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Abstract: This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites
and their application for the catalytic oxidation of methylene blue in water. The zeolite was
impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with
6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm,
respectively. The results showed that physical adsorption contributed to the removal of methylene
blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55%
removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of
significant mineralization of methylene blue. The application of reaction rate models showed that the
reaction order changes from zero to first and second order depending on the H2O2 concentration.

Keywords: zeolites; clinoptilolite; methylene blue; oxidation; nanoparticles; silver; silver
oxide; magnetite

1. Introduction

Pollution of water with organic dyes is a major concern due to their harmful effects to the
environment and human health [1–4]. Textile, leather, paper and other industries use dyes to color
their products and consequently waste significant amounts of water. This results in polluted and
colored wastewater that requires treatment [5]. An estimation shows that there are more than 100,000
commercial dyes available on the market with over 7 × 105 tons dye produced per year [6–8]. Unusual
color of the water is the first sign of contaminated water with dyes; even 1 ppm of some dyes can be
easily recognized without sophisticated equipment [9,10].

Methylene blue (MB) or methylthioninium chloride is an organic thiazine-class cationic dye
commonly used in the cotton, pharmaceuticals, wood and textile industry. The structure of MB is
shown in Figure 1. As far as toxicity to humans is concerned, acute levels of intravenous exposure to MB
can lead to hypertension, sweating, chest pain, confusion, nausea, vomiting, dizziness, and cyanosis,
as well as to urine and stool discoloration [11]. Other health effects after exposure to MB can be
carcinoma of the bladder [12], tissue necrosis [13], spinal cord necrosis [14], paraplegia [11], infancy
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problems [15–19], membrane rupture [20], and reproductive effects [21]. Finally, MB is a severe eye
irritant [11,22] and high concentrations might lead to corneal and conjunctival injury and other ocular
disorders [23].
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Figure 1. The molecular structure of MB.

Physical adsorption and catalytic oxidation are the most common processes for MB removal
from water. Hydrogen peroxide in combination with catalysts, UV or visible light is frequently used
as an oxidant in degradation of many toxic and harmful organic compounds, including dyes in
wastewater, due to its high efficiency and relative low toxicity as it decomposes into water and oxygen
gas [24]. Recently, natural and synthetic zeolites modified with metal ions have attracted attention
as effective catalysts in oxidation reactions of dyes such as MB by hydrogen peroxide. Zeolites are
promising catalysts due to their low cost, stability, high surface area and ion exchange capacity [25,26].
Zeolites are a group of aluminosilicates, which contain open tetrahedral framework, allowing ion
exchange and reversible dehydration [27]. The spaces between adjacent polyhedral cavities are of
suitable size to let neutral molecules and/or cations to travel through the crystal from one cavity
into another [28]. The aforementioned spaces can form channels allowing large guest species to be
exchanged. The tetrahedra in the framework are connected by twofold coordinated oxygen atoms
creating strong bonds that form the framework itself [29]. Also, the affinity of zeolites towards
guest ions and molecules depend on the Si/Al ratio and differences in this ratio result in variations
in several properties such as the distribution of negative charge density in the zeolitic framework,
pores of different diameters and amount and location of extra framework cations. The affinity of
zeolites towards guest molecules is also strongly dependent on the Si/Al ratio. Consequently, useful
properties, such as uniform pores, exchange and enclosure of active metal species, make zeolites
convenient and effective in catalytic processes [30]. Furthermore, zeolites can be synthesized on an
industrial scale along with aluminosilicate hydrogels, which can be prepared from various precipitated
silicas, aluminum salts, blast furnace slag and many other compounds, or clay minerals are used as
a raw material [31]. The properties of zeolites are especially useful for Fenton-like reactions, which
constitute a common method for MB degradation. For instance, 4Å zeolite-supported zero valence
iron nanoparticles (nZVI/4A) was studied by Wu et al. [25]. The authors highlighted the effect of pH
on the oxidative activity in Fenton-like reactions, showing that the catalyst promoted oxidation by
OH. radicals at low pH. The efficiency for MB removal ranged from 70% to 100%, favored by low
pH at 2–3 and depends on the medium and the dosage of the catalyst. Lopes et al. studied different
zeolites as catalysts for MB decolorization and used numerous transitional metals to modify them.
For instance, NaY and Naβ zeolites were modified into Y-Fe and Y-Cu, β-Fe and β-Cu, respectively [32].
The main finding was that despite the fact that the surface area was higher for Y-Fe and Y-Cu than
for β-Fe and β-Cu, the cavity size being microporous for the former prevented the diffusion of MB
molecules within the pores, which lowered the efficiency of the oxidation, whereas the cavity size for
the latter, being mesoporous, enhanced the catalytic oxidation. Consequently, the Y-Cu and Y-Fe did
not achieve significant oxidation of MB, showcasing adsorption rather than oxidation as the main
mechanism for the dye removal. The efficiency for MB oxidation by the β-Cu and the β-Fe was 80%
and 90%, respectively.
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Table 1 summarizes the published papers on MB oxidation by use of metal-doped zeolites.
The zeolites used in the oxidation of MB are of both synthetic and natural and the most used oxidant is
H2O2. As is evident, there are several gaps in the literature that can be summarized as follows:

• The studies on zeolitic nanocomposites are few
• Magnetite zeolitic nanocomposites have not been studied
• A direct comparison of different nanocomposites in a single study is missing
• In most of studies the mineralization of MB via total carbon measurements is not studied
• The effect of the H2O2 concentration on the reaction order is rarely presented

Table 1. Metals-doped zeolites used for the oxidation of the MB.

Oxidants Zeolite Metal 1
Catalyst

Concentration
(% w/w)

Initial MB
Concentration

(ppm)

Zeolite Mass to
Solution

Volume (g/L)

Removal
(Max. %)

Reaction
Order 2 Ref.

H2O2 (10–50 mM) and
UV

Natural
zeolite Cu2+ - 50 1 87 1.3–2 * [33]

H2O2 and UV Clinoptilolite TiO2
(anatase) 80 20 2 98 1 [34]

H2O2 and UV Clinoptilolite MnO (NPs)
Ag2O (NPs)

10
2.1 4 0.25 85 1 [35]

Vis Clinoptilolite Ag0 (NPs) - 20–100 0.25–1.5 84 - [36]
H2O2 (0.2 mL, 3 wt%)

and UV Mordenite CuO (NPs)
Fe3O4

3.7
68.1 3.2–10 0.05–2 97 - [37]

H2O2 (10 mM) 4A Fe0 (NPs) 12.7 30 0.2–5 100 1 [25]

Vis Zeolite Y
ZnO (NPs)

Fe2O3
MnO2

3.7–13.6 (Zn)
1.9–6.9 (Fe)

0.7–0.8 (Mn)
10–100 0.05–0.15 80 - [38]

H2O2 (2 mL, 30% v/v) NaY
Naß

Fe3O4
Cu2O - 100 1 100 0 [39]

H2O2 (6% v/v) 4A Fe2O3
Fe2Al4Si5O18

17.1 15 0.3 88 1 [39]

H2O2 (2.2–11 mM)
and UV NaY

Tris (1, 10)
phenanthroline

Fe2+
0.01 11.5 40 77 1 * [40]

H2O2 (1 mL, 30% v/v) Zeolite X CuO
Fe2O3

29.6 100 0.25 100 - [41]

H2O2 (2 mL, 0.5M)
and UV Analcime C9H21O3Al - 10 2 100 1 [42]

H2O2 (5 mL, 30% v/v) Synthetic
zeolite Nb5+ 1.9–2.2 80 1 100 - [43]

1 The notation (NPs) in this table is used only for studies where the formation of nanoparticles is confirmed by XRD
and/or TEM. 2 The notation (*) is used for cases where the effect of the H2O2 concentration on the reaction order
was studied.

The present work comes to address these gaps by presenting the synthesis of three forms of
clinoptilolite-based nanocomposite catalysts, namely Ag0, Ag2O and Fe3O4 and their catalytic activity
towards discoloration of MB solutions. The study includes total carbon measurements and kinetics
modeling for studying the effect of H2O2 concentration on the reaction order.

2. Materials and Methods

2.1. Materials

The natural zeolite was purchased from Transcarpathian Zeolitic Factory (Khust District, Ukraine)
and after washing and sieving the 800–1400 µm fraction was used. AgNO3, NaCl, NaBH4, FeSO4·7H2O
and FeCl3 anhydrous (all ACS reagent grade) purchased from Sigma Aldrich (St. Louis, MO, USA)
were used for zeolite modification. For the preparation of all solutions deionized water (DI) was used
obtained from Millipore (Burlington, MA, USA) equipment equipped with a reverse osmosis module.

2.2. Characterization Equipment

X-ray Fluorescence (XRF) analysis was performed on XRF Axios Max (PANalytical, Malvern, UK)
equipped with standard analysis software (Omnian, Malvern, UK). X-ray Diffraction was performed
on an XRD system (Shimadzu, Kyoto, Japan) equipped with a CuKα radiation source (0.1549 nm) over



Processes 2020, 8, 471 4 of 15

the 2θ range from 5◦ to 90◦. X-ray photoelectron spectroscopy (XPS) spectra were recorded using a
K-alpha instrument (Thermo Scientific Ltd., Waltham, MA, USA). All spectra were collected using an
Al-Kα radiation (1486.6 eV), monochromatized by a twin crystal monochromator, yielding focused an
elliptical X-ray spot with a major axis length of 400 µm at 3 mA × 12 kV. SEM/EDS measurements were
carried out by scanning electron microscopy (SEM) using a Crossbeam 540 device (ZEISS, Oberkochen,
Germany) operating in LV mode at 15 kV equipped with a backscattered electron detector was used
for morphological characterization. Transmission Electron Microscopy (TEM) images were captured
by a JEM 1400 Plus instrument (JEOL, Tokyo, Japan). The porous structure was studied using low
temperature nitrogen adsorption measured on AutoSorb iQ (Quantachrome Instruments, Boynton
Beach, FL, USA).

2.3. Modification of Zeolites

2.3.1. Modification with Sodium Chloride (NZU-Na)

Natural zeolite (NZU, 100 g) was mixed with 2 L of 1 M NaCl solution under stirring and heating
at 60 ◦C. The solution was replaced every day for 7 days. Following modification, the samples were
washed with DI water until chloride ions were not detected after adding AgNO3 to the solution.
Samples were then dried in the oven at 60 ◦C for 8 h and placed in a desiccator.

2.3.2. Modification with Silver Oxide (Ag2O@NZU)

NZU-Na (10 g) was mixed with 600 mL of 0.1 M AgNO3 solution in dark conditions for 48 h.
Samples were then washed with DI water 3–5 times and dried in an oven for 8 h at 60 ◦C and placed in
a desiccator.

2.3.3. Modification with Silver Nanoparticles (Ag0@NZU)

NZU-Na (13.5 g) was mixed with 135 mL of 0.01 M AgNO3 solution in dark conditions for 24 h.
The procedure was repeated with fresh AgNO3 solution and then the samples were washed with DI
water and dried in an oven at 100◦C for 3 h. The samples were placed in a beaker kept in a tank with
ice and mixed with 0.05 M NaBH4 under dark conditions for 1 h. Following the reduction step the
samples were washed with DI water several times until pH 7 dried at 100◦C in an oven overnight and
stored in a desiccator.

2.3.4. Modification with Magnetite (Fe3O4@NZU)

A 400 mL solution of 0.02 M FeSO4·7H2O and 0.04 M of FeCl3 was prepared with DI water under
continuous intensive stirring on a heating plate at 80 ◦C. After 30 min of 1 M NaOH was added
dropwise at a rate of 1 drop/sec until pH 12. Then the solution was left for an hour on a hot plate, after
which the precipitate was removed by centrifugation at 3500 rpm. The sample was washed several
times, dried in an oven at 105 ◦C for 8 h and stored in a desiccator.

2.4. Kinetic Measurements of Dye Discoloration

MB solution (500 mL, 50 ppm) was prepared with DI water. 0.5 g of catalyst were added to a
100 mL solution containing 25 ppm MB and 42.4 mM or 212 mM H2O2. The H2O2 added corresponds
to 10 and 50 times the stoichiometric concentration for complete oxidation of MB to carbon dioxide.
The pH of the solutions was 6.3 and remained the same after 24h of contact with the solids. Two control
experiments were used, namely (a) NZU in the absence of H2O2 and (b) all reagents without solids.
The MB concentration in the solution was measured by a PhotoLab 6600 UV-Vis spectrophotometer
(WTW, White Plains, NY, USA) at 660–668 nm and total carbon by a Multi N/Cb 3100 (Analytik Jena,
Jena, Germany).
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3. Results & Discussion

3.1. Porosimetry

Porosimetry results are shown in Figures 2 and 3. The surface area of NZU is 12.6 m2/g, the pore
volume 0.03 cm3/g and the average pore diameter 5.8 nm. The adsorption-desorption isotherms with
the hysteresis branch are characteristic of microporous-mesoporous zeolites such as clinoptilolite [44].
Also, the modification of samples had no significant impact on the surface area, pore volume and
pore diameter.Processes 2020, 8, 471 6 of 16 
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3.2. X-ray Fluorescence (XRF)

The XRF chemical analysis results are shown in Table 2. Ag and Fe content is similar in the
synthesized samples with Ag samples retaining a significant amount of Fe which comes from NZU
and may act as catalyst.
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Table 2. X-ray Fluorescence (XRF) results in wt%.

Sample Al2O3 SiO2 Fe2O3 Ag2O

NZU 12.9 77.3 1.6 0
NZU-Na 12.7 78.5 1.5 0

Fe3O4@NZU 9.5 75.6 7.9 0
Ag2O@NZU 11.7 72.8 1.5 6.9
Ag0@NZU 11.6 69.9 1.4 6.8

3.3. X-ray Diffraction (XRD)

From the XRD patterns in Figure 4, it can be seen that the zeolite is clinoptilolite with peaks at 2θ
of 9.93, 17.23, 22.43, 29.87, 50.04.
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Figure 4. XRD spectra of NZU, Fe3O4@NZU, Ag2O@NZU and Ag0@NZU samples.

Based on the material certificate provided by the manufacturer the purity is 80%. The peaks at 2θ
of 35.48◦ and 43.25◦ in the Fe3O4@NZU sample are attributed to magnetite, at 2θ of 56.70◦ and 32.68◦,
65.05◦ in the Ag2O@NZU sample to AgO and Ag2O, respectively and at 2θ of 38.16◦, 44.30◦, 64.47◦ and
77.40◦ in the Ag0@NZU sample to Ag0. The approximate NPs size calculated based on the Schrerrer’s
formula is 32 nm for Fe3O4, 42 nm for Ag2O and 20 nm for Ag0.

3.4. X-ray Photoelectron Spectroscopy (XPS)

XPS was done only for the Na-NZU in order to obtain the oxidation forms of the Fe contained
in the parent zeolite as it can affect the redox reactions. The results showed that Na-NZU contains
both Fe2+ and Fe3+(III) species which are catalytic active with approximate content of 68.3% and 31.7%,
respectively. The pale green color of the Na-NZU is in agreement with the predominance of Fe2+

species. Figure 5 shows a high resolution scan in the Fe2p region, with two iron environments which
agrees with oxidized iron as given in the NIST XPS database. Fe2p Scan A is recorded at 711.58 eV and
Scan B at 714.38 eV, commensurate with Fe2+ in magnetite [45] and an Fe3+ species, most likely the
Fe2O3 component of an Fe3O4/Fe2O3 mixture respectively. Finally, the survey scan shown in the ESI
supports the elemental composition as analysed by EDS spectroscopy, showing the presence of oxygen,
carbon, magnesium, iron, sodium, aluminium and silicon (Figure 6).
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3.5. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDS) Spectroscopy Measurements

Figure 7 shows the SEM images of the samples. SEM images demonstrate that there are no
changes on the morphology of the zeolite surface. The EDS show metals uniformly distributed on the
zeolite surface. There is no change after the adsorption and reaction with MB.
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Figure 7. Scanning electron microscopy images of (A) Fe3O4@NZU, (B) Ag2O@NZU, (C) Ag0@NZU
and energy dispersive X-ray spectroscopy of (D) iron on Fe3O4@NZU and silver on (E) Ag2O@NZU
and (F) Ag0@NZU.

3.6. Transmission Electron Microscopy (TEM)

Figure 8 shows the TEM images of the samples on which the presence of nanoparticles is clear.
Fe3O4 NPs size ranged in 5–50 nm, while the Ag2O NPs size was below 5 nm and the Ag0 NPs size
was between 15–20 nm. With the exception of Ag2O these values are in general agreement with the
NPs size calculations based on XRD data.

Processes 2020, 8, 471 9 of 16 

 

 
  

(D) (E) (F) 

Figure 7. Scanning electron microscopy images of (A) Fe3O4@NZU, (B) Ag2O@NZU, (C) Ag0@NZU 

and energy dispersive X-ray spectroscopy of (D) iron on Fe3O4@NZU and silver on (E) Ag2O@NZU 

and (F) Ag0@NZU. 

3.6. Transmission Electron Microscopy (TEM) 

Figure 8 shows the TEM images of the samples on which the presence of nanoparticles is clear. 

Fe3O4 NPs size ranged in 5–50 nm, while the Ag2O NPs size was below 5 nm and the Ag0 NPs size 

was between 15–20 nm. With the exception of Ag2O these values are in general agreement with the 

NPs size calculations based on XRD data.  

   
(A) (B) (C) 

Figure 8. Transmission electron microscopy images of (A) Fe3O4@NZU, (B) Ag2O@NZU and (C) 

Ag0@NZU. 

3.7. Catalytic Discoloration of MB 

Figure 9 shows the discoloration of MB with H2O2 over the surfaces of the samples after 24h. It 

is obvious that the Fe3O4@NZU exhibited the best performance in comparison to other samples. 

Also, NZU-Na removes almost 42% of MB owing to its adsorption properties and Fe content 

allowing Fenton or Fenton-like reactions to occur (see XPS results). Given this level of removal by 

NZU-Na, it is obvious that Ag2O@NZU and Ag0@NZU showed very low activity. The Ag0 sample 

performance is considerably lower that this found by Colar et al. who used Ag0 supported on 

clinoptilolite reaching 84% removal [36]. However, this can be explained as the main difference is 

that in the paper mentioned photocatalysis was employed and also different experimental 

conditions e.g., different solid mass to liquid volume ratio and pH. 

Ag L 100 µm Ag L 30 µm

Figure 8. Transmission electron microscopy images of (A) Fe3O4@NZU, (B) Ag2O@NZU and (C)
Ag0@NZU.

3.7. Catalytic Discoloration of MB

Figure 9 shows the discoloration of MB with H2O2 over the surfaces of the samples after 24 h.
It is obvious that the Fe3O4@NZU exhibited the best performance in comparison to other samples.
Also, NZU-Na removes almost 42% of MB owing to its adsorption properties and Fe content allowing
Fenton or Fenton-like reactions to occur (see XPS results). Given this level of removal by NZU-Na, it is
obvious that Ag2O@NZU and Ag0@NZU showed very low activity. The Ag0 sample performance is
considerably lower that this found by Colar et al. who used Ag0 supported on clinoptilolite reaching
84% removal [36]. However, this can be explained as the main difference is that in the paper mentioned
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photocatalysis was employed and also different experimental conditions e.g., different solid mass to
liquid volume ratio and pH.Processes 2020, 8, 471 10 of 16 
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Figure 9. Discoloration of MB solutions by the modified zeolites (H2O2 concentration: 42.4 mM).

Further experiments were carried out under the same experimental conditions by using only
NZU-Na and Fe3O4@NZU samples with the addition of total carbon (TC) measurements (Figure 10).
Although TC measurements do not provide information on the formed degradation intermediates, it is
a simple and efficient way to study the mineralization of MB [33]. The complete oxidation of MB is
represented by the following reaction [25]:

C16H18N3SCl + 52 H2O2→ 16 CO2 + 0.5 O2 + 58 H2O + 3 HNO3 + H2SO4 + HCl (1)
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The results obtained show that without the addition of H2O2 the NZU-Na removed 25% of
MB and the Fe3O4@NZU sample 55%, which upon the addition of H2O2 was increased to 42% and
97%, respectively. The TC removal was between 25–36% for all samples, with or without H2O2,
which is mainly attributed to adsorption, and thus the mineralization of MB to CO2 is either absent
or not significant. A proposed degradation and mineralization MB mechanism has been provided
elsewhere [35]. During the oxidation Cl− is first ionized and then several bonds in the MB molecule
brake under the effect of radicals; first N–CH3 oxidized into HCHO or HCOOH, followed by the
C–S and C–N which produce molecules like phenyl thiophene, 4-aminobenzenesulfonic acid and
p-dihydroxybenzene. The final products are inorganic ions, such as CO2, H2O, Cl−, SO4

2− and NO3
−”.

The maximum MB removal achieved is comparable to other zeolite-based catalysts presented in Table 1.
These results show that MB adsorption is the main mechanism for the TC removal. The ability

of natural zeolites to adsorb MB is well documented [36,46]. Briefly, MB upon dissolution releases
cations into the solution, which are attracted by the permanent negative lattice charge of the zeolites.
Also, the temporary surface charge of natural zeolites is governed by the solution pH and becomes
more negative as pH is increasing contributing to the adsorption of cations [47]. However, we postulate
that the pore size could hinder the adsorption by excluding large molecules from the zeolite structure.

The iron of the parent zeolite contributed to the oxidation of MB. Specifically, iron is well known
to catalyze the decomposition of hydrogen peroxide into hydroxyl radicals that are powerful oxidants
for organic compounds. This reaction is known as the Fenton reaction. The Fenton reaction is among
the most widely applied advanced oxidation processes, in which the Fenton’s reagent, a mixture
of a ferrous salt (catalyst) and hydrogen peroxide (oxidant), is used to destroy refractory organic
compounds [48,49]. The Fenton reaction depends on the production of hydroxyl radicals and it is
considered as a convenient and economical process [50]. The mechanism is described by the following
reactions when no organic compounds are present in the solution [51]:

Fe2+ + H2O2 → Fe3+ + OH• + OH− (2)

Fe3+ + H2O2 → Fe2+ + HO•2 + H+ (3)

OH• + H2O2 → HO•2 + H2O (4)

OH• + Fe2+
→ Fe3+ + OH− (5)

Fe3+ + HO•2 → Fe2+ + O2H+ (6)

Fe2+ + HO•2 + H+
→ Fe3+ + H2O2 (7)

2HO•2 → H2O2 + O2 (8)

Equation (2) occurs in acidic conditions. The chemical Equation (3) between ferric ions (Fe3+) and
H2O2 is known as a Fenton-like reaction. When Fe2+ is initially present all reactions above take place,
while for Fe(III) Reaction (3) is the first step. Hydroxyl radicals attack organic molecules according to
the following reaction:

RH + OH• → H2O + R• → further oxidation (9)

As is clear from the results, the magnetite greatly enhanced the oxidation of MB and oxidizes part
of MB even in the absence of H2O2. This is a result of higher content of Fe3+ in the zeolite (see Table 2).

In Figure 11 the kinetics of discoloration for the first 150 min are presented. It is clear that in the
presence of H2O2 Fe3O4@NZU sample resulted in fast discoloration of MB, while the higher H2O2

concentration greatly enhances the kinetics. Although the differences between Na-NZU with and
without H2O2 and the Fe3O4@NZU without H2O2 after 24h, they show the same removal up to 150 min
supporting the hypothesis of adsorption as the predominant mechanism of removal at the initial stages
followed immediately by oxidation.
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Reaction rate models were applied on Fe3O4@NZU experimental data and the results are shown
in Figure 12 and Table 3. The models used are the following:
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Table 3. Models results.

H2O2 (Mm) k (min−1) Reaction Order Average Absolute Error (%)

0 0.0293 0 0.8
42.4 0.00307 1 1.7
212 0.00064 2 2.8

Zero order:
Ct = Co − k·t

First order:
Ct = Co· exp(−k·t)

Second order:
1

Ct
=

1
Co

+ k·t

where Co and Ct the initial and at time (t) concentration and (k) the reaction rate constant. The average
absolute error shows that the application of the model is satisfactory. The overall reaction is of zero
order in the absence of H2O2, first order for low concentration of H2O2 and second order for high H2O2

concentration, an indication that the reaction path depends on the oxidant [H2O2] concentration. It has
been reported that the products distribution is strongly related to the initial molar ratio of H2O2/organic
compound [52,53]. As a result, different initial concentrations of oxidant, namely of H2O2, can lead to
different reaction pathways and products. The opposite trend was observed by Jakab et al. [33] who
used a Cu2+ exchanged natural zeolite, however UV was combined with H2O2 and thus the oxidation
conditions were different. Zhang et al. [40] observed no influence of the H2O2 on the reaction order but
they used an organic form of Fe2+ and thus the reaction system is different. Finally, literature review
shows that the H2O2 oxidation reaction is of first order in most studies (Table 1).

4. Conclusions

Natural zeolite-based silver and magnetite nanocomposites were successfully synthesized and
tested in the catalytic oxidation of methylene blue in water. The zeolite was impregnated with
approximately 5.5 wt% of Fe in the form of magnetite nanoparticles of size of 32 nm and 6.4 wt%
Ag in the form of silver oxide and metallic silver nanoparticles of sizes of 42 and 20 nm, respectively.
The results show that MB adsorption contributes significantly to the total removal, the iron of the parent
zeolite contributes to the oxidation of MB, the magnetite oxidizes part of MB even in the absence of
H2O2 and the addition of magnetite greatly enhances the oxidation of MB. The oxidation of MB is partial
without evidence of mineralization. The application of reaction rate models on the experimental data
where H2O2 was used was satisfactory with an average absolute error between 0.8–2.8%. In the absence
of H2O2 the reaction for Na-NZU and Fe3O4@NZU is of zeroth order confirming that adsorption is
the main mechanism at the initial stages followed by oxidation in later stages. The reaction order
for Fe3O4@NZU swifts from zero, to first and second order depending on the H2O2 concentration,
an indication that the reaction path changes.
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