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Abstract: The integrated energy system is a vital part of distributed energy industries. In addition to
this, the optimal economic dispatch model, which takes into account the complementary coordination
of multienergy, is an important research topic. Considering the constraints of power balance, energy
supply equipment, and energy storage equipment, a basic model of optimal economic dispatch of an
integrated energy system is established. On this basis, a multiobjective function solving algorithm of
NSGA-II, based on tent map chaos optimization, is proposed. The proposed model and algorithm are
applied. The simulation results show that the optimal economic scheduling model of the integrated
energy system established in this paper can provide a more economic system operation scheme and
reduce the operation cost and risks associated with an integrated energy system. The Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) multiobjective function solving algorithm, based on tent map
chaos optimization, has better performance and efficiency.

Keywords: integrated energy system; optimal economic dispatch; tent map; chaotic optimization

1. Introduction

With the increasing demand for energy, the integrated energy system, as a key component of the
energy internet, can form a unified and efficient energy management platform that includes power
networks, thermal networks, and natural gas networks [1–3]. Integrated energy systems interconnect
different forms of energy networks through energy-coupling devices, such as Combined Cooling
Heating and Power (CCHP) units, gas-to-electricity devices, and fuel cells, to achieve multienergy
complementary coordination [4,5]. At the same time, energy storage devices optimize the allocation
of energy in the time dimension, which can reduce the integrated operation cost of the system while
meeting the requirements of energy supply; therefore, making the system more economical.

As one of the key technical problems, the optimal economic dispatch model of the integrated energy
system has been researched in many studies. On the one hand, these studies establish more objective
and reasonable economic dispatching models, such as the regional integrated energy system optimal
economic dispatching model with a power network as the core in reference [6]. Gu Wei et al. [7]
established a mixed integer linear programming economic dispatching model for a multidistrict
integrated energy system based on the operation principle of the CCHP system; Shi Jinyue et al. [8]
established an optimal operation model for an integrated energy system using two-level programming
theory. Other studies have focused on model solving algorithms. For example, in reference [9],
the Benders decomposition algorithm is used to solve the model. Zhou Canhuang et al. [10] used
particle swarm optimization algorithm to solve the optimal operation model of the integrated energy
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system of the campus microgrid. Zhang Xia et al. [11] present a reliability evaluation algorithm for
a regional integrated energy system based on the particle swarm optimization (PSO) interior point
hybrid optimization algorithm, which can effectively evaluate the effect of the optimal operation of an
integrated energy system. Lin Wei et al. [12] solved the mixed power flow algorithm of the regional
integrated energy system through multiobjective optimization, and then obtained the optimized
operation plan of the system. However, as basic algorithms, the above algorithms have limited
potential in further improving the performance of model solving. At present, few papers use the
Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) multiobjective function solving algorithm
based on tent map chaos optimization to design the solving process for the economic dispatch model
of an integrated energy system.

Firstly, aiming at the multienergy complementary coordination characteristics in the optimization
of economic dispatch of an integrated energy system, the optimal economic dispatch model of an
integrated energy system is established in this study. On this basis, the objective function is solved
by using the tent map chaotic optimization NSGA-II algorithm. Although the traditional NSGA-II
algorithm has been widely used in the field of multiobjective optimization, it still has the problem of
local optimization. In this paper, the chaotic optimization algorithm of the tent map is embedded in
the main flow of the NSGA-II algorithm. By improving the initialization process and elite retention
process of the algorithm, the search space is enlarged, the algorithm is prevented from falling into local
optimization, and the convergence speed of the algorithm is accelerated. It enhances the computational
efficiency, robustness, and applicability of the algorithm, and ultimately, improves the performance of
solving the multiobjective optimization model. Finally, the algorithm is used to verify the effectiveness
of the model and the tent map chaos optimization NSGA-II algorithm.

2. Economic Dispatch model of Integrated Energy System

2.1. Objective Function

The integrated energy system is composed of different forms of energy networks; hence, the control
variables of its economic dispatch model include the equipment operation plans of different forms of
energy. The objective function of economic dispatch of an integrated energy system is to minimize the
daily operating cost of the system, as shown in Equation (1).

C = C1 + C2 + C3 + C4 (1)

where C is the daily operating cost of an integrated energy system; C1 is the operating cost of an
electrical power network; C2 is the operation cost of a thermal energy network; C3 is the operation cost
of a gas energy network; and C4 is the operation cost of an electric vehicle charging station network.

minC1 =
T∑

t=1

[
Pgrid(t)qgrid(t) + kSB

∣∣∣PSB(t)
∣∣∣+ kWTPWT(t) + kPVPPV(t) + βqgrid(t)Pcut(t)

]
(2)

where Pgrid(t) is the t-period exchange power between the public coupling point of the power network
and the external network; qgrid(t) is the time-sharing price level of the external network for t-period;
PWT(t) is the wind power output for t-period; PPV(t) is the photovoltaic power output for t-period; kSB,
kWT, and kPV are energy storage, wind power, and the photovoltaic operation cost coefficient—they
are all constants; PSB(t) is the charging and discharging power for t-period energy storage; β is the
interruption compensation coefficient; and Pcut(t) is the load interruption capacity of the t-period.

minC2 =
T∑

t=1

 PMT(t)CNG

ηMT(t)QLHV
+ PH(t)ph(t) +

N∑
θ=1

λθMTcθ(
PMT(t)

ηMT(t)
− PMT(t))

 (3)
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where PMT(t) is the heating power of a microgas turbine with t-period combined cooling, heating,
and power supply, i.e., the energy input of a dual-effect absorption unit; ηMT(t) is the thermal efficiency
of the t-period combined cooling, heating, and power microcombustor; CNG is the unit price of natural
gas; QLHV is the low calorific value of natural gas; PH(t) is the purchasing power of the t-period thermal
energy network; ph(t) is the heating price of the t-period thermal energy network; θ is the pollutant
category, and there are N pollutants; λθMT is the emission coefficient of the θth pollutant, which is a
constant; and cθ is the unit emission control cost of the θth pollutant, which is also a constant.

minC3 =
T∑

t=1

Qin(t)CNG +
N∑
θ=1

λθFCcθPFC(t)

 (4)

where Qin(t) is the intake volume of a gas source point for t-period; λθFC is the emission coefficient of
the θth pollutant; and PFC(t) is the power generation of a fuel cell for t-period.

minC4 =
N∑

i=1

T∑
t=1

Pgrid(t)Pi(t) (5)

where Pi(t) is the charging load power of the charging station of the i electric vehicle in t-period.

2.2. Constraint Condition

2.2.1. Energy Power Balance Constraints in Various Forms

The constraints include energy balance constraints, thermal energy balance constraints, and gas
energy balance constraints, as shown in Equations (6), (8), and (9), respectively.

Pgrid(t) + PMT(t) + PFC(t) + PWT(t) + PPV(t) + PSB(t) = PL(t) + Ploss(t) + PG(t) (6)

where PL(t) is the load power of the t-period electric power subnet and Ploss(t) is the loss power of the
t-period power subnet. The calculation method is shown in Equation (7). PG(t) is the electric switching
power for the t-period power subnet, which was realized by methane switching equipment.

Ploss(t) =
M∑

k=1

P2
k + Q2

k

U2
k

Rk (7)

where Pk and Qk are the active and reactive power for branch k; M is the number of branches in the
power electronic network; Rk is the resistance of branch k; and Uk is the rated voltage of the branch k.

PMT(t)Che + Vx(t) + PH(t) = Lhe(t) (8)

where Che is the heating coefficient of the double-effect absorption unit; Lhe(t) is the heat load of
the t-period heat energy subnetwork; Vx(t) is the heat stored in the t-period energy storage device,
which is stored when it is greater than zero, and released when it is less than zero; and PH(t) is the
heating power of the t-period heat energy external network relative to the heat subnetwork.

Qin(t) + PG(t) =
PFC(t)

ηFC(t)QLHV
+

PMT(t)
ηMT(t)QLHV

+ Lg(t) (9)

where Lg(t) is the gas load of the t-period and ηFC and ηMT represent the efficiency of the fuel cell and
the efficiency of the microturbine, respectively.
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2.2.2. Operation Constraints of Energy Supply Equipment

The constraint is shown in Equation (10).

Pmin
grid ≤ Pgrid(t) ≤ Pmax

grid
Pmin

H ≤ PH(t) ≤ Pmax
H

0 ≤ PFC(t) ≤ Pmax
FC

0 ≤ Qin(t) ≤ Qmax
in

0 ≤ PMT(t) ≤ Pmax
MT

(10)

where Pmin
grid and Pmax

grid are the minimum and maximum switching power between the power subnet and

the external network, respectively; Pmin
H and Pmax

H are the minimum heating power and the maximum
heating power of the heat energy external network, respectively; Qmax

in is the air intake at the maximum
resource point for a gas energy subnet; Pmax

FC is the output limit of fuel cells; and Pmax
MT is the output

limit of the microturbine for CCHP.

2.2.3. Operation Constraints of Energy Storage Equipment

The constraint is shown in Equation (11).

Pmin
SB ≤ PSB(t) ≤ Pmax

SB
Smin

SB ≤ SSB(t) ≤ Smax
SB

SSB(t + 1) ={
SSB(t) − PSB(t)∆t/ηdis − ∆tDSBQSB, PSB(t) > 0
SSB(t) − PSB(t)∆tηch − ∆tDSBQSB, PSB(t) < 0

X(t) = X(t− 1) + Vx(t) − λx∆t
Vmin ≤ Vx(t) ≤ Vmax

Xmin ≤ X(t) ≤ Xmax

Qs(t) = Qs(t− 1) + Gs(t)
Gmin

s ≤ Gs(t) ≤ Gmax
s

Qmin
s ≤ Qs(t) ≤ Qmax

s

(11)

where Pmin
SB and Pmax

SB are the minimum and maximum energy storage output, respectively; SSB(t) and
SSB(t + 1) are storage battery (SB) residual electricity at the end of the t-period and the t + 1-period;
ηdis is the SB discharge efficiency; ηch is the SB charging efficiency; Smin

SB and Smax
SB are the minimum and

maximum energy storage residual electricity, respectively; ∆t is the time interval; DSB is the energy
storage self-discharge coefficient; QSB is the energy storage capacity; X(t) is the remaining heat (cooling
capacity) of the t-period energy storage device; X(t− 1) is the remaining heat (cooling capacity) of the
t− 1-period energy storage device; λx is the self-loss coefficient of the remaining heat (cooling capacity)
for the energy storage device; Vx(t) is the charging and discharging power of the t-period; Vmin and
Vmax are the minimum and maximum of the charging and discharging power of the energy storage
device, respectively; Xmin and Xmax are the minimum and maximum of the residual heat of the energy
storage device, respectively; Qs(t) and Qs(t− 1) are the gas remains of gas storage tanks of the t-period
and t + 1-period, respectively; Gs(t) is the gas release from a gas storage tank of the t-period; Qmin

s and
Qmax

s are the minimum and maximum gas residue of the gas storage tank, respectively; and Gmin
s and

Gmax
s are the minimum and maximum gas release from the gas storage tank, respectively.

2.2.4. Other Operational Constraints

Other operational constraints are shown in Equation (12).

0 ≤ Pcut(t) ≤ Pmax
cut (12)



Processes 2020, 8, 426 5 of 11

where Pmax
cut is the interruptible load capacity for integrated energy systems signed with users.

3. NSGA-II Optimization Algorithm Based on Tent Mapping Chaos

The objective function constructed in this paper is a multiobjective optimization problem.
Therefore, the NSGA-II algorithm, which is widely used in the field of multiobjective optimization,
is introduced, and the chaotic optimization algorithm is applied to improve its adaptability in order to
achieve a better solution of the model.

3.1. NSGA-II Algorithm

NSGA-II is a classical multiobjective genetic algorithm, which introduces the fast non-dominant
ranking method and elite strategy, defines the crowding degree instead of adaptive value sharing,
reduces the computational complexity of the algorithm, and improves the computational efficiency.
If there are N subgoals, NSGA-II defines the crowding degree of individual i as follows:

P(i) =
N∑

k=1

∣∣∣xk(i + 1) − xk(i− 1)
∣∣∣ (13)

In Equation (13), xk(i + 1) and xk(i− 1) are the optimal values of i + 1 and i − 1 individuals in the
k target, respectively. The detailed calculation process of the traditional NSGA-II algorithm is shown in
the literature [13].

3.2. Chaos Optimization Algorithm for Tent Mapping

Chaotic optimization’s purpose is to map optimization variables to the value interval of chaotic
variable space through chaotic mapping rules. By using ergodicity and a regularity search of
chaotic variables, the optimization solution is linearly transformed into an optimization space [14].
Logistic mapping is usually used. However, recent related studies show that tent mapping has better
chaotic characteristics than logistic mapping [15]. The improved tent map is shown in Equation (15).{

xk+1 = T(xk) + 0.1× rand(0, 1) xk = 0, 0.25, 0.5, 0.75 or xk = xk−m
xk+1 = T(xk) else

(14)

Among them,

T(xk) =

{
2xk 0 ≤ xk ≤ 0.5
2(1− xk) 0.5 < xk ≤ 1

(15)

3.3. Combination Algorithm Flow and Steps

Although NSGA-II has been widely used in the field of multiobjective optimization, there are still
significant local optimization problems [16]. This is because the elite strategy gives the local optimal
solution too much genetic advantage in the later iteration of the algorithm, which limits the algorithm’s
ability to further search for a wider or better region. At the same time, the initialization process of
the algorithm uses entirely random values, which possibly causes the multipeak function to have a
blind search area [17]. In this paper, an improved NSGA-II algorithm was proposed. The chaotic
optimization algorithm based on tent mapping is embedded in the main flow of the NSGA-II algorithm.
By improving the initialization process and elite retention process of the algorithm, on the one hand,
the convergence speed of the algorithm is accelerated, and the efficiency of the initial optimization of
the algorithm can be improved; on the other hand, the search space can be enlarged, and the genetic
advantage of the elite strategy can be weakened at the later stage of the algorithm. The advantages of
the algorithm make it possible to escape the local optimum and increase the probability of obtaining
the global optimal solution. At the same time, the improvement process strengthens the robustness of
the algorithm, expands the applicability of the algorithm, and ultimately, improves the optimization
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performance of the algorithm as a whole. The flow chart of chaotic optimization NSGA-II algorithm
based on the tent map is shown in Figure 1.
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4. Numerical Example

Taking the demonstration project of an intelligent integrated energy system in Tayuanzhuang,
Hebei Province in China as an example, this paper uses its own established model to design the
system operation. In the optimized economic dispatching model, the unit price of natural gas CNG

is 0.29 USD/m3; the dispatching period of the system is 1 h, the load interruption compensation
coefficient β is 3; the discharge efficiency ηdis and charging efficiency ηch of energy storage are both 0.87;
the self-discharge coefficient of energy storage DSB is 0.1, and the storage capacity QSB is 1000 kWh;
the self-loss coefficient of the residual heat (cooling capacity) of the energy storage device λx is 0.1;
the capacity of the gas storage tank Qmax

s is 400 m3. The conversion cost of pollutants and emission factors
and the time-of-use tariff mechanism for external networks are shown in Tables 1 and 2, respectively.
In the demonstration project of the Tayuanzhuang Intelligent Integrated Energy System, the allocation
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capacity of the CCHP unit, fuel cell, photovoltaic power generation, wind power generation, battery
energy storage, dual-effect absorption unit, energy storage device, and methane-type converter unit
are 500 kW, 200 kW, 500 kW, 300 kW, 250 kW, 300 kW, 200 kW, and 300 kW, respectively.

Table 1. Conversion costs of pollutants and emission factors.

Type of Pollutant Conversion Cost
(USD/kg)

MT Emission Factor
(kg/kW)

FC Emission Factor
(kg/kW)

NOx 3.78 4.4 × 10−4 4.5 × 10−6

SO2 0.89 8.0 × 10−6 2.25 × 10−6

CO2 0.01 1.6 × 10−3 4.27 × 10−3

Table 2. Time-of-use tariff mechanism for external networks.

Time Slot Type Time Slot Electricity Price (USD/kWh)

Peak time 10:00–15:00 and 18:00–21:00 0.12
Valley time 00:00–07:00 and 23:00–24:00 0.02

Ordinary time Remaining time 0.07

The wind power output curve, photovoltaic power output curve, electric load curve, and heat load
curve of the grid-connected intelligent integrated energy system in Tayuanzhuang, Hebei Province are
shown in Figure 2, based on a typical winter operation day.
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Figure 2. Wind power output, photovoltaic power output, and power curve of electric load and heat
load on a typical winter operating day.

Taking a typical winter operation day with a large heating demand as an example, this paper
developed two scenarios for optimizing economic dispatch of integrated energy systems; one was that
the integrated energy system ran in the off-grid mode, the other was that the integrated energy system
ran in the grid-connected mode.

The established model was run in order to obtain the optimized economic dispatch plan of the
system under scenario 1 and scenario 2, as shown in Figures 3 and 4, respectively.

As can be seen from Figure 3, the charging and discharging of energy storage in the power subnet
were frequent, and the charging and discharging states of energy storage were not determined by
the time-sharing price level of the external network, as it was in the grid-connected mode. In order
to meet the demands of both electric and thermal loads, the combined cooling, heating, and power
microcombustor had basically reached full capacity in each period. The fuel cell output was also high
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and was not limited to the peak load period. In each period, the interruptible load power of the system
was high, and the power balance constraint was satisfied by abandoning part of the load power supply.Processes 2020, 8, x FOR PEER REVIEW 8 of 12 

 

 
Figure 3. Optimizing economic dispatch scheme for integrated energy system in scenario 1. 

As can be seen from Figure 3, the charging and discharging of energy storage in the power 
subnet were frequent, and the charging and discharging states of energy storage were not determined 
by the time-sharing price level of the external network, as it was in the grid-connected mode. In order 
to meet the demands of both electric and thermal loads, the combined cooling, heating, and power 
microcombustor had basically reached full capacity in each period. The fuel cell output was also high 
and was not limited to the peak load period. In each period, the interruptible load power of the 
system was high, and the power balance constraint was satisfied by abandoning part of the load 
power supply. 

 
Figure 4. Optimizing economic dispatch scheme for integrated energy system in scenario 2. 

As can be seen from Figure 4, the capacity of various energy supply modes in the integrated 
energy system was relatively high, which can meet the energy demands of each energy subnetwork. 
From the first period to the seventh period, due to the low level of time-sharing electricity price in 
the external network, the system received electricity from the external network exclusively, while the 
energy storage was in the charging state, which lays the foundation for peak cutting and valley filling 
in the following period. At this time, the heating load level of the energy interconnected microgrid 

Figure 3. Optimizing economic dispatch scheme for integrated energy system in scenario 1.

Processes 2020, 8, x FOR PEER REVIEW 8 of 12 

 

 
Figure 3. Optimizing economic dispatch scheme for integrated energy system in scenario 1. 

As can be seen from Figure 3, the charging and discharging of energy storage in the power 
subnet were frequent, and the charging and discharging states of energy storage were not determined 
by the time-sharing price level of the external network, as it was in the grid-connected mode. In order 
to meet the demands of both electric and thermal loads, the combined cooling, heating, and power 
microcombustor had basically reached full capacity in each period. The fuel cell output was also high 
and was not limited to the peak load period. In each period, the interruptible load power of the 
system was high, and the power balance constraint was satisfied by abandoning part of the load 
power supply. 

 
Figure 4. Optimizing economic dispatch scheme for integrated energy system in scenario 2. 

As can be seen from Figure 4, the capacity of various energy supply modes in the integrated 
energy system was relatively high, which can meet the energy demands of each energy subnetwork. 
From the first period to the seventh period, due to the low level of time-sharing electricity price in 
the external network, the system received electricity from the external network exclusively, while the 
energy storage was in the charging state, which lays the foundation for peak cutting and valley filling 
in the following period. At this time, the heating load level of the energy interconnected microgrid 

Figure 4. Optimizing economic dispatch scheme for integrated energy system in scenario 2.

As can be seen from Figure 4, the capacity of various energy supply modes in the integrated
energy system was relatively high, which can meet the energy demands of each energy subnetwork.
From the first period to the seventh period, due to the low level of time-sharing electricity price in
the external network, the system received electricity from the external network exclusively, while the
energy storage was in the charging state, which lays the foundation for peak cutting and valley filling
in the following period. At this time, the heating load level of the energy interconnected microgrid
was relatively high, and the system mainly met the demand by receiving heat from the external
network. In this case, the combined cooling, heating and power units were used for heating. As a
result, the cost of the electricity generated was not very economical compared to the time-sharing price
of the external network, hence the system was not supplied predominantly by the combined cooling,
heating, and power units. From the eighth to the thirteenth period, the power subnet entered the first
peak load period, energy storage was discharged, and both the combined cooling, heating, and power
microcombustion engine and fuel cells increased their output to meet the demand of the power load.
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At this time, the amount of heat power that the system received from the outside network significantly
declined. On the one hand, the level of heat load decreased at this time, while the demand of the
system to receive heat from the outside network decreased with an increasing output of the CCHP
units. Furthermore, because of the high time-sharing electricity prices in the outside network, it is
more economical to replace the output of CCHP units to purchase electricity from the outside network
and provide heating at the same time. From the fourteenth to the sixteenth period, the power subnet
was at a low load, and the time-sharing price became low, at which time the energy storage re-entered
the charging state. After the seventeenth period, the interconnected energy microgrid entered the
second peak load period of the electric and thermal loads, at which time the operation characteristics
were similar to those of the eighth to thirteenth period.

It can be seen from Table 3 that in the operation of scenario 1, the average integrated operating
cost of the system was USD 1568.32, which was much larger than the average integrated operating
cost of scenario 2. From this, it can be seen that the operating cost of the integrated energy system in
the grid-connected operating mode were significantly lower than the operating costs in the off-grid
operating modes. In actual operation, because the energy storage system was only charged at night,
discharged during the day, and no charging activity was performed when the power was exhausted,
the average comprehensive operating cost of the system in the grid-connected mode was relatively high.

Table 3. Average integrated operating cost in different modes.

Off-Grid Mode Grid-Connected Mode Actual Grid-Connected Mode

Average Integrated Operating Cost (USD)

1568.32 1145.22 1584.88

In order to verify the effectiveness of the NSGA-II multiobjective function solving algorithm based
on tent map chaotic optimization in solving the optimal economic dispatch model of an integrated
energy system, particle swarm optimization was used to improve the artificial fish swarm algorithm,
and the NSGA-II multiobjective function solving algorithm based on tent map chaotic optimization
was used to solve the model 20 times. The average solution index was then compared, as shown in
Table 4.

Table 4. Comparisons of solving indicators of integrated energy system optimal economic dispatch
model based on three algorithms.

Model Solving
Algorithm

Particle Swarm
Optimization

Improved
Artificial Fish

Swarm Algorithm

NSGA-II Multiobjective Function
Solving Algorithm Based on Tent

Mapping Chaos Optimization

Reduced
Percentage

Average integrated operating cost (USD)

Scene 1 1633.27 1580.35 1568.32 3.98%

Scene 2 1183.37 1164.01 1145.22 3.22%

Average model solution time (s)

Scene 1 23.64 19.62 16.67 29.48%

Scene 2 22.51 18.54 17.31 23.10%

Integrated operating cost standard deviation (USD)

Scenario 1 9.77 7.67 6.74 31.01%

Scenario 2 10.91 9.47 7.87 27.86%

It can be seen from Table 4 that the improved artificial fish swarm algorithm was much faster at
solving than the basic particle swarm algorithm, and the NSGA-II multiobjective function algorithm
based on tent map chaos optimization used in this paper was faster than the basic particle swarm
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algorithm in terms of solving speed—it was at least 23.10% faster and was more effective. In two
different scenarios, with the shortening of the optimization time, the average comprehensive operating
cost of the integrated energy system scheduling decreased from USD 1633.27 to USD 1568.32—a
decrease of at least 3.22%—and its corresponding standard deviation also decreased by at least 27.86%.

In fact, the convergence curves of the NSGA-II multiobjective function solving algorithm based on
tent map chaos optimization are shown in Figure 5 when Scenarios 1 and 2 were solved, respectively.
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5. Conclusions

(1) Based on the multienergy complementary characteristics of the integrated energy system,
this paper established an optimized economic dispatch model, and improved the NSGA-II
algorithm based on the tent mapping chaos optimization algorithm to achieve a multiobjective
model solution. The improved NSGA-II algorithm could be used in the algorithm to improve
the solution efficiency in the early stage, which weakened the advantage of the elite solution in
the later stage of the algorithm, and improved the possibility of the algorithm escaping the local
optimum and continuing to optimize in a larger space.

(2) A simulation example for the demonstration project of Hebei Tayuanzhuang Smart Integrated
Energy System demonstrated that the model established in this paper could formulate a
multienergy complementary coordination plan between different forms of energy and fully
reduce the system’s energy supply cost. The comprehensive operating cost of the system in
the off-grid operation mode in scenario 1 was significantly higher than that in the off-grid
operation mode in scenario 1. This paper used the tent mapping chaos optimization algorithm to
optimize the NSGA-II algorithm for the integrated energy system economic scheduling model,
demonstrating that compared to the particle swarm algorithm and improved artificial fish swarm
algorithm, it had better performance.
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