (AAV) intra and extracellular titer was estimated separately
using a commercially available sandwich ELISA kit (Progen Biotechnik GmbH), according to the
manufacturer’s instructions. This kit detects a conformational epitope present in assembled AAV capsids.

2.3. Bioreactor Cultures and Sample Processing

Benchtop 1 L bioreactor runs were performed in BIOSTAT® DCU-3 (Sartorius), equipped with
two Rushton turbines. Temperature control (27 ◦C) was achieved using a water recirculation jacket
and gas supply was provided by a ring sparger in the bottom of the vessel. Dissolved oxygen (DO)
concentration was kept at 30% by cascade controlling the stirring rate (70–270 rpm) and the N2/air
ratios in a mixture of air and N2 (0.01 vvm).

Several runs were performed to establish the standard culture progression profile. The iLine F
system (Ovizio Imaging Systems SA/NV) was then used to monitor a growth batch and a production
(infected) batch, which had similar culture profiles for cell concentration, viability and AAV production
titer when compared to previous culture replicates [9]. The growth batch consisted of a Sf9 batch
culture monitored until cell death due to nutrient starvation, which occurred after 10 days of culture.
The infected batch consisted of a Sf9 culture infected with two baculovirus vectors to express
recombinant adeno-associated virus type 2, harvested on day 6 after inoculation. Sf9 cells were
inoculated at 0.5 × 106 cells/mL for both reactors. The infected batch was infected 31 h after inoculation,
when viable cell concentration reached 1 × 106 cells/mL, with a multiplicity of infection (MOI) of
0.05 plaque forming units per cell, for each baculovirus. The two-baculovirus strategy was used, in
which one baculovirus codes for the AAV2 rep and cap genes and the other provides the GFP transgene
flanked by the AAV ITRs.
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In the iLine F system, a single-use autoclavable closed-loop tube is inserted into a standard 19 mm
bioreactor top port. This sampling tube contains in the other end a cartridge with the imaging chamber.
After sterilization, the sampling tube is connected to a pump motor. Cell culture is continuously
aspirated through the sampling tube to the imaging chamber and then returned to the cell culture
vessel. The setup is controlled using the OsOne software (Ovizio Imaging Systems SA/NV), which
controls the sampling rate and image analysis by a holographic microscope. Images are acquired every
minute, but image processing occurs in batches of 25, thus yielding a new timepoint every 30 min
(the 5 remaining minutes are used for background elimination and attribute calculations). Image
processing consists in (1) image focus, (2) holographic fingerprint acquisition for every cell present in
the image, (3) computation of 66 image-related attributes for every cell. Figure S1 exemplifies the cell
culture and hologram evolution profiles. Acquisition of 25 images for a culture timepoint is presented
in Video S1 for the bright field images and Video S2 for the phase images.

Sampling for the determination of reference variables was performed daily for the growth batch
and three times per day for the infected batch. At each sampling point, cell concentration and viability
were measured using Cedex HiRes Analyzer (Roche). Additionally, for the infected batch, a clarification
step was performed (200 g, 10 min, 4 ◦C) to recover intra and extracellular AAV. Supernatant was
subjected to a further clarification step (2000 g, 20 min, 4 ◦C) and stored at −80 ◦C for offline analysis.
Intracellular AAV was extracted from cell pellets with TNT buffer, consisting of 20 mM Tris-HCl
(pH 7.5), 150 mM NaCl, 1% Triton X-100, 10 mM MgCl2 [32], to which a 0.5% solution of sodium
deoxycholate was added to further increase the release of intracellular AAV from pelleted cells [33].
After 10 min of incubation at 22 ◦C, the suspension was centrifuged (2000 g, 20 min, 4 ◦C) and the
supernatant stored at −80 ◦C for offline analysis.

2.4. Modeling Strategy and Software

2.4.1. Dataset

After run completion, for each timepoint, the average for each attribute was calculated, considering
all the cells present in the 25 images acquired per timepoint. This resulted in 499 timepoints for the
growth batch and 275 timepoints for the infected batch (online data). These data were smoothed
using a moving average of two hours, corresponding to 4 datapoints. The reference data consisted
of 14 samples for the growth batch and 23 samples for the infected batch, with determination of the
four reference variables (viable cell concentration, viability, extracellular volumetric AAV titer and
intracellular specific AAV titer) for each sample. The data for modeling consisted of each one of the
reference datapoints time-aligned with the corresponding online datapoints, yielding a matrix of
[37 rows × 4 reference variables columns × 66 columns with averaged attributes].

All analyses and modeling were performed in JMP v14 (Statistical Analysis System institute).
Potential outliers in the reference data were identified by a visual inspection of the data time-course

profile and confirmed by calculating the jackknife distances for each datapoint. The JMP jackknife
outlier identification method relies on estimates of the mean, standard deviation, and correlation
matrix that do not include the observation itself.

2.4.2. Attribute Selection and Stepwise Regression

OsOne calculates 66 attributes per each cell. However, due to the high collinearity of some
attributes and to prevent model over-fitting [34], the Pearson correlation coefficient was calculated
for every attribute pair. For pairs with a high correlation (Pearson correlation coefficient absolute
value > 0.95), one of the attributes was excluded from further analysis. This process was iterated until
no attribute had a correlation coefficient higher than 0.95 or lower than −0.95, reducing the initial 66
attributes to 30.

For model training, the JMP “Fit model” platform was used. Briefly, the 30 attributes selected
were subjected to a forward stepwise regression to find the most significant for the prediction of each
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of the reference variables. In a forward stepwise regression method, the most significant attribute
is identified and added to the model, followed by identification and inclusion in the model of the
second most significant attribute and so on. This process was stopped when the next term added was
considered not significant (p-value > 0.05).

Since this biological system has non-linear variables, which can be observed on the viable cell
concentration and AAV titer profiles, after identification of the most significant attributes for every
variable, a second model was created by performing the same forward stepwise regression technique
using the significant terms (“main effects”) and their interactions and quadratics. The final forward
stepwise regression model (main effects only or with interactions) was chosen by comparison of
prediction profiles and root mean squared error (RMSE).

2.4.3. Model Training and Validation

Multiple linear regression models were built based on the forward stepwise regression strategy.
Two validation strategies were used to assess model prediction capabilities and overfitting: leave one
batch out (LOBO) and 3-fold cross-validation (3CV). For LOBO models, the stepwise attribute selection
strategy mentioned in the previous section was applied to one batch only. After finding the most
significant parameters and determining the model coefficients for each parameter by multiple linear
regression, the model was applied to the remaining batch for validation. This strategy was successfully
applied to viability models but resulted in significant overfitting for viable cell concentration due to
the significant differences in the variable ranges between the two batches. As such, an alternative
LOBO strategy was used, in which parameter selection was performed using the reference data from
both batches, followed by training of each batch separately. The obtained model was then used for
predicting the remaining batch for validation purposes.

For 3CV, the significant parameters were identified by applying forward stepwise regression to
the reference data for both batches, followed by multiple linear regression for model fitting using
both batches. Model validation was performed by dividing the dataset (37 timepoints) into 3 random
partitions, using two for model training with the selected parameters and predicting the third partition.
The process was repeated for the two remaining partitions.

The contribution of each parameter to the final model was calculated by dividing the logworth
value for each parameter by the sum of the logworth for all parameters (logworth is defined as
−log10(p-value)).

RMSEs for calibration (RMSEC) and validation (RMSEV) were calculated for all models (Equation (1)).
In Equation (1), ŷ represents a vector of model-predicted values and y represents the corresponding
reference data; ncal and nval represent the number of samples in the calibration or validation set,
respectively; max(y) and min(y) refer to the maximum and minimum values for the reference data,
respectively. Normalized RMSE (nRMSE) was obtained by dividing the RMSE by the variable range.

The correlation coefficients of calibration and validation were calculated according to Equation (2)
using calibration (R2) or validation (Q2) data. R2 is a measure of how well the chosen model fits the
calibration data while Q2 measures how the obtained model fits the validation dataset, which is not
used to fit the model, being indicative of the model predictive power for new data. σ2 represents
sample variance.

RMSEC =

√∑ncal
i=1(ŷ− y)2

ncal
. RMSEV =

√∑nval
i=1 (ŷ− y)2

nval
. nRMSE =

RMSE
max(y) −min(y)

(1)

R2 = 1−
RMSEC2

σ2 . Q2 = 1−
RMSEV2

σ2 . (2)
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3. Results

3.1. Digital Holographic Microscopy Can Be Used for Monitoring Viable Cell Concentration and Viability

Here, we studied the applicability of the iLine F system for monitoring critical process variables
in the insect cell-baculovirus system, for the production of recombinant adeno-associated viral vectors
(AAV). The critical process variables under analysis were viable cell concentration, cell viability and
intra and extracellular AAV titers.

Models were trained using two batches, one infected (AAV production) and one uninfected (cell
growth). These have similar viability profiles (Figure 1A), differing only in the time to onset of viability
decrease, but are distinct in the viable cell concentration ranges achieved (Figure 1B), as well as the
AAV production profiles (Figure 2).

The preferential validation strategy consisted in using one batch for model calibration and the
other one as validation set (leave one batch out, LOBO). The high Q2 obtained for viability (0.72 and
0.92 for validation with growth and infected batches, Figure 1A) supports the feasibility of using iLine
F for monitoring viability in this process, even using only one batch for model calibration. The lower
Q2 score obtained for growth batch is mainly due to an underestimation of viability in the growth
phase, but the prediction profiles for the death phase (more relevant for this system) are accurate for
both runs. For viable cell concentration, the large range difference between runs causes the model
to overfit the calibration batch, therefore severely underestimating viable cell concentration when
predicting the growth batch, although with the correct viable cell concentration profile (Q2 = 0.66) and
failing to capture the correct trend for the infected batch (Q2 = 0.34) (Figure 1B).
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Figure 1. Viability (left) and viable cell concentration (right) predictions using leave one batch out
(LOBO, top) and 3-fold cross-validation (3CV, bottom) models. Growth batch is represented in black
and infected batch is colored in grey. The lines represent model-predicted values; the filled circles
represent reference data; the empty circles were considered outliers and excluded from modeling. For
LOBO models, the lines represent the prediction obtained with the model calibrated in the remaining
batch. For 3CV models, the lines represent the model built using data from both batches. (A) Observed
and predicted values for viability using LOBO for model validation; (B) Observed and predicted
values for viable cell concentration using LOBO for model validation; (C) Observed and predicted
values for viability using 3CV for model validation; (D) Observed and predicted values for viable cell
concentration using 3CV for model validation. Model parameters and coefficients are presented in
Table S1.
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The second validation strategy tested for viability and viable cell concentration was the 3-fold
cross-validation (3CV) (Figure 1C,D). Models were built using data from both batches and a 3CV
strategy was applied to measure the model predictive power and confirm that these are not
overfitting while simultaneously allowing the identification of the most important DDHM attributes
for variable prediction.

Applying the 3CV model to iLine F real-time data yields greatly improved predictions when
compared with LOBO models (Figure 1, Q2 = 0.98 for viability and Q2 = 0.93 for viable cell concentration).
Although less robust, this strategy was necessary so that model coefficients could account for the
differences in the variable range between the two batches. The final model parameters and coefficients
are presented in Table S1. For comparison purposes, the predictions for viable cell concentration
and viability using Ovizio proprietary models are shown in Figure S2. Except for the viable cell
concentration LOBO model calibrated in the infected batch, no models consider parameter interactions,
since the models containing only the main effects possess an equal or better predictive score than the
ones considering interactions and quadratics.

3.2. Prediction of AAV Titers Using Digital Holographic Microscopy

Given that the used dataset consists of two batches, from which only one is expressing AAV, the
LOBO strategy cannot be used for modeling AAV-related variables. As such, the 3-fold cross-validation
(3CV) strategy described in the previous section was used to calibrate prediction models for extracellular
volumetric AAV titer (Q2 = 0.97) and intracellular specific AAV titer (Q2 = 0.99) (Figure 2). The AAV
production trend is captured with our modeling strategy, highlighting the potential of using multiple
linear regression for identification of the most important optical attributes measured with DDHM and
monitoring AAV production profiles in the insect cell system.

To confirm that the obtained models are not overfitting the data, the coefficients of correlation for
the calibration and validation set for every partition were calculated for the four variables under study
(Table S2). For each variable, the nRMSE for each partition are comparable in magnitude. Moreover,
for each partition, the nRMSE values obtained for validation are on average 1.8% higher than the ones
obtained for calibration, confirming that the 3CV models are not overfitting the data.

The high adjusted coefficients of correlation for calibration and validation for the models shown
in Figures 1 and 2 indicate that good prediction models were obtained, with the exception of the LOBO
viable cell concentration model (Figure 3, Table S3). The feasibility of using DDHM for bioprocess
monitoring is demonstrated by the acceptable Q2 (0.74) using LOBO for viability prediction, and by the
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high cross-validation Q2 for all variables (0.93 to 0.98). For the LOBO viable cell concentration models,
the negative value was obtained when considering the Q2 for both batches simultaneously, due to the
high discrepancy in the variable range and the overfitting in each calibration model. Individual Q2 are
0.66 for prediction of growth batch and 0.34 for prediction of infected batch. The Q2 values for 3CV
models are very close to the corresponding R2, demonstrating that the chosen model is appropriate
to describe both the calibration data and new datapoints. Altogether, this demonstrates that using
only two batches with different AAV production profiles is enough to find the DDHM attributes likely
relevant for AAV production.
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Figure 3. Quality characteristics overview for the models presented in Figure 1 and Figure 2. R2 and
Q2 are the correlation coefficients of calibration and validation, respectively. Also depicted are the
normalized root mean squared errors (nRMSE) for calibration and validation which are scaled by the
variable range. For the LOBO viable cell concentration models, the difference in the cell concentration
ranges and the fact that the prediction models overfit the calibration batch result in a negative
Q2 (−0.69) when data from both batches are considered. As such, we chose to depict the Q2 for
each batch separately (0.66 for prediction of growth batch and 0.34 for prediction of infected batch).
CV—3-fold cross-validation; LOBO—leave one batch out; R2—correlation coefficient of calibration;
nRMSE—normalized root mean squared error; Q2—correlation coefficient of validation; VCC—viable
cell concentration. Raw data are provided in Table S3.

3.3. Time-Course Profiles of Morphological and Optical Parameters Measured with DDHM

One of the advantages of using DDHM for monitoring cell culture processes in real-time is the
number of cell and image attributes that are calculated and the possibility to analyze the attribute
evolution profile over culture time. While some of these attributes have an obvious biological meaning
(for instance “Cell Radius”), most of them do not have a direct biological meaning per se. Still, some of
the attributes show an evolution over culture progression and some are clearly correlated with the
critical process variables studied in this work, such as culture viability (Figure 4C,E,F), viable cell
concentration (Figure 4C,G) and extracellular AAV titer profiles (Figure 4A,B,D). These attributes were
included in the final multiple linear regression prediction models with varying contributions for the
overall model (Figure 5 and Table S1). Our final models have between 5 and 12 parameters, excluding
the intercept term (Figure 5 and Table S2).
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Figure 4. Time-course profiles for selected DDHM attributes. The growth batch is represented in black,
while the infected batch is colored in grey. Measurements were obtained every 30 min. (A) Intensity
Average Contrast; (B) Intensity Average Entropy; (C) Intensity Average Intensity; (D) Phase Skewness;
(E) Phase Correlation; (F) Intensity Correlation; (G) Optical Height Minimum; (H) Optical Volume;
(I) Peak Area Normalized; (J) Peak Height.

3.4. Model Parameters Have Biological Significance

With iLine F, more than 60 attributes are calculated per cell. These are related with the cell
morphology (e.g., “circularity”), the light optical characteristics (e.g., “maximum intensity”), the light
phase texture (e.g., “phase skewness”) or the light intensity texture (e.g., “intensity correlation”).
Overall, the parameters with a larger contribution for the obtained models are related with light
intensity and phase characteristics (Figure 5).

Regardless of their relative contribution, some parameters are present in most of the models.
Examples include “optical height maximum”, “phase average uniformity”, “intensity correlation”,
“intensity average intensity” and “phase skewness”. The parameters present in the predictive models
for viability, viable cell concentration and AAV extracellular titer are specially interesting because the
respective variables are also correlated: viability is the quantitative measurement of the decrease in
viable cell concentration, and AAV extracellular titer increase is mostly due to cell lysis [35].
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Figure 5. Relative contribution of each parameter to the final models. For the leave one batch out
(LOBO) models, the batch used for model calibration is indicated (gr—growth; inf—infected). For the
3CV models, the coefficients presented are related to the model using both batches. Relative importance
was calculated using the logworth for each parameter (Table S1).

“Phase skewness” was considered significant for both AAV models, with a total contribution
for the overall model of 15% for extracellular AAV and 5% for specific AAV (Figure 5). Although a
much higher contribution for the intracellular specific AAV model was expected, the fact that “phase
skewness” is also present in some viability models may explain its high contribution for extracellular
AAV. As expected, this parameter has negative coefficients for viability models and positive for the
extracellular AAV prediction model (Table S1).

Another important consideration is the presence of highly correlated attributes, which may
confound biological interpretation of the model contributions. For instance, “phase average uniformity”,
a measure of the uniformity of the light phase in each cell, is strongly correlated (R2 = 0.91) with “radius
variance”, the variance of the cell radius, which is inversely correlated with circularity (R2 = −0.97).
In conclusion, a cell with an increased “phase average uniformity” has a less spherical shape (R2 =−0.88).
The pairwise Pearson correlations for every pair of attributes are shown in Figure S3.

4. Discussion

The aim of this study was to explore the applicability of differential digital holographic microscopy
(DDHM) to monitor important process parameters in the insect cell-baculovirus system, including
the AAV production kinetics. Specifically, the Ovizio iLine F system was used. A forward stepwise
regression technique combined with multiple linear regression was applied to the morphological and
physiological attributes quantified by DDHM, successfully identifying candidates relevant for viable
cell concentration, viability and intra and extracellular AAV titer.

Currently, there is a lack of methods available for monitoring of viral particles production
during cell culture [3]. The existing methods explore chemometrics approaches, by measuring process
variables related with the viral production kinetics [9] or changes in the morphological and physiological
alterations of the cells [3,36]. In particular, for the baculovirus system, these methods are mostly based
on the known increase of cell diameter upon baculovirus infection [27–29], although they were used as
an assay rather than for in-culture determination.
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Viability is one of the most important process variables to consider in many viral-based systems,
being related with product quality and influencing harvest decision [9,36,37]. In both batches, cell
viability decreases in the end of the culture. However, the onset of viability decrease occurs with different
biological triggers: while in the infected batch cell viability decreases due to baculovirus-induced cell
lysis, in the growth batch cells died by nutrient starvation. This validates the applicability of DDHM,
but also provides a possible explanation to why the parameters present in each LOBO viability model
are different (Figure 5), since the biological reason for the cell death was different. While some of
the identified model parameters have a clear similarity with viability profiles (e.g., Figure 4C,E,F); in
general, these are not the most important for the viability prediction models. Given the small dataset
used, the parameters more important for the models may be in fact distinguishing between infected
and growth batch (e.g., Figure 4J, “peak height”) followed by fine-tuning using the attributes with the
similar viability profile. While addition of more calibration batches would increase the confidence
in the determination of the parameters associated with viability, the prediction profiles using LOBO
(Figure 1A) show DDHM possess enough predictive power for prediction of viability using only one
batch for calibration, and additional batches are expected to further improve the prediction accuracy.

Although the lack of an independent testing set for viable cell concentration and AAV predictions
prevents assessment of model validation for new batches, our aim was to explore iLine F applicability to
study this production system. Furthermore, the identification and analysis of the parameters correlated
with the modeled variables provides valuable biological insights for AAV production in insect cells.

Most of the attributes calculated with DDHM have no biological meaning per se, but can be
used to characterize a dynamic phenotype, indicative of the cell adaptation to different biological
situations [10,34]. However, some of these parameters may have a possible biological explanation. For
instance, “phase correlation”, a measure of how neighboring pixels are correlated, has a time-profile
very similar to the culture viability profiles (Figure 4E). A possible explanation may be related
with the increase in intracellular complexity during baculovirus infection. The cellular phenotype
alterations occurring throughout baculovirus infection and the release of intracellular compounds to the
culture supernatant during lysis will increase the entropy inside the cell, consequently resulting in less
correlation of each pixel with its neighbors and a decrease in the phase correlation profiles. For viable cell
concentration, it is expected that the attributes more predictive for viable cell concentration are related
to light intensity, due to light dispersion caused by suspension cells, analogous to turbidimetry-based
measurements (Figure 5). In fact, one of the parameters common to all three viable cell concentration
models is “intensity correlation” (Figure 4F), a measure of how correlated the intensity of one pixel is
to the intensity of its neighbors over the cell surface.

Interestingly, “phase skewness” has a time-course profile very similar with extracellular AAV
production (Figure 4D) for both batches. We believe this increase in “phase skewness” concomitant
with AAV production is due to a combination of several factors: the cell nucleus and nucleolus
possess a higher molecular density than surrounding regions, and are likely the cell organelles better
detected using QPI due to their higher phase contrast [15]. Additionally, AAV capsid assembly takes
place in the nucleolus [38]. We hypothesize that AAV production in the nucleolus of infected cells
increases the phase contrast of that nuclear region but not in the surrounding regions, creating an
asymmetry. The attribute “phase skewness” measures the lack of symmetry for the phase histogram of
the cell and would therefore increase. A similar explanation can be derived for baculovirus, which
also assembles in the nucleus [39]. Moreover, infection at low baculovirus multiplicity of infection
(MOI) yields a first round of baculovirus release from infected cells, approximately 24 h after infection.
The released baculovirus will then infect more insect cells, originating a second round of infection.
In the phase skewness profiles shown in Figure 4D, all these phases can be observed, likely validating
our hypothesis: first baculovirus infection cycle from 24 h (infection time) to 48 h; and second infection
from 48 to 72 hours. The fact that baculovirus and AAV induce a different phase skewness profile
(decrease for baculovirus and increase for AAV) may be due to their different shape (rod vs icosahedral,
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respectively), and the fact that baculovirus nucleocapsid is assembled in another nucleus region, the
virogenic stroma [40], among other factors.

Finally, it is important to consider the influence of biological factors such as cell passage or similar.
Since we have a small dataset, we cannot be sure whether some of the model parameters are accounting
with biological variability between the two runs.

Comparison of the number of parameters in the 3CV models allows to have a sense of the difficulty
in measuring the AAV signals when compared to viable cell concentration and viability, which have
a more “macroscopic” change. More simple models (with 5 and 7 terms) were enough to describe
viable cell concentration and viability, respectively, while for AAV, models with 10 and 12 parameters
were needed (for extracellular AAV and intracellular specific AAV, respectively). This is also expected
due to the complexity of measuring viral-induced cell changes, in which a combination of methods
(measuring nucleus, diameter, cell intracellular complexity) is needed. Another possibility relies in
the very different ranges and time profiles for viable cell concentration in the two batches, while
for AAV, only one range is available. Higher range variations allow to better discriminate between
significant and non-significant attributes. We expect these models to be refined with more batches,
excluding parameters which are less relevant and clearly highlighting the attributes relevant for
each variable. After identification of the relevant attributes for each quality parameter, it would be
interesting to assess how those attributes would change for other production systems, AAV serotypes
or packaged transgenes.

Other authors have monitored the insect cell-baculovirus system using real-time monitoring tools,
mainly using dielectric spectroscopy [3,9,20,25,26,41]. Compared with other published reports using
real-time monitoring in this system, DHM provides a simpler workflow: First, iLine F assembly in the
bioreactor is straightforward and no preliminary calibrations are needed; data analysis is in real-time
(every 30 min) and immediate (no preprocessing needed) and, in OsOne, there is a beta-version
algorithm to estimate the percentage of baculovirus-infected cells, which we tried for the infected
batch (Figure S2). Further optimization of this algorithm could be helpful to monitor the baculovirus
replication kinetics and optimize the production conditions, such as the overall multiplicity of infection
to use, and contribute to understanding how this parameter correlates with infection progression.
Moreover, the attribute stepwise selection coupled with the multiple linear regression methodology
presented in this work has the advantage of generating more interpretable models, when compared with
partial least squares (PLS) or other projection-based methods: multiple linear regression models are
easier to interpret regarding the biological meaning of each parameter, enabling process understanding
under the PAT initiative. This is because in multiple linear regression the coefficients of the parameters
itself are analyzed, differing from PLS in which the focus is on the principal components, which are
linear combinations of several parameters.

In future experiments using this modeling approach, more “perturbation” batches will be useful to
determine an AAV-related “label-free dynamic phenotype” [10], identifying the attributes related with
AAV production and gaining insights into their biological meaning. Batches that would strengthen
the viable cell concentration model calculations include more “growth only” runs, at different cell
seeding densities. For AAV models, examples include runs allowing to decouple AAV production
signals from other signals which may be correlated with viable cell concentration or baculovirus
production. For instance, infection with empty baculovirus (a baculovirus vector which is devoid of
any transgene, but still can infect and replicate in insect cells, and thus generate the normal cytopathic
effects expected in this system) or only with the rep-encoding baculovirus. Infection with only the
cap-encoding baculovirus would possibly be useful for finding attributes associated with empty or full
AAV capsid formation, which, together with the infectivity profile, is one of the most important quality
attributes for AAV vectors [31]. Regarding the full to empty ratio, runs using other AAV production
systems can also be performed, particularly using systems known by their high full particle ratio,
as is the case of the herpes simplex production system [42]. Exploring the application of DHM to
other AAV-producing systems, such as the HEK293 transfection system, could elucidate the differences
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for AAV production in transfection and infection processes and between different producer cells.
Moreover, DHM could provide further insight into the reason why suspension-based transfection is
less efficient than adherent-transfection. An alternative DHM device with equivalent image processing
capabilities, the QMod (also by Ovizio Imaging Systems), could be used to enable a similar approach
in adherent cell culture. Finally, combining the DDHM attributes with process data (e.g., DO profiles,
total oxygen flow) may further increase prediction capabilities due to the increase of complementary
information available [43].

Overall, we demonstrate the suitability of this methodology and DDHM technology for monitoring
two of the most important variables for AAV production using insect cells: cell concentration and
viability, and with potential for the development of feeding strategies schemes for AAV production.
The approach described in this work enables model interpretability, increasing process understanding
and allowing to draw conclusions regarding the biological state of the cell at each infection stage.
Moreover, models for determination of AAV production were developed, and correlations between
DDHM attributes and AAV measurements were determined, identifying for the first-time attributes
related with AAV production detectable using phase microscopy. For future work, it would be relevant
to employ the same strategy for identification of the DDHM attributes relevant for prediction of AAV
infectivity and full to empty ratio, in order to fully explore the potential of this method to optimize
AAV titer and quality, in line with the PAT initiative.
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Figure 1 and Figure 2”, Figure S1: “Overview of the cell culture evolution profile over time, as captured by OsOne
software“, Figure S2: “Evolution of the predicted process variables using Ovizio proprietary models”, Figure S3:
“Pearson correlation coefficients for all attributes”, Video S1: “Representative video of the culture at 99h of culture.
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