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Abstract: The steam/water loop is a crucial part of a steam power plant. However, satisfying control
performance is difficult to obtain due to the frequent disturbance and load fluctuation. A fractional
order model predictive control was studied in this paper to improve the control performance of
the steam/water loop. Firstly, the dynamic of the steam/water loop was introduced in large-scale
ships. Then, the model predictive control with an extended prediction self adaptive controller
framework was designed for the steam/water loop with a distributed scheme. Instead of an integer
cost function, a fractional order cost function was applied in the model predictive control optimization
step. The superiority of the fractional order model predictive control was validated with reference
tracking and load fluctuation experiments.

Keywords: multi-input multi-output system; steam power plant; fractional order; model predictive
control; large scale ships

1. Introduction

A total of 80% trade volume is moved with shipping industry, which is becoming an important
part of the world economy [1]. In order to obtain large carrying capacity and low operation cost, there
is a large demand for large-scale cargo ships. To achieve energy saving and a stable energy supply,
research is required to optimize the power plant in large-scale ships [2]. The steam/water loop in large
scale ships has the function of supplying water and recovering the waste steam for the steam power
plant. There are five output variables including the drum water level, exhaust manifold pressure,
deaerator pressure, deaerator water level and condenser water level. The steam/water loop has the
features of nonlinearity, multi variables and strong coupling system. During the operating of the ship,
the frequent disturbance and load fluctuation make it difficult to obtain a satisfying control effect
for the five sub-loops [3]. The challenges in the control of steam/water loop can be summarized as
follows:

• the steam/water loop is a system of nonlinearity, strong interactions and multivariable;
• load and disturbances change frequently with large amplitude;
• operating conditions changes frequently (there are ten levels of the sea state);
• demands for mobility and rapidity are growing high.
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The Model Predictive Control (MPC) is a widely applied controller in industrial processes for its
ability to deal with constraints such as the input saturation and rate limits. The dynamic model of the
system is required to predict and optimize the future error and control effort by minimizing a cost
function [4]. MPC has become the mostly applied control strategy in a wide variety of areas, including
petroleum, refining and chemical industries [5]. Part of the work about the application of MPC to the
boiler system is shown in [6–8]. In the cost function, an economic index was included [6]. The reference
tracking and the economic performance were both realized. To realize satisfying control performance
for ultra-supercritical boiler, a fuzzy model was obtained for the fuzzy MPC, and a linear extended
state observer was improved to estimate plant behavior variations and unknown disturbances [7]. A
state-space model was linearized on-line to improve the computationally efficient in model predictive
control, and the results were similar to the results obtained with nonlinear model [8]. For tuning
the closed loops with MPC, a practical method with step response of the system was proposed [9].
The methodology is suitable for hands-on tuning of MPC. Compared with PID control, it is discussed
about when, where and why to apply the MPC with the advent of Industry 4.0 [10].

The fractional order calculus has attracted increasing attention over the past two decades for its
versatility in modeling and control applications [11]. Although the computational load will increase
with fractional order, nowadays, the development of microprocessor makes it possible for such
kind of computation. Some types of control strategies have been generalized with fractional order
calculus [12,13]. For example, the PID controller is the most used in industry [14], hence, fractional
order calculation was added to PID controller in many applications such as: AR.Drone quad-rotor [15],
induction motor drive system [16], multi-area interconnected power systems [17], heterogeneous
dynamic systems [18], automatic regulator voltage system [19], multiple UAVs formation [20,21],
velocity control system [22]. The fractional order calculus is also applied in the MPC method. And
the application can be found such as temperature control [23], and frequency control of an islanded
micro-grid [24].

In the fractional order calculus, aDα
b is commonly used for α-th order derivative in the interval [a,

b], and a Iα
b the α-th fractional order integral in the interval [a, b]. There are two kinds of approximate

estimators for the fractional calculus. One is the Grünwald-Letnikov (GL) definition, and another
Riemann-Liouville (RL) definition. The RL definition is used for continuous domain, while GL
definition for numerical integration and simulation purposes. Their definitions are

aDα
t f (t)t=kTs = lim

Ts→0
Ts
−α

[ t−a
Ts ]

∑
i=0

(−1)i

(
α

i

)
f (kTs − iTs) GL (1)

aDα
t f (t) =

1
Γ(n− α)

dn

dtn

∫ t

a

f (τ)
(t− τ)(α−n+1)

dτ RL (2)

where Ts is the sampling time and Γ(·) is Euler’s Gamma function.
In this paper, the original contribution lies in that the constant values of the weighting factors

in classical MPC is replaced with time-varying weighting factors in fractional order MPC (FOMPC).
The weight factors in the classical MPC have Np + Nc elements for tracking error and control effort
need to be defined, where Np is prediction horizon and Nc is control horizon. The optimal problem for
the weighting factors will be very complex. Hence, the weighting factors are mostly kept as constants
in MPC. In the FOMPC, the weighting factors are obtained with the fractional orders, in which optimal
different weighting factors can be tuned with two fractional orders, one for the tracking error and
another for control effort. Hence, the FOMPC will result in a better system performance than the
MPC method. In this work, fractional order MPC is proposed firstly for steam/water loop with GL
definition. Then, the integer order cost function is replaced with a fractional order one in the MPC.
In order to obtain a relatively good value set for the five sub-loops, different fractional orders are
required for each sub-loop. The results show that the bigger fractional order leads to better control
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performance. Finally, reference tracking and load fluctuation experiments are conducted to verify the
effectiveness of the FOMPC.

The paper is structured as follows: firstly, the steam/water loop is introduced in Section 2.
Section 3 gives a brief introduction about Extended Prediction Self Adaptive Controller (EPSAC), and
the fractional order cost function is designed. Section 4 shows the results of FOMPC compared with
classical MPC. Conclusions are discussed in Section 5.

2. The Description for Steam/Water Loop

The steam/water loop in the large scale ships plays the role of supplying water to the boiler and
recycling waste steam from turbine. The system is composed of a boiler drum, exhaust manifold,
deaerator and condenser. The system operating principle can be found in Figure 1, in which there are
two main operating loops. One is indicated with the red line for the steam loop, while the green line
for the water loop. The description for the system are as follows: firstly, the condensed water from
condenser goes to the deaerator for preheating and deoxygenation. Secondly, the feedwater is pumped
to the drum. Due to the high density of the water than the steam, the water goes to the mud-drum.
In the risers, the water absorbs the heat and becomes the mixture of steam and water. The steam gets
separated in the drum and goes to the turbine after being heated in the economizer. The waste steam
from the turbine and other auxiliary machines goes to the exhaust manifold. Most of the waste steam
goes to the condenser, and the left part of waste steam goes to the deaerator for deoxygenation. Finally,
the condensate water goes to the deaerator to work again.

Figure 1. Structure of the steam/water loop [25] (reproduced with permission from Zhao, S.; Maxim,
A.; Liu, S.; De Keyser, R.; and Ionescu, C, Processes; published by MDPI, 2018.).

In the steam/water loop, the input variables u = [u1, u2, . . . , u5] are valves for the five sub-loops,
and the output variables y = [y1, y2, . . . , y5] are the drum water level (y1), exhaust manifold pressure
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(y2), deaerator pressure (y3), deaerator water level (y4), and condenser water level (y5), respectively [3].
The transfer functions and constraints of the steam/water loop are shown as follows:

y1

y2
...

y5

 =


G11 G12 · · · G15

G21 G22 · · · G25
...

...
. . .

...
G51 G52 · · · G55




u1

u2
...

u5

 (3)

where G11 = 0.0000987
(s+0.1131)(s+0.0085+0.032j)(s+0.0085−0.032j) , G22 = 0.7254

(s+1.2497)(s+0.0223) ,

G23 = −0.5
(s+1.9747)(s+0.0253) , G33 = 0.0132

(s+0.0265+0.0244j)(s+0.0265−0.0244j) , G34 = −0.009
(s+0.0997)(s+0.0411) ,

G41 = −0.0008
(s+0.012+0.126j)(s+0.012−0.126j) , G44 = 0.0005152

(s+0.012+0.038j)(s+0.012−0.038j) ,

G54 = −0.00015
(s+0.0175+0.0179j)(s+0.0175−0.0179j) , G55 = 0.00147

(s+0.025+0.0654j)(s+0.025−0.0654j) , and other transfer

functions G12 = G13 = ... = G53 = 0.



−0.007/s ≤ du1

dt
≤ 0.007/s 0 ≤ u1 ≤ 1

−0.01/s ≤ du2

dt
≤ 0.01/s 0 ≤ u2 ≤ 1

−0.01/s ≤ du3

dt
≤ 0.01/s 0 ≤ u3 ≤ 1

−0.007/s ≤ du4

dt
≤ 0.007/s 0 ≤ u4 ≤ 1

−0.007/s ≤ du5

dt
≤ 0.007/s 0 ≤ u5 ≤ 1

(4)

The operating point and ranges of variables are shown in Table 1.

Table 1. The operating points and range of the steam/water loop.

Outputs Operating Points Range Units

Water level in drum 1.79 [1.39–2.19] m
Pressure in exhaust manifold 100.03 [87.03–133.8] MPa
Pressure in deaerator 30 [24.9–43.86] KPa
Water level in deaerator 0.7 [0.49–0.89] m
Water level in condenser 0.5 [0.32–0.63] m

3. Fractional Order MPC with EPSAC Framework

3.1. Brief Introduction for EPSAC

In this part, a brief introduction about EPSAC is given, and the detailed theory is introduced
in [26]. For a discrete system:

y(t) = x(t) + w(t) (5)
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where t is the discrete time index; y(t) and x(t) are the system output and model output, respectively;
and w(t) indicates the disturbance. The model output x(t) can be obtained according to the system
model and past model outputs and inputs:

x(t) = f [x(t− 1), x(t− 2), . . . , u(t− 1), u(t− 2), . . .] (6)

The following two parts compose the future input in EPSAC:

u(t + k|t) = ubase(t + k|t) + δu(t + k|t) (7)

where the ubase(t + k|t) indicates the basic future control actions and δu(t + k|t) is the optimized future
control actions. With these two parts of future input, the predicted future system output can be divided
with the following two parts:

y(t + k|t) = ybase(t + k|t) + yopt(t + k|t) (8)

where ybase(t + k|t) is produced with the basic future control action ubase(t + k|t) and yopt(t + k|t) is
obtained with optimized future control action δu(t + k|t). According to the discrete input scenario, the
yopt(t + k|t) can be obtained with:

yopt(t + k|t) = hkδu(t|t) + hk−1δu(t + 1|t) + ... + gk−Nc+1δu(t + Nc − 1|t) (9)

where the hi and gi are the impulse response and step response coefficients of the system; Nc is the
control horizon and Np the prediction horizon. The system output can be re-written as:

Y = Ȳ + GU (10)

with Y = [y(t + N1|t) . . . y(t + Np|t)]T , U = [δu(t|t) . . . δu(t + Nc − 1|t)]T , Ȳ = [ybase(t +
N1|t) . . . ybase(t + NP|t)]T , and

G =


hN1 hN1−1 . . . gN1−Nc+1

hN1+1 hN1 . . . . . .
. . . . . . . . . . . .
hNP hNP−1 . . . gNP−Nc+1


where N1 is the time delay of the system.

The disturbance term w(t) in Equation (5) is taken as a filtered white noise [26], which is given by:

w(t + k|t) = C(q−1)

D(q−1)
w f (t + k|t) (11)

where q−1 is the backward shift operator; D(q−1) = (1 − q−1)A(q−1); and A(q−1), C(q−1) are
polynomials from Controlled Auto-Regressive Integrated Moving Average (CARIMA) model.

The cost function gives:

JMPC =
Np

∑
k=N1

pk[r(t + k|t)− y(t + k|t)]2 +
Nu

∑
k=1

qk4u(t + k)2 (12)

where pk and qk are nonnegative weighting factors, which are kept as constants.
Rewrite the Equation (12) into matrix form, and the following can be obtained:

JMPC = (R− Y)TP(R− Y) + UTQU = (R− Ȳ−GU)TP(R− Ȳ−GU) + UTQU (13)
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where P = diag(p1, p2, . . . , p(Np−N1+1)) and Q = diag(q1, q2, . . . , qNu).
If there are constraints in the optimization problem, it can be solved with quadratic programming.

Without constraints, the optimal input sequence for δu(t + k|t) gives:

U∗MPC = (GTPG + Q)−1GTP(R− Ȳ) (14)

For the fractional order MPC, the cost function can be expressed with

JFOMPC =γ I
Np
N1

pk[r(t + k|t)− y(t + k|t)]2 +λ INc
1 qk4u(t + k)2 (15)

where [N1, Np] and [1, Nc] are the integration intervals, and γ I
Np
N1

and λ INc
1 are the symbols for fractional

order integral with γ and λ the fractional orders. The γ I
Np
N1

and λ INc
1 can be rewritten as:

γ I
Np
N1

pk[r(t + k|t)− y(t + k|t)]2 =
∫ Np

N1

D1−γ pk[r(t + k|t)− y(t + k|t)]2dt

λ INc
1 qk4u(t + k)2 =

∫ Nc

N1

D1−λqk4u(t + k)2dt
(16)

According to [27], the Equation (15) can be approximated by:

JFOMPC = (R− Y)TPΓ(Ts, γ)(R− Y) + UTQΛ(Ts, λ)U

= (R− Ȳ−GU)TPΓ(Ts, γ)(R− Ȳ−GU) + UTQΛ(Ts, λ)U
(17)

Γ(Ts, γ) = Tγ
s diag(mNp−N1 , mNp−N1−1, . . . , m1, m0) (18)

Λ(Ts, λ) = Tλ
s diag(mNc , mNc−1, . . . , m1, m0) (19)

The mi with fractional order α gives:

mj = ω
(−α)
j −ω

(−α)
j−n (20)

where n is the number of the mi.

ω−α
j =


(1− (1− α)/j)ω(−α)

j−1 j > 0;
1 j = 0;
0 j < 0.

(21)

From Equation (18) to Equation (21), the weight matrix can be easily tuned with fractional order
γ and λ in the cost function JFOMPC. And the weighting factors in the FOMPC are time-varying along
the prediction horizon and control horizon. If there are constraints, the optimization problem can be
solved with quadratic programming. Without constraints, the optimal input sequence for δu(t + k|t)
in FOMPC can be obtained as:

U∗FOMPC = (GTP(Γ + ΓT)G + Q(Λ + ΛT))−1GTP(Γ + ΓT)(R− Ȳ) (22)

3.2. Applied the EPSAC to the MIMO System with Distributed Scheme

Due to the flexibility and robustness of the distributed control, the EPSAC is applied to the
steam/water loop in distributed scheme, in which each sub-loop works as independent modules with
communication network. The application of distributed fractional order MPC on the steam/water
loop is similar to the method introduced in [3], and the integer cost function is replaced with fractional
order cost function. Only a brief introduction is given here about the distributed MPC.
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In the distributed MPC, the inference from other sub-loops should be considered to optimize the
future error and control effort for sub-loop i, hence, the item GU in Equations (13) and (17) should be

replaced with
5
∑

j=1
GijUj, and Gij is the transfer function of ith output from jth input. A pseudo-code for

the distributed MPC is provided in Algorithm 1.

Algorithm 1 The iterative DiMPC

1: Sub-loop i receives an optimal local control action δUi at the iterative time as iter = 0 according
to the EPSAC, and the local control action δUi can be marked as δUiter

i , where δUi indicates the
vector of the optimizing future control actions with length of Nci;

2: The δUiter
j (j ∈ Ni, Ni = {j ∈ N : Gij 6= 0}) will be communicated with the loop i, and the δUiter+1

i

will be calculated again with the δUiter
j from other loops;

3: If one of the termination conditions is reached, the δUiter+1
i will be adopted to the system.

Otherwise, the iter will be set as iter = iter + 1, and return to Step 2. The termination condition is
shown as follows: (||δUiter+1

i − δUiter
i || 6 εi) ∨ (iter + 1 > iter), where ε is a positive constant and

iter indicates the upper bound of the number of iteration times.

4: Calculate the optimal control effort as Ut = Ubase + δUiter, and the control effort will be applied to
the system;

5: Set t = t + 1, return to Step 1.

4. Results and Discussion

In this paper, reference tracking and load fluctuation experiments are conducted to verify the
effectiveness of the FOMPC. The parameter configuration is listed in Table 2.

Table 2. MPC parameters.

Parameters Nc Ts Np N1 Ns

Values
Nc1 = 4, Nc2 = 1,
Nc3 = 1, Nc4 = 4,
Nc5 = 6 samples

5s
Np1 = 20, Np2 = 15,
Np3 = 15, Np4 = 20,
Np5 = 20 samples

1 300

where, Ns is the number of samples. The termination conditions for the distributed MPC are set as: (i)
||δUiter+1

i − δUiter
i || 6 0.002; (ii) iter > 5.

4.1. The Effect of Different Fractional Orders on the Overall System Performance

The choice of fractional orders of γ and λ have important influence on the system. To explore the
effect of different fractional orders, the fractional orders listed in Table 3 are applied for each sub-loop.

Table 3. Different fractional orders for the five sub-loops.

Loops Fractional Orders

Drum water level control loop [6.2 5.0 3.8 2.6 1.0 0.8]
Exhaust manifold pressure control loop [1.2 1.0 0.9 0.62 0.36 0.12]

Deaerator pressure control loop [5.0 3.8 2.2 1.4 1.0 0.6]
Deaerator water level control loop [1.5 1.2 1.0 0.8 0.4]
Condenser water level control loop [2.2 1.8 1.2 1.0 0.7 0.3]
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Figure 2. Outputs with different fractional orders for the five sub-loops.

Intuitively from the results shown in Figure 2, all the outputs of the five sub-loops indicate that
the larger fractional order leads to better responses both in response time and overshoot in a certain
range. Also, the overshoot reduces with large fractional order value.

4.2. Reference Tracking Performance

According to the results from previous section, The fractional orders for the five sub-loops are
chosen as 6.2, 0.62, 2.2, 1.2 and 1.2, respectively. The following indexes are applied to evaluate the
performance of the FOMPC and MPC, including the Integrated Absolute Relative Error (IARE),
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Integral Secondary control output (ISU), Ratio of Integrated Absolute Relative Error (RIARE), Ratio
of Integral Secondary control output (RISU) and combined index (J).

IAREi =
Ns−1

∑
k=0
|ri(k)− yi(k)| /ri(k) (i = 1, 2, · · · , 5) (23)

ISUi =
Ns−1

∑
k=0

(ui(k)− ussi(k))
2 (i = 1, 2, · · · , 5) (24)

RIAREi(C2, C1) =
IAREi(C2)

IAREi(C1)
(i = 1, 2, · · · , 5) (25)

RISUi(C2, C1) =
ISUi(C2)

ISUi(C1)
(i = 1, 2, · · · , 5) (26)

J(C2, C1) =
1
5

5

∑
i=1

w1RIAREi(C2, C1) + w2RISUi(C2, C1)

w1 + w2
(27)

where ussi is the steady state value of ith input; C1,C2 are the two compared controllers; the weighting
factors w1 and w2 in equation (27) are chosen as w1 = w2 = 0.5.

In the Reference tracking experiment, step signals are introduced to the system at different time.
The setpoints for the five loops are shown in Table 4.

Table 4. Setpoints for different loops in the experiments.

Time (s) 2–300 300–600 600–900 900–1200 1200–1500

Drum Water Level (m) 2 2 2 2 2
Exhaust Manifold
Pressure(MPa) 100.03 116 116 116 116

Deaerator Pressure (KPa) 30 30 35 35 35
Deaerator Water Level(m) 0.7 0.7 0.7 0.8 0.8
Condenser Water Level(m) 0.5 0.5 0.5 0.5 0.6

The simulation results about reference tracking performance are shown in Figure 3. And the
performance indexes are shown in Tables 5 and 6.

(a) drum water level control loop
Figure 3. Cont.
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(b) exhaust manifold pressure control loop

(c) deaerator pressure control loop

(d) deaerator water level control loop

(e) condenser water level control loop
Figure 3. Outputs of the steam/water loop with FOMPC and MPC in the reference tracking experiment
(The outputs are listed on the left hand, and the inputs are listed on the right hand).
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Table 5. Indexes for IARE and ISU in the reference tracking experiment.

Index Loop 1 Loop 2 Loop 3 loop 4 Loop 5

IARE MPC 1.2614 1.6972 1.9464 2.0500 2.9060
FOMPC 1.3337 1.6411 1.8813 1.5570 1.9686

ISU MPC 0.0302 0.4776 0.1330 0.1577 1.6925
FOMPC 0.0205 0.4719 0.1014 0.1371 1.7689

Table 6. Indexes for RIARE and RISU in the reference tracking experiment (MPC is the C2 and FOMPC
the C1 according to Equations (25) and (26)).

Index Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

RIARE 0.9458 1.0342 1.0346 1.3166 1.4762

RISU 1.4729 1.0119 1.3119 1.1503 0.9568

The combined index J for the reference tracking case is 1.1711. Both from the Figure 3 and
performance indexes, it can be concluded that the FOMPC outperforms the MPC in reference tracking
experiment. The response time and overshoot are both smaller in FOMPC than those in the traditional
MPC. From Table 5, the ISUs for sub-loop 5 are similar, however, the IAREs are much different from
each other. This is caused by the interaction between water levels of deaerator and condenser water
level. The condenser has a smaller volume than the deaerator, hence, the water level in condenser
changes a lot along with the deaerator water level.

4.3. Load Disturbance Rejection Performance

In the simulation of the load disturbance rejection experiment, 20% load increase from time period
100 s to 150 s and 20% load decrease from time period 850s to 900s are introduced in the steam/water
loop. And the simulation results for load disturbance rejection experiment are shown in Figure 4 and
Tables 7 and 8.

(a) drum water level control loop

Figure 4. Cont.
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(b) exhaust manifold pressure control loop

(c) deaerator pressure control loop

(d) deaerator water level control loop

(e) condenser water level control loop
Figure 4. Outputs variables with FOMPC and MPC in the load fluctuation experiment (The outputs
are listed on the left hand, and the inputs are listed on the right hand).
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Table 7. Indexes for IARE and ISU in the load fluctuation experiment.

Index Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

IARE MPC 3.5312 0.0686 0.6469 4.8710 3.4694
FOMPC 3.1523 0.0129 0.3402 1.6632 1.6197

ISU MPC 0.2403 0.0393 0.2379 0.5215 0.7876
FOMPC 0.1452 0.0206 0.1253 0.3114 0.7855

Table 8. Indexes for RIARE and RISU in the load fluctuation experiment (MPC is the C2 and FOMPC
the C1 according to Equations (25) and (26)).

Index Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

RIARE 1.1202 5.3201 1.9016 2.9287 2.1420

RISU 1.6551 1.9049 1.8988 1.6748 1.0027

The combined index J for the load fluctuation case is 2.1549. Compared with MPC, the FOMPC
method reduces the tracking error by 168%, and reduces the amount of control effort changes by 62.7%.
The FOMPC has a significant improvement than the MPC method. With less control effort, the FOMPC
can achieve better load disturbance rejection performance than the MPC.

5. Conclusions

By replacing the integer cost function with a fractional order one, the fractional order MPC based
on EPSAC framework is applied to the steam/water loop in large scale ships. The comparison between
FOMPC and MPC shows the FOMPC has better performance both in the reference tracking and load
disturbance rejection. Different fractional orders are applied to the five sub-loops in steam/water loop,
and it is concluded that within a certain range of the fractional order, the larger the order leads to
better performance.
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