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Abstract: Machining processes are critical and widely used components in the manufacturing
industry because they help to precisely make products and reduce production time. To keep the
previous advantages, a machine tool should be installed at the designated place and condition of the
machine tool should be maintained appropriately to working environment. In various maintenance
methods for keeping the condition of machine tool, condition-based maintenance can be robust to
unpredicted accidents and reduce maintenance costs. Tool monitoring and diagnosis are some of
the most important components of the condition based maintenance. This paper proposes stacked
auto-encoder based CNC machine tool diagnosis using discrete wavelet transform feature extraction
to diagnose a machine tool. The diagnosis model, which only uses cutting force data, cannot
sufficiently reflects tool condition. Hence, we modeled diagnosis model using features extracted from
a cutting force, a current signal, and coefficients of the discrete wavelet transform. The experimental
results showed that the model which uses feature data has better performance than the model that
uses only cutting force data. The feature based models are lower false negative rate (FNR) and false
positive rate. Moreover, squared prediction error using normalized residual vector also reduced FNR
because normalization reduces weight bias.

Keywords: tool diagnosis; condition based maintenance; auto-encoder; discrete wavelet transform;
feature extraction

1. Introduction

Machining processes are critical components in manufacturing industry. The processes can help to
precisely make products and to reduce production time. To achieve these advantages, the installation
of machine’s tool should be normal and manufacture conditions should be kept appropriate to
environment condition. Especially, the machine’s tool is the most influence on the quality of the
workpieces, so it always has to be kept appropriate for working condition [1].

Computer numerical control (CNC) machine is one of the most widely used in machining
processes. The CNC machine processes workpiece like metals or woods etc. The processes make
products by cutting or milling the workpiece accordance with pre-designed form. The process of
making products using CNC machine affects tool of CNC machine because the machine processes
workpiece as rotating the tool that is fixed at spindle motor of CNC machine. If operators use cracked or
weakened tool, the tool may be broken under operating, which can occur damage to people or machine.
Furthermore, it makes economical loss by defect of products or delayed production. Connection of
machine-to-machine or machine-to-devices is being automatized because automated facilities are being
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developed by the Fourth industrial revolution. Processes that is connected machine-to-machine can
sequentially cause processing defect, so to keep the quality of products is important in each processes.
To prevent these problems and determine appropriate time for changing tool, CNC machine tool
diagnosis is essential [2].

Generally, there are three maintenance methods for maintaining system or machine, unplanned
breakdown, planned scheduled, and condition based maintenance. First, Unplanned breakdown
maintenance is to maintain the machine or system when breakdown is occurred at the system or
machine. It takes low maintenance cost and has little requirement for management. However,
this method causes high downtime and damage to people. These disadvantages can cause financial
loss to be beyond our imagination, particularly in the chemical and power plants, which can induce a
large amount of economic and societal damages. Second, the planned scheduled maintenance method
is to maintain the system or machine on a cycle by constant period, it can minimize occurrence of
system and machine failure. Although the method has an advantage, it need high cost to maintain
the system because it sometimes change normal parts of the machine, and cannot handle problem
happened suddenly. Finally, the condition based maintenance is to determine that the system or
machine need maintenance through diagnosis of system condition. It can reduce maintenance cost,
lift cycle cost, and downtime, and it also has strength at unpredictable failure. The condition based
maintenance method can resolve previous two problems, and its importance also is increasing by
improvement of data-driven modeling method [3].

Monitoring of system or machine is one of the most critical component in condition based
maintenance. Tool condition monitoring (TCM), especially, is essential for preventing serious
damage to machine and products and taking high quality and productivity. TCM is to diagnose
tool with sensor signal of machine or tool, and it is actively studied using various sensor signals [4–8].
The representative sensor signal that is used to employ for TCM is: (1) Cutting force, (2) Vibration,
(3) Temperature, (4) Sound, (5) Acoustic emission, and (6) Optics [1,9,10]. Cutting force is force
that is generated by the cutting tool as it processes the workpiece. There are two method to
measure the cutting force. One is direct measurement method that measures the cutting force using
dynamometer. The other method is indirect measurement method that induce the cutting force from
current. The indirect method calculates the cutting force using current signal, so it makes large error if
prediction or calculation model is inaccurate. The direct method to use dynamometer can precisely
measure the cutting force. However, this method takes a lot of costs because the sensor that measures
the cutting force is expensive, and there is a challenge to install sensors on workpiece or machine [11].
The vibration sensor measures a vibration signal of tool or machine, and an accelerometer is typically
employed to measure the signal. Vibration signal is representative signal to indicate condition of tool or
machine. The vibration signal can show whether target system is normal or not if the vibration signal
is out of normal interval or becomes specific magnitude. However, it is difficult to install vibration
sensor on machine, and the vibration signal may take disturbance from vibration of inner factory or
other machines. Temperature signals can show fatigue property or degree of tool wear for the target
system. However, the temperature signal is weak to interference and needs appropriate outer condition.
Although sound, acoustic emission, and optics signal also can indicate tool condition, these signals
are weak to noise or environment condition as like the temperature sensor. In this paper, therefore,
we employ cutting force induced from current because the cutting force is robust to environment
condition and the sensor data can be easily acquired compared to other sensors. Furthermore, current
signal extracted from spindle motor is employed to compensate cutting force error.

Diagnosis methods for system or machine are typically divided two methods, model-based
and data-driven technique. Model-based techniques can make a stable model. The model-based
techniques need plenty of information and expert knowledge about target system. Besides, it is
difficult to construct model if the target system has a lot of sensors and sub-systems. On the other
hand, data-driven technique can make model which has better performance in complex system if
there are enough high quality data. Furthermore, the model-based technique was being transformed
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into the data-driven technique by that computation power has been increasing for more than ten
years [12]. There are various data-driven methods for system diagnosis, such as principal component
analysis [13], support vector machine [14], nearest prototype classifier [15], k-means clustering [16] and
neural network [17], etc. In last few years, several articles have been devoted to the study of system
diagnosis using deep learning [18–21]. Auto-encoder is one of the deep learning methods, which has
outstanding performance of signal reconstruction and anomaly detection. Moreover, auto-encoder is
unsupervised learning method that is not needed labeled data, so it is a suitable method for the system
which is difficult to obtain labeled data. In this paper, therefore, we employ stacked auto-encoder to
diagnose machine tool.

2. Related Works

In this paper, we propose stacked auto-encoder based CNC machine tool diagnosis models that
use feature data extracted by wavelet transform. Figure 1 shows three types of auto-encoder models
for tool diagnosis. First, Figure 1a is a cutting force based stacked auto-encoder (CFSAE) which
uses cutting force signal. Second, Figure 1b is a feature based stacked auto-encoder (FSAE) which
employs feature extracted from cutting force and current. Finally, Figure 1c is a feature based stacked
auto-encoder using normalized residual vector (FSAENR) that use normalized residual vector for
calculating squared prediction error (SPE).

2.1. Auto-Encoder

Auto-encoders are unsupervised learning methods which have similar structure to general
feed-forward neural network. The auto-encoders learn a representation of the data, typically obtained
by a non-linear parametric transformation, after then learn a transformation going backwards from
the representation to the data [22]. The auto-encoders use input data as target data of output layer.
Therefore, it is unnecessary for the auto-encoders to get labeled data unlike supervised learning
method. As shown in Figure 2, auto-encoder is composed of three layers: (1) input layer; (2) hidden
layer; (3) output layer [23]. Progressing input layer to hidden layer is called encoder: the encoder
reduce dimension by transforming input vector to low dimension vector. Decoder is to progress
hidden layer to output layer: it reconstructs the vector reduced by encoder to original vector.

Let x = [x1, x2, ..., xm] be an input vector collected from a target system, which consists of m
features that are used in Figure 1b,c model or time series data of m period that is used in Figure 1a
model, i.e., x ∈ Rm. In the encoder part, input x is transformed by encoding function as shown in
Equation (1).

h = f (Wex + be) (1)

where f indicates the encoding function and h represents the hidden encoder vector calculated from x.
We and be are a weight matrix and a bias vector between input layer and hidden layer, respectively.
The decoder layer reconstruct the input vector x from the hidden representation h by decoding function
as shown in Equation (2).

x̂ = g (Wdh + bd) (2)

where g indicates the decoding function and x̂ is a reconstructed input vector, Wb and bd are a weight
matrix and a bias vector between the hidden layer and the output layer, respectively. The auto-encoders
train to reduce the reconstruction error like Equation (3).

Argmin
We ,be ,Wd ,bd

[L (x, x̂)] (3)

where [L (x, x̂)] is loss function. Mean squared error(MSE) is widely used in training the auto-encoders
as the loss function, defined as
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[L (x, x̂)] = (1/n) ∗ ‖x− x̂‖2

= (1/n) ∗ ‖x − g (Wdh + bd)‖2
(4)
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Figure 1. Tool condition diagnosis models: (a) Cutting force based stacked auto-encoder; (b) Feature
based stacked auto-encoder; (c) Feature based stacked auto-encoder using normalized residual vector.
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Figure 2. Basic auto-encoder structure.

2.2. Wavelet Transform

To analyze time series signal, frequency analysis methods like Fourier transform (FT) have been
widely used in plenty of research [24–26]. However, FT is weak in analyzing non-stationary signal
because it represents only frequency domain [27]. Short-time Fourier transform (STFT), which is
proposed to solve the problem, is used for analysis of non-stationary signals by windowing the
signal using shifted window function [28]. Although the STFT has the advantage, it has weaknesses:
(1) Dilemma of resolution, (2) Unchanged window, and (3) Heisenberg uncertainty principle [29,30].
Wavelet transform (WT) can be used to meet the above requirement. WT represents the signal in time
and frequency domain and can change the frequency resolution and time interval by dilation and shift
of wavelet function [31,32].

The wavelet function, ψ(a,b)(t), is derived from mother wavelet ψ(t) by dilation and translation.

ψ(a,b)(t) =
1√
a

ψ

(
t− b

a

)
(5)

where a is the scaling parameter which is inversely proportional to frequency, b is the time localization
parameter, a > 0 and b ∈ R. The parameters make daughter wavelet function differ from others. The
wavelet transform is performed by following equation:

W (a, b) =
1√
a

∫
x(t)ψ∗a,b(t)dt (6)

where ‘*’ denotes complex conjugation.
The discrete wavelet transform (DWT) is based on multiresolution analysis. The DWT divides

signal into different frequency components. These components are precisely obtained by splitting
with frequency bands of a signal into various sub-bands based on a power of two divisions, which is
called dyadic sampling. Initially, the signal is split into two wavelet coefficient, one is approximation
coefficient that is result of low-pass filter, and the other is detail coefficient that is result of high-pass
filter. The approximation coefficient still has high-frequency components, so to continuously conduct
the process is needed until getting useful feature as shown in Figure 3. G1(z) is high-pass filter and
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G0(z) is low-pass filter, after through filter the signal down-sampled as half. This process splits the
discrete signal spectrum in the frequency domain as shown in Figure 4.
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Orginal signal
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� 2

� 2

G1(z)

G0(z)

� 2

� 2

D
1

A
1

D
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D
L

A
L

A
L-1

Figure 3. Discrete wavelet transform signal flow chart.

Figure 4. Signal split using discrete wavelet transform.

3. Data Description and Detection Index

This section describes the data of signal that is measured from CNC machine to help
understanding for CNC machine signal and feature extraction.

3.1. Data Description

CNC machine used in this paper is Dusan mynx 5400 as shown in Figure 5. We produced products
like Figure 6 pattern. The tool size is 8φ and the tool has three blades.

In this paper, we use two types of sensor data, cutting force and current. Cutting force is
measured from CNC machine and current is three-phase current measured from spindle motor.
Current measurement device is designed and manufactured Korea electrotechnology research institute
(KERI). Figures 7 and 8 show cutting force and current waveform. In case of current waveforms,
we only show u-phase waveform because others current show similar pattern.
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Cutting force sampling time is 4 Hz and current sampling time is 2000 Hz. We synchronize
current signal on the basis of cutting force signal, which has lower sampling frequency, because the
sampling frequencies of two signal are differ. There are high impulse data in cutting force signal when
the tool move next line. The impulse signal can interrupt tool diagnosis, hence the signal should
be removed for good performance. The cutting force signal removed impulse signal is depicted in
Figure 7b. After removing the impulse signal from the cutting force signal, we synchronize the current
signal on the basis of the cutting force signal. Figure 8b shows the current signal that is equivalent to
Figure 7b interval.

Figure 5. CNC machine: Dusan Mynx 5400.

Figure 6. Example products.
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Figure 7. Cutting force signal waveform: (a) Entire data; (b) Part of signal that is removed
impulse signal.
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Figure 8. Current signal waveform: (a) Entire u-phase current data; (b) Part of signal that is equivalent
to part of cutting force signal removed impulse signal.

3.2. Feature Extraction

In this paper, we use three tool diagnosis models as shown in Figure 1. Among the models,
Figure 1b,c models, which don’t use original signal of cutting force and current, uses feature of
cutting force and current signal. Let CFCNC and Iphase be cutting force and current signal, respectively.
Three-phase current are divided as u, v, and w. These are indicated Iu, Iv, and Iw.

The features employed in this paper are mean, maximum, minimum, median, and standard
deviation value in case cutting force. In case of current, RMS calculated by three-phase current is
employed and maximum, standard deviation and RMS values calculated by each phase current are
employed. The RMS about three-phase current is defined as [33]:

IRMS =

√
1
3
(I2

u + I2
v + I2

w) (7)

In this paper, we apply 6-level discrete wavelet transform to decompose the current signal that is
high frequency signal and is measured by high sampling rate. Each signal derives six detail coefficients
and an approximation coefficient. To extract feature from result of DWT, we calculate the using the
derived signal. RMS of wavelet coefficient is defined as:
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ARMS =
2
Fs

Fs/2

∑
k

A2
L(k) (8)

DRMS(l) =
2k
Fs

Fs/2k

∑
k

D2
l (k) (9)

where ARMS, DRMS, AL, and Dl are RMS value of approximation coefficient, detail coefficient, final
level approximation coefficient and l-level detail coefficient, respectively. Fs is sampling frequency,
l indicates level of DWT.

Extracted features are totally 36 variables as shown in Table 1. The input vector x of tool diagnosis
model employing feature variables uses these variables, so x ∈ R36.

Table 1. Feature variables extracted from cutting force and current signal.

Notation Description Unit Notation Description Unit

X1 Average of cutting force N X19 RMS value of D4 (v-phase) -
X2 Maximum value of cutting force N X20 RMS value of D5 (v-phase) -
X3 Minimum value of cutting force N X21 RMS value of D6 (v-phase) -
X4 Median of cutting force N X22 RMS value of A6 (v-phase) -
X5 STD of cutting force N X23 RMS value of D1 (u-phase) -
X6 RMS value of u-phase A X24 RMS value of D2 (u-phase) -
X7 Maximum value of u-phase A X25 RMS value of D3 (u-phase) -
X8 STD of u-phase A X26 RMS value of D4 (u-phase) -
X9 RMS value of v-phase A X27 RMS value of D5 (u-phase) -
X10 Maximum value of v-phase A X28 RMS value of D6 (u-phase) -
X11 STD of v-phase A X29 RMS value of A6 (u-phase) -
X12 RMS value of w-phase A X30 RMS value of D1 (w-phase) -
X13 Maximum value of w-phase A X31 RMS value of D2 (w-phase) -
X14 STD of w-phase A X32 RMS value of D3 (w-phase) -
X15 RMS value 3-phase A X33 RMS value of D4 (w-phase) -
X16 RMS value of D1 (v-phase) - X34 RMS value of D5 (w-phase) -
X17 RMS value of D2 (v-phase) - X35 RMS value of D6 (w-phase) -
X18 RMS value of D3 (v-phase) - X36 RMS value of A6 (w-phase) -

3.3. Detection Index

To diagnose CNC machine tool, residual vector enew(k) (= xnew(k)− x̂new(k)) is calculated from
original signal(xnew(k)) and estimated signal(x̂new(k)) from auto-encoder model at sample k. After
calculating residual vector, SPE is applied for measuring magnitude of residual. SPE is defined as:

SPE(k) = ‖enew(k)‖

= (xnew(k)− x̂new(k))
T (xnew(k)− x̂new(k))

(10)

Tool condition is determined by SPE. The diagnosis model determine that tool is usable if SPE
is lower than a specific threshold value. On the other hands, if SPE is higher than the threshold
value, the diagnosis model determine that tool should be changed after some days or weeks. In
this paper, we employ percentile and kernel density estimation for finding confidence limit used as
threshold value.

4. Experiment and Discussion

4.1. Data Preparation

In this paper, we use two tools of CNC machine, a new tool and a used tool. The new tool has
been used less than an hour and the use tool has been used over fifty hours. We made 4 workpieces
with the new tool and 12 workpieces with the used tool. To generate the data which is able to apply
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to diagnosis models, we extract the part of signal processed in same pattern from the whole cutting
force signal and remove the impulse signal which interrupt diagnosis. After extracting the cutting
force signal, synchronizing the cutting force and the current signal should be performed because of
different sampling time between the cutting force and the current signal. In the new tool dataset, there
are 100 samples that are processed as same pattern. Among the new tool dataset, 80 samples are used
as training dataset, others are employed test sample. In the used tool dataset, there are 218 samples
that are processed as same pattern. Figure 1a model is trained by only the raw cutting force data in
training dataset. Figure 1b,c models are trained by feature extracted from the cutting force and the
current signal in training dataset. The cutting force and the feature data used as training and test data
are normalized by the min-max normalization before training and test.

4.2. Experiments

In this paper, we experiment three models for diagnosis of CNC machine tool. Before training
the test model is carried out, threshold value should be selected from detection index of training
datasets. To select the threshold value, one-leave out method is employed [34]. The neural network
and auto-encoder have different results even though the models have same structure and are trained
by same datasets. Using this characteristic, we make 50 detection indices from different 50 models
using a dataset for choosing the threshold value. Figure 9 shows the results of one-leave-out method
as histogram, where dashed lines indicate threshold value which is 99 percent confidence level (Thrn)
of normal distribution, solid lines indicate threshold value which is 99 percentile(Thrp) value.

(a) (b)

(c)

Figure 9. Histogram of SPE results calculated from training dataset: (a) Results of CFSAE; (b) Results
of FSAE; (c) Results of FSAENR.
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Figure 10. Experimental results and alarm signal of each model: (a) SPE of CFSAE; (b) Alarm signal of
CFSAE; (c) SPE of FSAE; (d) Alarm signal of FSAE; (e) SPE of FSAENR; (f) Alarm signal of FSAENR.

Model performance of auto-encoder indicates different results according to hyperparameter of
auto-encoder (code size, the number of layers and the number of nodes per layer) and the number
of learning epoch. Therefore, it is necessary for auto-encoder to optimize hyperparameter and the
number of learning epoch. To optimize hyperparameter and the number of learning epoch, we carried
out k-fold cross validation in this paper. Table 2 indicates optimized hyperparameter and the number
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of learning epoch obtained through k-fold cross validation, where code size is the number of neurons in
latent space (end of encoder). CFSAE, FAE and FSAENR are Figure 1a–c model, respectively. To verify
the diagnosis models, we train the models according to optimized values. Figure 10 shows results
of the diagnosis models. Figure 10a,c,e show SPE result of each models. Blue solid line indicates
calculation result of SPE using the new tool data, black solid line is calculation result using the used
tool. Blue and red dashed line indicate threshold value extracted from percentile and kernel density
estimation results, respectively. Figure 10b,d,f indicate alarm signals. The alarm signals are divided
as three cases: (1) Lower than both threshold values; (2) Intermediate value of both threshold values;
(3) Higher than both threshold values.

In case of CFSAE, although SPE of new tool do not exceed Thrp, a lot of test cases
exceed Thrn. Moreover, the SPEs of new tool have similar value to SPEs of used tool.
In case of FSAE and FSAENR, results of both models indicate similar waveform. However,
FSAENR has a lot lower SPE value than FASE since FSAENR calculates SPE using normalized
residual vector. Both models show properly classifying most case of test data. Table 3 show
false negative rate (FNR, ∑(True negative)/ ∑(Condition positive)) and false positive rate (FPR,
∑(True positive)/ ∑(Condition negative)) of each model. Lower FNR means that the model has
low type I error frequency and lower FPR means that the model has low type II error frequency.CFSAE
model shows high FNR and FPR. FSAE and FSAENR show lower FNR and FPR. Furthermore, FSAENR
model shows 10 percent lower FNR than FSAE.

Table 2. Model hyperparameters and the number of learning epoch.

Model Code Size Number of Layers Whole Structure Learning Epoch

CFSAE 20 7 80× 60× 30× 20× 30× 60× 80 350
FSAE 10 7 36× 25× 15× 10× 15× 25× 36 200

FSAENR 10 7 36× 25× 15× 10× 15× 25× 36 200

Table 3. Performance of tool diagnosis models.

Model SPE < Thrn Thrn < SPE < Thrn SPE > Thrp FNR (%) FPR (%)

New Used New Used New Used Thrn Thrp Thrn Thrp

CFSAE 8 56 12 156 0 6 60.00 0.00 25.69 97.25
FSAE 14 0 6 1 0 217 30.00 0.00 0.00 0.46

FSAENR 16 0 4 1 0 217 20.00 0.00 0.00 0.46

5. Conclusions

In this paper, we proposed CNC tool diagnosis models using auto-encoder. The auto-encoder is
unsupervised method which do not need labeled data, so the method is appropriate at processes that
have difficult to get the plenty of failure data. We used the cutting force extracted from CNC machine
and the current data extracted from spindle motor for machine tool diagnosis. The diagnosis model
that had used raw data showed low performance. Hence, feature data generated from the cutting
force and current signal are employed. We carried out experiments about three models. The CFSAE
model used raw cutting force data. The FSAE and FSAENR models used feature data. The results of
CFSAE showed that the new tool and the used tool have similar SPE value, so the CFSAE model have
not identified the type of tools. Hence, FNR and FPR of CFSAE model is high. In case of FSAE and
FSAENR models, the used tool signals were almost completely classified and the test cases of new tool
are perfectly identified at using Thrp as threshold value, FNR is zero. It can be seen that the feature
data represents the characteristics of fault signal better than the raw signal. Furthermore, FSAENR has
lower FNR than FSAE since normalized residual vector reduce effect of large unit scale like cutting
force signal.
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The condition based maintenance needs not only fault detection and tool diagnosis but also
prediction model which estimates remained life time of tool. In future work, we will research about
the tool diagnosis model that can continuously update criteria of tool condition using cumulated data
in online and prediction model that can estimate remained life time of tool and denote the time to
replace tool.
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