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Abstract: Phenolic acids and natural extracts, as ecofriendly environmental agents, can be used as
bio bactericides against the growth of plant pathogenic bacteria. In this study, isolation trails from
infected potato tubers and stems that showed soft rot symptoms in fields revealed two soft rot bacterial
isolates and were initially identified through morphological, physiological, and pathogenicity tests.
The molecular characterization of these isolates via PCR, based on the 16S rRNA region, was carried
out by an analysis of the DNA sequence via BLAST and Genbank, and showed that the soft rot
bacterial isolates belong to Pectobacterium carotovorum subsp. carotovorum (PCC1) and Dickeya solani
(Ds1). The in vitro results of the tested phenolic acids against the cultured bacterial isolates proved
that concentrations of 800, 1600, and 3200 µg/mL were the most effective. Ferulic acid was the potent
suppressive phenolic acid tested against the Ds1 isolate, with an inhibition zone ranging from 6.00 to
25.75 mm at different concentrations (25–3200 µg/mL), but had no effect until reaching a concentration
of 100 µg/mL in the PCC1 isolate, followed by tannic acid, which ranged from 7.00 to 25.50 mm. On the
other hand, tannic acid resulted in a significant decrease in the growth rate of the PCC1 isolate with a
mean of 9.11 mm. Chlorogenic acid was not as effective as the rest of the phenolic acids compared
with the control. The n-hexane oily extract (HeOE) from Bougainvillea spectabilis bark showed the
highest activity against PCC1 and Ds1, with inhibition zone values of 12 and 12.33 mm, respectively,
at a concentration of 4000 µg/mL; while the HeOE from Citharexylum spinosum wood showed less
activity. In the GC/MS analysis, nonanal, an oily liquid compound, was found ata percentage of
38.28%, followed by cis-2-nonenal (9.75%), which are the main compounds in B. spectabilis bark HeOE,
and 2-undecenal (22.39%), trans-2-decenal (18.74%), and oleic acid (10.85%) were found, which are
the main compounds in C. spinosum wood HeOE. In conclusion, the phenolic acids and plant HeOEs
seem to raise the resistance of potato plants, improving their defense mechanisms against soft rot
bacterial pathogens.

Keywords: Pectobacterium; Dickeya; Bougainvilla; Citharexylum extract; ecofriendly environmental
agents; phenolic acids
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1. Introduction

Potato (Solanum tubersum L.) is the world’s fourth most consumed crop, with an estimated
374 million tons of production worldwide, obtained from nearly 17,623,660 hectares [1]. Potato is
rated as one of Egypt’s most significant vegetable crops, with a production total of 4,325,478 tons from
around 163,939 hectares, making Egypt the second largest potato producer after Algeria. The main
reasons for soft rot and blackleg disease in potatoes in warmer climates are Pectobacterium carotovorum
subsp. carotovorum and P. atrosepticum [2,3], whereas, in Brazil and South Africa, the main causative
agent for blackleg disease is P. carotovorum subsp. brasiliensis [4,5]. In early studies, Erwinia chrysanthemi
was recognized as a causative agent of potato stem rot disease—recently reclassified as Dickeya spp. [6].
In Egypt, the main agents causing soft rot and blackleg disease are P. atrosepticum, P. carotovorum subsp.
carotovorum [7–10], and Dickeya solani, P. carotovorum subsp. brasiliensis [4,11,12]. Potatoes with soft rot
cause massive losses of over 40% to 80% as a result of weather factors [13,14].

In the pathogenicity tests [15], 24 potato cultivars were tested for their susceptibility to soft rot
caused by P. atrosepticum using a tuber slice test. The symptoms of soft rot on potato tuber, carrot, and
sweet potato, as well as the fruits of eggplant and pepper, appear one to three days after inoculation
with soft rot bacteria [16,17]. D. solani caused a greater loss of carrot tissue, higher than P. carotovorum
subsp. carotovorum [18].

Chlorogenic, caffeic, and protocatechuic acids are the main phenolic acids in potato peels, while
the mild phenolic acids are gallic, ferulic, and p-coumaric acids. The phenolic levels found in potato
peels are significantly greater than in the potato flesh [19,20]. Phenolic acids are the first defense for
potato tubers against Pectobacteria infection during wound healing, as they promote the inhibition of
proteolytic activity or bactericide action [20–25].

Bougainvillea spectabilis (Bougainvillea), a popular woody shrub, grown in tropical and sub-tropical
regions, has certain phytochemicals, such as saponins, quinones, flavonoids, triterpenoids, phenols,
sterols, glycosides, furanoids, tannins, and small amounts of sugars [26–29]. B. spectabilis leaves contain
d-pinitol (3-O-methylchiroinositol) [30]. Ethanolic and methanolic extracts from B. spectabilis leaves
show a good antimicrobial effect against Gram-positive and -negative bacteria, and could replace the
use of antibiotics [31].

Citharexylum spinosum (C. quadrangulare or C. fruticosum) belongs to the Verbenaceae family.
Citharexylum species have shown good biological activities, such as antioxidant, nephroprotector,
anti-inflammatory, gastroprotector, hypoglycemic, antipyretic, and antibacterial activities [32–35].
Carotenoids, iridoids, flavonoids, terpenoids, alkaloids, and saponines, which were isolated and
identified from the extracts of Citharexylum species [32,36–38].

The objectives of the present study were to isolate and identify potato soft rot bacteria through
classical and molecular tests, in order to determine the sensitivity of soft rot bacteria Pectobacterium
carotovorum subsp. carotovorum (PCC1) and Dickeya solani (Ds1) toward some phenolic acids and plant
extracts from B. spectabilis bark and C. spinosum wood.

2. Materials and Methods

2.1. Isolation and Conventional Identification of the Soft Rot Bacteria

Potato tubers showing soft rot and stems exhibiting blackleg symptoms were collected from
different localities at El-Behira Governorate, Egypt (Table 1), and a bacterial pathogens isolation
procedure was performed [39]. The morphological and biochemical characteristics tests were applied
on the obtained soft rot bacterial isolates, and included cell shape, Gram staining, motility, anaerobic
growth, growth at 36 ◦C, gelatin liquefaction, indole formation, nitrate reduction, hydrolysis of
starch, lipolytic activity, mucoid growth, H2S production from cysteine, reducing substance from
sucrose, acetoin production, urease production, oxidase, growth in 5% NaCl, and sensitivity to the
antibiotic erythromycin [40]. The bacterial isolates were molecularly identified through 16S rRNA
gene sequencing, according to Ashmawy et al. [16].
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2.2. Molecular Identification Throught the 16S rRNA Gene

After bacterial DNA isolation by CTAB method [16], a full length of the 16S rRNA
gene (1550-bp) was amplified for the two bacterial isolates using primers—P0 as the
forward (5′-GAAGAGTTTGATCCTGGCTCAG-3′) and P6 as the reverse (5′-CTACGGCTACCTTGT
GTTACGA-3′). PCR amplification was performed in a total volume of 50 µL, containing 25 µL of master
mix (enzymocis, korea), 2 µL of each P0 or P6 primer (10 pmol) with final concentration 0.1–0.5 µM
of each primer, 2 µL (50 ng/µL) of bacterial genomic DNA, and molecular grade water was added
until the volume reached 50 µL. The PCR reaction was carried out as follows: 1 cycle at 95 ◦C (5 min)
for initial denaturation, and 35 cycles (denaturation for 45 s at 95 ◦C, annealing for 60 s at 50 ◦C, and
elongation for 120 s at 72 ◦C) for the final extension, for 7 min at 72 ◦C. PCR amplicons were visualized
by an ultra-violet (UV) transilluminator [16].

Sequencing of 16S rRNA Gene and BLASTn

The amplified amplicons of the 16S rRNA gene were purified and sequenced by a BigDye®

Terminator v1.1 Cycle Sequencing Kit (ThermoFisher SCIENTIFIC, Waltham, MA, USA) and analyzed
by 3130 Genetic Analyzer (Macrogen Co., Seoul, Korea). Alignment of the nucleotide sequences was
performed with MSA CLUSTAL (Omega https://www.ebi.ac.uk/Tools/msa/) [16]. BLASTn was used
for the nucleotide sequences comparisons on the GenBank website (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) [41,42].

2.3. Plant Material and Pathogenicity Test

Potato tuber cultivar “Diamont” was obtained and examined for its ability to exhibit the soft rot
symptoms, using the two bacterial isolates as cited by Manzira [14], and the disease severity index was
estimated as PDI = [(A – B)/ A] ∗ 100. Here, PDI is the percentage of disease severity index, A is the
tuber weight with rotting, and B is the tuber weight without rotting [43].

2.4. Source of Phenolic Acids, Extraction Method of Plant Parts Used, and GC/MS Analysis

The phenolic compounds of caffeic, tannic, p-coumaric, protocatechuic, chlorogenic, and ferulic
acid were purchased from Sigma-Aldrich (Merck). Samples of Bougainvillea spectabilis Willd. and
Citharexylum spinosum L. plants were collected from Alexandria, Egypt, during September, 2018 and
authenticated by Dr. Mohamed Z.M. Salem, Department of Forestry and Wood Technology, Alexandria
University, Alexandria, Egypt (Voucher number Zidan0059, and Zidan0060, respectively). The extracts
from B. spectabilis bark and C. spinosum wood were prepared by soaking 50 g of each part of the
plant—in the form of powered material after air-drying—in n-hexane (150 mL) for 6 h under shaking,
after which the extract was concentrated in a vacuum using a rotary evaporator.

2.5. Influence of Some Phenolic Acids and Plant Extracts on Bacterial Growth

The two bacterial isolates were tested against 0, 25, 50, 100, 200, 400, 800, 1600, and 3200 µg/mL
concentrations of caffeic, tannic, p-coumaric, protocatechuic, chlorogenic, and ferulic acids using
agar-well diffusion method in a nutrient agar (NA) medium. After 48 h of incubation, the inhibition
zone (mm) was measured, and the assays were replicated three times and the experiments conducted
twice [44]. The extracts were prepared at concentrations of 125, 250, 500, 1000, 2000, and 4000 µg/mL.

The chemical compositions of the n-hexane oily extracts (HeOEs) from B. spectabilis bark and C.
spinosum wood were analyzed using a Focus GC-DSQ Mass Spectrometer (Thermo Scientific, Austin,
TX, USA) with a direct capillary column of TG-5MS (30 m × 0.25 mm × 0.25 µm film thickness).
The temperature programs and column separation conditions can be found in previous work [45].
Identification of the compounds was done by a comparison of their retention times, as well as the MS
reported from the WILEY 09 and NIST 11 mass spectral databases [46]. The values of the standard
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index (SI) and reverse standard index (RSI) were also reported in order to confirm that all of the spectra
were appended to the library [47,48].

2.6. Statistical Analysis

The data were analyzed statistically with a two-way analysis of variance (ANOVA) using SAS
software (SAS Institute, NC, USA) [49]. The two factors that analyzed were phenolic and extracts,
as well as their respective concentrations. The means of the treatments were compared with control
treatment, according to the Duncan’s Multiple Range Test at a 0.05 level of probability.

3. Results

3.1. Isolation Trails of the Causal Bacterial Pathogens

The isolation trails of the soft rot and blackleg symptoms (Figure 1) collected from the El-Nubaria
and Wadi Elnatron regions, Egypt, revealed two bacterial isolates PCC1 and Ds1 which belonging to
Pectobacterium and Dickeya genera, respectively (Table 1).
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Figure 1. Natural infection of potato tubers with soft rot and blackleg symptoms: (left) Pectobacterium
carotovorum subsp. carotovorum (PCC1) and (right) Dickeya solani (Ds1).

Table 1. Origin and disease index of soft rot and blackleg bacterial isolates.

Bacterial
Genera Isolates Code Potato Part Cultivar Origin Disease Severity

Index ± SD

Pectobacterium PCC1 Tuber Roseta El-Nubaria, El-Behira,
Egypt 86.04 ± 0.97

Dickeya Ds1 Stem Hermes Wadi elnatron,
El-Behira, Egypt 71.62 ± 0.53

Control 0.00 ± 0.00

3.2. Phenotypic and Molecular Identification of the Soft Rot Bacteria

Based on the morphological, biochemical, and physiological characteristics of the isolated soft rot
bacteria, the bacterial isolates were identified as Pectobacterium carotovorum subsp. carotovorum (PCC1)
and Dickeya solani (Ds1) (Table 2). The identification of the isolates PCC1 and Ds1 was confirmed
using the 16S rDNA sequences analysis, and was deposited in the GenBank database under accession
numbers MN598002 and MN598003, respectively.
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Table 2. Morphological traits and physiological and biochemical reactions of Pectobacterium carotovorum
subsp. carotovorum and Dickeya solani isolates.

Characteristics
Bacterial Isolates

Pectobacterium carotovorum subsp. carotovorum Dickeya solani

Shape (rods) + +
Gram staining − −

Motility + +
Anaerobic growth + +

Potato soft rot + +
Growth at 37 ◦C + +

Gelatin liquefaction + +
Mucoid growth + +
Kovac’s oxidase − −

H2S from cysteine + +
Indole production − +

R. substance from sucrose − −

Urease production − −

Growth in 5% NaCl + −

Sensitivity to erythromycin − +
Phosphatase − +

Malonate utilization − +
Starch hydrolysis + +

Glucose a a
α-methyl glucoside − −

Maltose − a
Lactose a a

L-Arabinose a a
Dulcitol a a
Manitol a a

Trehalose a −

Note: “+” = positive reaction; “−” = negative reaction; a = acid.

3.3. Pathogenicity Tests

The two tested bacterial isolates were pathogenic and produced soft rot symptoms on potato
tubers. The PCC1 isolate showed a high disease index (86.04%), while the disease index of the isolate
Ds1 was 71.62% (Table 1).

3.4. Influence of Some Phenolic Acids and Plant Oily Extracts on Growth of PCC1 and Ds1 Isolates

The data presented in Table 3 show the highly significant effects of the tested phenolic acids/oily
extracts and their concentrations against the growth of PCC1 and Ds1. Table 4 shows that the different
concentrations of the tested phenolic acids or the n-hexane oily extracts (HeOEs) from Bougainvillea
spectabilis bark and Citharexylum spinosum wood caused different degrees of growth inhibition on
the PCC1 and Ds1 isolates. It is evident that ferulic acid was the most suppressive to Ds1 isolate
growth, with an inhibition zone (IZ) that ranged from 6 to 25.75 mm but had no effect on the PCC1
isolate growth until reaching a concentration of 100 µg/mL. On the other hand, tannic acid application
decreased the growth rate of the PCC1 isolate with a mean of 9.11 mm. Finally, chlorogenic acid was
less effective than all of the other phenolic acids used compared with the control. Significant differences
were found among all phenolics at concentrations of 400 and 800 µg/mL. On the other hand, phenolic
acid concentrations of 25 and 50 µg/mL had no noticeable effect on the two isolates, except for ferulic
acid. Overall, the PCC1 isolate was more tolerant to all of the phenolic acids than the Ds1 isolate,
and the applied concentrations of 800, 1600, and 3200 µg/mL were the most effective at inhibiting the
two isolates.
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Table 3. Analysis of variance (ANOVA) for the significance effects of phenolic/extract, concentration,
and their interaction against the growth of P. carotovorum and D. solani.

Source of Variance DF Type III SS Mean Square F Value Pr > F

PCC1

Concentrations (A) 12 6604.123 550.343 1651.91 <0.0001
Phenolic/extract (B) 6 269.392 44.898 134.77 <0.0001

A × B 40 393.7006 9.842 29.54 <0.0001

Ds1

A 12 8346.289 695.524 5894.27 <0.0001
B 6 1843.256 307.209 2603.47 <0.0001

A × B 40 939.368 23.484 199.02 <0.0001

Table 4. Effect of phenolic acids/oily extracts at various concentrations against the growth of P.
carotovorum subsp. carotovorum (PCC1) and D. solani (Ds1).

Phenolic Acids/Extracts Concentrations µg/mL Inhibition Zone Diameter (mm) ± SE

PCC1 Ds1

Caffeic acid

25 0.00 0.00
50 0.00 0.00

100 7 ± 0.00 0.00
200 7 ± 0.00 0.00
400 8.5 ± 0.28 6 ± 0.00
800 13.75 ± 0.14 7.75 ± 0.14
1600 18 ± 0.00 18.75 ± 0.14
3200 20.7 ± 0.46 22.75 ± 0.72

Tannic acid

25 0.00 0.00
50 0.00 0.00

100 7 ± 0.00 7 ± 0.00
200 8.75 ± 0.14 11.75 ± 0.14
400 11.5 ± 0.28 15.25 ± 0.14
800 15.25 ± 0.14 17.25 ± 0.14
1600 17.25 ± 0.14 21.5 ± 0.28
3200 22.25 ± 0.14 25.5 ± 0.00

p-Coumaric acid

25 0.00 0.00
50 0.00 0.00

100 0.00 8 ± 0.00
200 0.00 9 ± 0.00
400 7 ± 0.00 9 ± 0.00
800 10.25 ± 0.14 14 ± 0.00
1600 13 ± 0.00 17.5 ± 0.28
3200 18 ± 0.28 20.25 ± 0.14

Protocatechuic acid

25 0.00 0.00
50 0.00 0.00

100 7 ± 0.00 0.00
200 7 ± 0.00 6 ± 0.00
400 10.5 ± 0.28 8 ± 0.00
800 11.87 ± 0.36 8.75 ± 0.14
1600 12 ± 0.00 11 ± 0.00
3200 14.75 ± 0.14 14.5 ± 0.28
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Table 4. Cont.

Phenolic Acids/Extracts Concentrations µg/mL Inhibition Zone Diameter (mm) ± SE

PCC1 Ds1

Chlorogenic acid

25 0.00 0.00
50 0.00 0.00

100 0.00 0.00
200 6 ± 0.00 11.5 ± 0.00
400 10 ± 0.00 15.5 ± 0.00
800 13.5 ± 0.28 22 ± 0.28
1600 18.5 ± 0.28 25.5 ± 0.00
3200 19.25 ± 1.01 25.25 ± 0.43

Ferulic acid

25 0.00 6 ± 0.00
50 0.00 9 ± 0.00

100 6.5 ± 0.28 11.5 ± 0.28
200 7 ± 0.00 14.75 ± 0.14
400 8.5 ± 0.00 18.5 ± 0.00
800 12.25 ± 0.14 22.5 ± 0.00
1600 17.75 ± 0.14 24.25 ± 0.14
3200 21.5 ± 0.57 25.75 ± 0.14

Bougainvillea spectabilis
bark

125 6.66 ± 0.88 6.83 ± 0.16
250 7.33 ± 0.66 7.16 ± 0.16
500 7.33 ± 0.33 9.33 ± 0.46
1000 9 ± 0.57 10 ± 0.33
2000 9.66 ± 0.33 11 ± 0.22
4000 12 ± 0.57 12.33 ± 0.33

Citharexylum spinosum
wood

125 6.33 ± 0.88 6.16 ± 0.44
250 6.66 ± 0.66 6.5 ± 0.28
500 6.66 ± 0.66 7.5 ± 0.28
1000 7 ± 0.57 7.83 ± 0.16
2000 8.66 ± 0.33 8.33 ± 0.33
4000 10 ± 0.57 8.5 ± 0.28

Control 0 0.00 0.00

p-value ** **

Note: SE = standard error; ** = highly significance at a 0.01 level of probability.

Additionally, from Table 4, the n-hexane oily extracts (HeOEs) from B. spectabilis bark and C.
spinosum wood showed that with increasing the HeOE concentration, the IZ observed against the
growth of PCC1 and Ds1was increased. The highest IZ (12 mm) against PCC1 was observed for B.
spectabilis bark HeOE applied at a concentration of 4000 µg/mL, followed by the same HeOE with an IZ
of 9.66 mm at a concentration of 2000 µg/mL. Furthermore, B. spectabilis bark HeOE at 4000, 2000, and
1000 µg/mL showed the highest IZs against the growth of Ds1, with values of 12.33, 11, and 10.33 mm,
respectively. Furthermore, C. spinosum HeOE showed an IZ value of 10 mm against the growth of
PCC1 at 4000 µg/mL level of concentration. Overall, the phenolic acids showed the highest activity
against the growth of both of the bacteria, compared with the HeOEs.

3.5. Chemical Constituents of B. spectabilis Bark and C. spinosum Wood Oily Extracts

Table 5 presents the chemical composition of the B. spectabilis bark HeOE. The main dominant
compounds were nonanal (38.28%), cis-2-nonenal (9.75%), octanal (8.16%), β-sitosterol (7.8%),
3-hydroxy-dodecanoic acid (6.9%), heptanal (4.03%), 8-oxabicyclo[5.1.0]octane (3.50%), (E)-2-octen-1-al
(2.68%), 1-decene (1.92%), (E)-2-decen-1-ol (1.84%), 9-oxabicyclo[6.1.0]nonan-4-ol (1.39%), and
1-chlorohexane (1.18%).
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Table 5. Phytochemicals of B. spectabilis bark HeOE by GC/MS.

Compound Value in the Extract (%) SI 1 RSI 2

Hex-2-ulosonic acid 0.49 659 718
1-Chlorohexane 1.18 675 683

5-heptyldihydro-2(3H)-furanone 0.57 710 725
2-Ethylpentane 0.53 707 873

Octane 0.54 816 877
Hexanal 0.72 773 808

2-Hexyl-cyclopropaneacetic acid 0.33 749 789
9-Oxabicyclo[6.1.0]nonan-4-ol 1.39 665 674

2-Undecanol 0.72 648 847
1-Hydroperoxyhexane 0.48 646 745

Heptanal 4.03 763 817
β-sitosterol 7.8 838 951

(E)-2-Decen-1-ol 1.84 681 686
8-Oxabicyclo[5.1.0]octane 3.50 692 745

Isopinocarveol 0.93 651 686
Octanal 8.16 814 832

8,11-Octadecadiynoic acid methyl ester 0.78 684 691
5-Isopropenyl-2-methyl-2-cyclohexen-1-ol 0.40 675 684

(E)-2-Octen-1-al 2.68 770 823
trans-Pinocarveol 0.27 700 758
(Z)- 2-Tridecenal 0.58 723 792

2-Hexyl-cyclopropaneacetic acid 0.20 710 754
1-Decene 1.92 737 741

Nonanal (Pelargonaldehyde) 38.28 896 912
Tetradecan-1-ol 0.30 691 693

13,16-Octadecadiynoic acid methyl ester 0.98 680 688
2-Phenylbutanal 0.94 676 680

cis-2-Nonenal 9.75 792 885
3-Hydroxy-dodecanoic acid 6.9 736 737

1: SI = standard index; 2: RSI = reverse standard index.

The chemical compositions of the HeOE from C. spinosum wood are shown in Table 6. The abundant
chemical constituents were 2-undecenal (22.39%), trans-2-decenal (18.74%), oleic acid (10.85%), nonanal
(9.75%), 2-methylenecholestan-3-ol (6.01%), (Z)-2-tridecenal (4.03%), Z-(13,14-epoxy)tetradec-11-en-1-ol
acetate (3.58%), 3-hydroxy-dodecanoic acid (3.34%), 9-hexadecenoic acid (2.3%), 1-dodecene (1.96%),
(E)-2-nonenal (1.78%), octanal (1.72%), and 12,15-octadecadiynoic acid methyl ester (1.7%).

Table 6. Phytochemicals of C. spinosum wood HeOE byGC/MS.

Compound Value in the Extract (%) SI 1 RSI 2

2,7-dimethyl-1-Octanol 0.32 721 787
1-Dodecene 1.96 763 763
2-Undecanol 1.39 848 172

Octanal 1.72 809 838
(Z)-2-Tridecenal 4.03 778 838

Nonanal 9.75 889 914
Hexadecanoic acid phenylmethyl ester 0.92 706 720

(E)-2-Nonenal 1.78 786 902
3-Hydroxy-dodecanoic acid 3.34 821 821

trans-2-Decenal 18.74 881 926
β-Hydroxydodecanoic acid 0.77 797 799

(E,E)-2,4-Dodecadienal 1.48 795 803
2-methylenecholestan-3-ol 6.01 749 868

2-Undecenal 22.39 899 926
1,2-15,16-Diepoxyhexadecane 1.21 798 807

1-acetyl-16-methoxy-aspidospermidin-17-ol 1.04 800 830
9-Hexadecenoic acid 2.3 806 811

12,15-Octadecadiynoic acid methyl ester 1.7 770 793
Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate 3.58 804 813

1-Heptatriacotanol 0.9 790 796
Oleic acid 10.85 857 859

1: SI = standard index; 2: RSI = reverse standard index.
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4. Discussion

Soft rot disease causes huge economic losses, estimated to be between 40% to 80% depending on
climatic conditions, and Pectobacterium carotovorum subsp. carotovorum (PCC1) and Dickeya solani (Ds1)
are the causal agents of soft rot disease in potato tubers in stores and in the field, where the early decay
of mother tubers or seed tuber pieces may occur [13,14,50–52]. The pathological behavior of the isolated
bacterial cultures, as well as their cultural, morphological, and physiological characters conform to
those known for all soft rot bacteria. On the basis of the obtained data, we could identify these isolates
as PCC1 and Ds1, in the same way as many other researchers have in previous works [4,11,12,40,53–55].

Nowadays, the major objective of modern Egyptian agriculture is to offer a strategy that would
lead to minimizing the use of chemical pesticides, at the same time increasing the economic yield of
crops. Therefore, much attention has been given to hinder the severity and spread of plant diseases,
especially bacterial plant pathogens, by using all possible non-polluting methods of plant disease
control. The objective of this research was to describe the tolerance of isolates PCC1 and Ds1 to
phenolic acids. The findings in the present work showed that ferulic and tannic acids had a substantial
inhibitory impact on the growth of Ds1 and PCC1 isolates. A mixture of caffeic and chlorogenic acids
could prevent bacterial soft rot infection from occurring, and the major phenolic acids detected in the
tuber peels that had soft rot antimicrobial effects were chlorogenic, caffeic, and ferulic acids [21,22].

Tannic acid inhibited the growth of certain bacterial strains [56], while tannic and gallic acids
inhibited the growth and protease or pectatelyase enzyme activities of the soft rot isolate D. solani [23].
A more pronounced antimicrobial impact at different concentrations was found for tannic acid. The
size difference and percentage of oH- groups between ferulic and tannic acids can explain this varied
response against soft rot bacterial pathogens [57]. Both phenolic acids can affect pathogen growth
by contact with the produced protease and pectate lyase enzymes, the effective mechanism could
be described as protein inhibitors by modifying their stability and losing cellular permeability, or by
reducing the substrate availability or chelating the metal co-factor, as the tannic acid can fix the iron
metal [58–63]. In this study, both isolates (PCC1 and Ds1) were growth inhibited by the examined
polyphenols, and we suggest that the mode of action could interact and inactivate the enzyme active
sites, which leads to precipitating the enzymatic proteins. This is in agreement with several authors
who have talked about the mechanisms of tannic acid, polyphenol compounds, and their significant
biological impacts, for example as bactericidal, antiviral, or fungal repressors [64,65].

Fatty acid and fatty alcohols, such as n-octacos-9-enoic acid and n-hentriacontanol, were isolated
from Bougainvillea spectabilis roots [66]. Butyl formate, butyl acetate, methyl 2-methylbutanoate, methyl
hexadecanoate, ethyl hexadecanoate, hexanal, heptanal, ethyl 3-hydroxy-hexanoate, and methyl
linolenate were isolated from leaves and branches [67]. (Z)-2-hexenal, linaool, 2-heptadecanone,
toluene, O-xylene, 2-furfural, terpinolene, terpinen-4-ol, and methyl salicylate were identified in the
leaves and branches of B. spectabilis [67]. Compounds of bougainvinone A-M were isolated from
stem bark of B. spectabilis [26], also, quercitrin as a flavonoid compound has been isolated from the
stem bark [28]. Different solvent extractions, such as methanol, ethanol, water, chloroform, and ethyl
acetate, were used to extract the chemical compounds from different parts of B. spectabilis, and have
observed a good antibacterial activity [68–70]. B. spectabilis might be considered as a potential source
of metabolites, which could be developed as precursors for antimicrobial and antioxidant drugs [71].

Citharexylum spinosum has been reported to have some biological isolated compounds, such
as 5-deoxy pulchelloside, 8-epiloganin, iridoid glucoside, lamiidoside, duranterectoside C, and the
lignan glucoside [36,72]. Flower essential oil and extracts exhibited antibacterial and antioxidant
activities [33,73,74]. At 8 µg/mL of concentrated methanol extract of C. spinosum wood, there was a
potent inhibition against the growth of P. variotii seen [75]. The B. spectabilis extract was more effective
than C. spinosum extract, and this may be because it contains aldehydes and huge amounts of volatile
compounds, such as nonanal, which was found in the phytochemical analysis at a percentage of 38.28%.
The biological activities of nonanal have only been reported in a few publications, as it significantly
inhibits the mycelia growth of P. cyclopium [76].
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The inhibitory effect of B. spectabilis extract could correlate with the concentration of nonanal versa
C. spinosum wood extracts, and these results are the same as other reports [77–79]. Inhibition against A.
niger and P. selerotigenum growth was found with minimum inhibitory concentration (MIC) values of
250 µg/mL and 500 µg/mL, respectively [76]. Chloroform leaf extract from C. spinosum showed a weak
activity against P. carotovorum subsp. carotovorum, P. atrosepticum and D. solani, [80]. The stem-bark
ethyl acetate extract of C. spinosum showed the presence of vanillic acid [38]. ρ-coumaric acid, salicylic
acid, and hispidulin were identified in the Citharexylum genus to have a good antimicrobial activity [81].
The n-butanol extract and essential oil (EO) of the cones of Pinus halepensis had a great antibacterial
effect against the soft rot bacteria D. solani and P. atrosepticum [82].

Nonanal, the main oily compound found B. spectabilis bark HeOE, a saturated fatty aldehyde,
arises from a reduction in the carboxy group of nonanoic acid. The unexplainable phenomena were not
noted in nonanal alone, suggesting that aldehyde hydrocarbons are much more effective in managing
postharvest diseases than alcohols and olefine [83]. Octanal and nonanal showed medium activity
among the aldehyde constituents [84].

The prospective concepts underlying the antimicrobial activity of aldehyde and terpenes are
not fully realized, but a number of possible strategies have been proposed. It is recognized that
Gram-negative bacteria are more resistant than Gram-positive bacteria to EOs components [85,86].
Unsaturated aldehydes such as (E)-2-hexenal, (E)-2-octenal, and (E)-2-nonenalhave been shown a
noticeable activity against several fungal and bacterial isolates [87,88]. Thus, these aldehydes might be
good compounds for playing a reserving role against human diseases caused by bacteria or as food
preservatives, or might be a good alternative to other highly toxic disinfectants for hospital equipment.
Recently, Pinus halepensis branch HeOE showed the presence of 2-undecenal, (Z)-2-decenal, nonanal,
(2E)-2-decenal, and decadienal as main compounds, with a good antifungal activity against B. oryzae
and F. oxysporum [89].

In the present study, in vitro antibacterial activity has encouraged us to assume that the
potential antibacterial activity of nonanal, an essential compounds from hydrophobic oil, against
P. carotovorum subsp. carotovorum, and D. solani could be closely correlated with the physiology of
the membrane [90–92]. In addition, fatty acid methyl esters or aldehydes are able to penetrate the
hydrophobic regions of the membranes, and the carboxyl groups pass through the cell membrane,
causing the lowering of the internal pH and denaturing of proteins inside the cell [93–96].

The most bioactive molecules found naturally in plants are phenolics, such as tannins and lignans.
The hydroxycinnamic (a) and the hydroxybenzoic (b) acids, are two main groups of phenolics; (a)
group contains caffeine, ferulic and p-coumaric acids, but the (b) group contains gallic, protocatechic
acids [97,98]. p-Coumaric acid is the stepping stone in synthesis process of caffeic, chlorogenic and
ferulic acids, and these phenolics lead to have an antimicrobial and antiviral effects in different mode
of actions as it could kill the fungal and bacterial cells by breakdowns and ruptures the plasma
membrane [99–103]. In another study, the cinnamic acid proved to be effective in suppressing the
virulent species of Pectobacterium spp. by blocks the quorum sensing molecules [22,104]. Several
studies documented the strong antibacterial activity of the commercial form of caffeic, chlorogenic, and
p-coumaric acids against multi bacterial isolates such as E. coli, Pseudomonas aeruginosa, Stenotrophomonas
maltophilia and Salmonella typhimurium, with a minimum inhibitory concentration (MIC) values ranging
from 8–1000 µg/mL [105–108]. While Wang et al. [109], confirmed the broad spectrum of antibacterial
activity of the ferulic acid sourced from Halimodendron halodendron (Pall.) plant material towards the
plant bacterial strains Agrobacterium tumefaciens, Pseudomonas syringae pv. lachrymans, Xanthomonas
campestris pv. vesicatoria [109].

5. Conclusions

In the present study, isolates from Pectobacterium carorovorum subsp. carotovorum and Dickeya solani
were conventionally and molecularly identified, and were proven to be pathogenic and cause potato
soft rot. Oily extracts of Bougainvillea spectabilis bark (Ca. 4000, 2000, and 1000 µg/mL) at phenolic acid
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concentrations of 800, 1600, and 3200 µg/mL were the most effective against bacterial isolate growth.
Our present study suggests that phenolics and plant extracts might be used as bactericides to fight
against soft rot bacterial diseases.
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