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Abstract: In this work, chemical–physical protocols aimed at the implementation of eco-friendly and
biomass-sustainable recovery processes of useful compounds from forestry and/or wood industry
wastes were evaluated. Four species of interest in industrial and environmental fields (Quercus cerris,
Quercus ilex, and Robinia pseudoacacia from Central Italy, Quercus petraea from France) were submitted
to neutral extraction and analyzed by gaschromatography, with mass spectrometry identification
of low-molecular-weight phenols. Moreover, Quercus petraea heartwood samples were submitted
to three extraction/hydrolysis protocols in an alkaline environment, and the byproducts from the
lignin degradation were identified and evaluated. The recovery of bioactive phenols from forestry
wastes by applying eco-friendly extractive protocols may reveal a precious strategy for rethinking the
management of such wastes, in line with the fundamentals of “circular economy”.

Keywords: wood waste; mild extraction/hydrolysis protocols; lignin; phenolic compounds recovery;
circular economy

1. Introduction

Oak wood, widely used by a variety of industries, is characterized by the presence of high levels
of tannins of considerable scientific interest, besides their well-known practical value [1–6]. Phenolic
compounds such as gallic acid, catechin, and epicatechin are notoriously endowed with antioxidants,
astringents, and antimicrobial activity. Therefore, such species are subject of increasing interest in
various fields such as pharmaceuticals, leather tanning, cosmetics, and the food industry [7–11].
Low-molecular-weight hydroxybenzoic acids and some of their derivatives can be obtained from
wood extractives and via induced lignin degradation [12,13]. Lignin is a phenolic high-molecular-mass
biopolymer, composed of a highly branched phenylpropanoid framework based on the three monomers
coumaryl, coniferyl, and sinapyl alcohol. A number of other high-value fine chemicals such as vanillin,
syringaldehyde, and p-coumaric, ferulic, p-hydroxybenzoic, syringic, and vanillic acids [14,15] can
be obtained among the various products of wood lignin degradation following de-polymerization
processes (e.g., alkaline oxidation).

The recovery of molecules endowed with a biofunctional role from wood wastes, and their reuse
and application in several fields, is one of the most challenging and promising actions in the circular
economy domain. Based on the above facts, the possibility to improve (or implement new) standard
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chemical extraction/hydrolysis protocols to obtain organic compounds within a timber recycling context
represents an issue of practical interest. The final goal is the individuation of mild, eco-friendly chemical
and physical reaction conditions to achieve the compounds of interest [16]. A proper understanding of
the distribution and structural features of extractives between bark, sapwood, and heartwood, as well
as their variability in relative abundance between species, may have a significant impact on wood
utilization [17,18].

Sawdust wastes deriving from the Quercus petraea industrial manufacturing, and wooden wastes
ofthe forestry activities derived from Quercus cerris, Quercus ilex, Quercus petraea, and Robinia pseudoacacia
could be exploited as a source of useful compounds. Oak bark is the wood tissue richest in tannins,
and Q. petraea bark is a source of gallic and ellagic acids as well as catechin and other tannin
derivatives [19,20]. Typically, bark represents only the 10%–20% of the volume of a log, so the
sawdust-like wastes from heartwood manufacturing processes, combined with the woody wastes from
forestry activities, could potentially represent a greater source for the recovery of the above-mentioned
compounds. Moreover, sawdust produced by industrial heartwood treatment (sawmill processes)
is much more suitable for extraction/hydrolysis processes compared to the byproducts of crude
mechanical debarking. In addition, the lignin content of hardwoods like oaks amounts to about
25%–30% in weight [21], and represents the main potential source of useful organic compounds.

Heartwood from Q. petraea (Matt.) Liebl. (common name: French oak) is an interesting raw material,
widely used in the industrial production of parquet, furniture, barrels for wine, and as a structural
material in the construction industry, due to its excellent mechanical characteristics. It is also used as
fuel for heating [22].

Q. cerris L. (common name: Turkey/Austrian oak) is not particularly valuable compared to the
other Quercus species, due to its lack of tannins which makes it less durable. It is hard but not very
resistant, and is used mainly as fuel.

Q. ilex L. (common name: Holm oak) has plenty of tannins and is a very resistant wood, but is
difficult to work and to season. Therefore, it is primarily used for heating. Due to the richness of
extractives, its bark is employed as a source of tannins for leather tanning [22]. Consequently, forestry
activities wastes from these two “cheap” oak woods could become an important source of valuable
chemical compounds.

R. pseudoacacia L. (common name: Black locust) is widely cultivated as a wood and honey-producing
tree, with a high rate of development. This wood is used as a structural material as a substitute for some
types of tropical wood in the production of parquet and, to some extent, of furniture [22]. Furthermore,
it represents a substitute for oak wood in making containers in the cooperage industries [5,6,23,24].

As previously outlined, the recovery and identification of such extractives currently represents an
area of great interest for the development of renewable-resource-based systems. In this work, we focused
on the chemical eco-friendly extraction, identification, and recovery of low-molecular-weight phenols
obtainable from three species of oak heartwood: Q. cerris, Q. ilex (from Umbria region, Italy), and especially
Q. petraea (from Fontaines, France). Moreover, the extractive analysis of R. pseudoacacia (from Umbria
region, Italy) fresh bark/sapwood was also performed. The identification of low-molecular-weight phenols
and the extract composition was assessed using a gas chromatography–mass spectrometry (GC-MS)
system. Identification of trimethylsilyl derivatives (TMS derivatives) phenols from extracts was done
by comparing the GC-MS profiles, retention times, and fragmentation patterns with those produced by
the analysis of certified standards.

A further goal of the study was the evaluation of coniferyl and sinapyl alcohols, which are
nominally the constituent monomers (monolignols) of the lignin structure in angiosperm species,
as lignin degradation indicators.
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2. Materials and Methods

2.1. Wood SampleCollection

Heartwood from Q. cerris and Q. ilex trees, grown in the Umbria region (Central Italy), were taken
after one year of natural seasoning. The R. pseudoacacia juvenile sample came from the same location
(43◦6′43” N; 12◦23′19” E). The1 year naturally seasoned heartwood samples of Q. petraea came from
Fontaines forest (Chalon-sur-Saône, France: 46◦46′59” N; 4◦51′0” E).

2.2. Reagents and Standard Compounds

Reference compounds used as standards are listed in Table 1. Coniferyl and sinapyl alcohols were
synthesized according to the procedures reported in the literature [25]. Pure water was obtained using
a Milli-Q Plus185 system from Millipore (Milford, MA, USA). Methanol (MeOH, ≥99.9%), ethyl acetate
(EtOAc, ≥99.9%), diethyl ether (Et2O, ≥99.0%), tetrahydrofuran (THF, ≥99.0%), hydrochloric acid
(HCl; w/v 37%), sodium hydroxide (NaOH, ≥98.0%), anhydrous sodium sulphate (Na2SO4, ≥99.0%),
pyridine (≥99.8%), and the silylation agent N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA, ≥99.0%),
as well as reference phenolic standards (vanillin ≥ 99.0%; p-hydroxybenzoic acid ≥ 99.0%; syringaldehyde
≥ 98.0%; vanillic acid ≥ 97.0%; protocatechuic acid ≥ 97.0%; syringic acid ≥ 95.0%; gallic acid ≥ 99.0%;
ferulic acid ≥ 99.0%; caffeic acid ≥ 98.0%; (−)-epicatechin ≥ 98.0%; (+)-catechin ≥ 98.0%), were purchased
from Sigma-Aldrich (Milan, Italy). All the reagents and standards used were of analytical grade.

Table 1. Characteristics MS fragments of phenols as TMS derivatives.

Identified Compounds Peak
Number

Retention
Time (min)

Molecular
Weight (g/mol) m/z Values

Vanillin 1 12.65 224 193, 194, 209
p-Hydroxybenzoic acid 2 14.33 282 193, 223, 267

Syringaldehyde 3 15.91 254 195, 224, 239
Vanillic acid 4 16.84 312 149, 165, 223, 253, 267, 282, 297

Protocatechuic acid 5 17.87 370 193, 223, 267, 311, 355
(Z)-Coniferyl alcohol 6 18.6 324 204, 235, 293, 309

Syringic acid 7 19.2 342 253, 297, 312, 327
(E)-Coniferyl alcohol 8 20.3 324 204, 235, 293, 309

Gallic acid 9 20.22 458 147, 178, 281, 443, 444
Dihydrosinapyl alcohol 10 20.47 356 210, 240, 341

(Z)-Sinapyl alcohol 11 20.6 354 204, 323, 339
Ferulic acid 12 22.22 338 219, 249, 293, 279, 308, 323
Caffeic acid 13 22.85 396 179, 191, 219, 381

(E)-Sinapyl alcohol 14 22.47 354 204, 323, 339
(−)-Epicatechin 15 29.94 650 147, 267, 355, 357, 368, 369, 370

(+)-Catechin 16 30.04 650 147, 267, 355, 368

MS, mass spectrometry; TMS, trimethylsilyl.

2.3. Applied Extraction Protocols

Based on previously optimized extraction/hydrolysis protocols [16] and experimental results,
several parameters were properly tuned in order to maximize the yield of phenol extractions. This step
was carried out by taking into account the polarity and the weak acid behavior of the investigated
molecules. The use of high pH values proved to be suitable to increase compound solubility,
while precipitation occurred at low values (pH < 4–5). Other variables were then screened, such
as extraction time and temperature and the fractionation solvent (diethyl ether vs. ethyl acetate).
The obtained results allowed the following experimental conditions to be selected. From each
sample, 10 g of sawdust (particle dimension ≤ 3 mm) were mechanically derived. Two types of
processes were performed: a NEP (Neutral Extraction Protocol) on all the four species, and EHPs
(Extraction-Hydrolysis Protocols) in an alkaline environment, only applied on Q. petraea samples.
Details are reported as follows.
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2.3.1. NEP

Samples were extracted via 300 mL of a MeOH/water (1:1, v/v) neutral solution for 24 h at 25 ◦C,
in darkness condition. Extracts were then filtered using a Büchner funnel (Whatman® grade 42 filter
paper, from Sigma-Aldrich (Milan, Italy) and MeOH was removed at 35 ◦C. Next, the aqueous solutions
were fractionated by liquid–liquid extractions with Et2O or EtOAc (30 mL × 4) [26–28].

2.3.2. EHPs

Three samples (10g) of Q. petraea (denoted as A, B, and C) were treated with 200 mL of a
1.5 M MeOH/NaOH (1:1, v/v) solution under mechanical mixing at 50 ◦C, as follows:

EHP-A: Sample A was extracted and hydrolyzed for 72 h. The extracts were filtered using
a Büchner funnel and centrifuged to remove woody particles, then concentrated through a rotary
evaporator at 35 ◦C for MeOH removal. The aqueous solution (pH 12.7) was neutralized by adding
EtOAc (60 mL) and then acidified up to pH 1.0 by HCl (12 mL). After filtration and centrifugation for
sodium acetate removal, the obtained acid solution was fractionated via liquid–liquid extractions with
EtOAc (25 mL × 4);

EHP-B: Sample B was extracted and hydrolyzed for 24 h. After the woody particle and MeOH
removal, the aqueous phase was acidified up to pH 1.0 by HCl (10 mL), and then fractionated with
EtOAc (25 mL × 4);

EHP-C: Sample C was extracted and hydrolyzed for 72 h. After the woody particle and MeOH
removal, the aqueous solution was acidified up to pH 1.0 by HCl (10 mL). Acid phase was fractionated
with Et2O (25 mL × 4).

2.4. GC-MS Apparatus

GC analyses were performed on an Agilent 6850 Series gas chromatograph apparatus fitted with
a splitless injector for a low background HP-5MS fused silica capillary column (60 m × 0.25 mm
i.d., 0.25 µm f.t.). Detection was achieved by a 5975B Mass single quadrupole spectrometer and the
data were elaborated using a Chem Station software package (Agilent). The injector and detector
temperatures were 250 and of 280 ◦C, respectively. The oven temperature gradient program was as
follows: initial temperature of 90 ◦C held for 1 min; raised to 220 ◦C (at 6 ◦C/min); raised to 290 ◦C (at
10 ◦C/min) and held for 1.23 min; and finally raised to 310 ◦C (at 40 ◦C/min) held for 7.5 min. Helium
was used as the carrier gas (1.0 mL/min flow rate). The injection volume was 1.0 µL. Electron impact
ionization energy was 70 eV and the system was scanned in a 140–465 m/z mass range.

2.5. Sample Preparation

The organic fractions, dried at low pressure at 35 ◦C, were re-dissolved in a known quantity (1.0 mL)
of the respective fractionation solvent by ultrasonic mixing. Finally, the compounds were submitted to
a silylation procedure [29,30]. All reagents used in silylation were previously dehydrated by anhydrous
Na2SO4, to avoid moisture interference with respect to the phenolic hydroxyl groups. Each 1 mL
sample was transferred into a micro-vial and dried. Consequently, the residue was re-dissolved in
200 µL of anhydrous EtOAc. A volume of 50 µL of the silylation mixture (BSTFA-pyridine-EtOAc, 4:1:5,
v/v/v) was added and the whole solution was mechanically shaken for 1 min at room temperature.
Before injection, samples were further diluted with 250 µL of EtOAc.

2.6. GC-MS Analysis

Each extract was prepared in triplicate before being submitted to GC-MS determination.
The obtained values were then used to calculate the global amount extracted from the initial 10 g
samples according to Equation (1).

(1/3) × (f.V.) ×
∑

dfi [X]i, i = 1, 2, 3 (1)
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where (f.V.) is the final volume of the re-dissolved extracts, dfi is the dilution factors, and [X]I is the
concentrations in mg/mL of the three 1 mL portions that underwent the silylation procedure.

Low-molecular-weight phenols were identified using certified standards and treated to give
the TMS derivatives according to References [29,30], as described above. The fragmentation pattern
obtained for each derivatized standard was first compared with data available in the literature [29–36].
The fragment ions of the selected peaks from the analysis of real samples were then identified and
confirmed, based on the retention times and profile matching with signals from the corresponding
standard (Table 1). Only the species that resulted pure through the “peak purity” response provided by
the GC-MS software from the analysis of the real samples were submitted to quantitative evaluations.
The quantitation was performed by injecting 1.0 µL of the respective TMS standard solution at
concentrations ranging from 0.02 to 0.50 mg/mL for ferulic acid and (−)-epicatechin, 0.04 to 1.00 mg/mL
for syringaldehyde, vanillic acid, gallic acid, (E)-coniferyl alcohol, and (+)-catechin, and 0.2 to
5.0 mg/mL for vanillin. The method produced significantly linear (as indicated by the elevated R2

values > 0.99) results in the explored ranges, and appreciably low LOD (limit of detection) and LOQ
(limit of quantification) values were calculated for the investigated phenols (see Table S2 in Supporting
Information for details).

3. Results

3.1. Compounds Identified in the Investigated Arboreal Species

Table 1 lists the identified compounds, while the mass spectral library matching is reported in
Table S1 (Supporting Information). Tables 2 and 3 show the reproducibility of the NEP-EHPs peak
areas for the quantified compounds (expressed as mean value (n = 3) ± percentage standard deviation,
%SD). NEP extractions using EtOAc produced the best results in terms of number of identified species
and peak purity, with respect to the EHPs. Hence, only the chromatographic data obtained using
EtOAc as the fractionation solvent were considered (Figure 1).

Table 2. Peak areas (mean value ±%SD) for the NEP-quantified compounds (n = 3).

TMS Derivatives Peak
Number Q. cerris Q. ilex R. pseudoacacia Q. petraea

Syringaldehyde 3 9.53 × 105 (±3.59%) - - 1.56 × 107 (±15.81%)
Vanillic acid 4 1.18 × 107 (±10.77%) 9.45 × 106 (±9.29%) 1.16 × 107 (±22.12%) -

(E)-Coniferyl alcohol 8 1.43 × 108 (±37.01%) 4.78 × 107 (±5.69%) 7.68 × 107 (±21.96%) 2.18 × 108 (±18.36%)
Gallic acid 9 2.70 × 107 (±35.32%) 3.21 × 107 (±16.25%) - 5.60 × 108 (±35.99%)

(−)-Epicatechin 15 1.10 × 106 (u) 3.81 × 106 (±23.84%) 6.51 × 106 (±50.04%) -
(+)-Catechin 16 7.31 × 106 (u) 3.62 × 108 (±5.97%) 4.27 × 107 (±51.17%) -

u: unambiguously detected only in one chromatogram; -: not detected.

Table 3. Peak areas (mean value ±%SD) for the EHP-quantified compounds (n = 3).

TMS Derivatives Peak Number EHP-A EHP-B EHP-C

Vanillin 1 - - 9.81 × 107 (±29.30%)
Syringaldehyde 3 1.06 × 107 (±53.35%) - 6.95 × 108 (±7.74%)

Vanillic acid 4 3.12 × 108 (±8.26%) - 2.48 × 108 (±38.01%)
(E)-Coniferyl alcohol 8 5.94 × 107 (±17.76%) 1.52 × 108 (±55.13%) 1.95 × 107 (±33.29%)

Ferulic acid 12 7.90 × 108 (±3.55%) - -

-: not detected.

NEP-extracted samples from Q. petraea were characterized by a substantial presence of gallic acid,
which was also sufficiently abundant in Q. ilex, followed by Q. cerris (Table 2, Figure 1). In contrast,
R. pseudocacia NEP and Q. petraea EHP extracts displayed no trace of this phenol compound.

Vichi et al. [32] reported the volatile components of oak wood chips analyzed by GC–MS
without derivatization, as also reported for the analysis of other volatiles [37,38]. According to the
literature [26,39], p-hydroxybenzoic acid, syringaldehyde, vanillic acid, protocatechuic acid, syringic
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acid, (E)-coniferyl alcohol, and (E)-sinapyl alcohol were identified in Q. petraea (Table S1, Supporting
Information). The conspicuous amounts of (E)-coniferyl alcohol (Table 4) obtained by NEP and
EHP could be plausibly attributed to the ageing and to the induced process of lignin degradation,
respectively (see Table S3 in Supporting Information for NEP/EHP yield comparisons with data reported
in literature, and Figure S1 for synthesized coniferyl alcohol identification) [40].
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Figure 1. Profile according to NEP of (A) Q. petraea; (B) Q. cerris; (C) Q. ilex; (D) R. pseudoacacia.
Peak numbers identify the compounds as reported in Table 1.

Table 4. TMS compound amounts (mg) calculated with respect to the extracted mass (10 g).

TMS
Derivatives

Amount in Wood Samples (mg/10 g)

Q. cerris * Q. ilex * R. pseudoacacia * Q. petraea * Q. petraea a Q. petraea b Q. petraea c

(+)-Catechin 0.19 9.92 2.19 - - - -
(E)-Coniferyl

alcohol 0.61 0.22 0.19 0.20 0.42 0.99 0.13

(−)-Epicatechin - 0.24 0.53 - - - -
Ferulic acid - - - - 15.96 - -
Gallic acid 0.09 0.26 - 1.14 - - -

Syringaldehyde 0.01 - - 0.02 0.17 - 7.40
Vanillic acid 0.06 - 0.04 - 3.27 - 1.70

Vanillin - - - - - - 0.55

* by NEP; a by EHP-A; b by EHP-B; c by EHP-C; -: not detected.

Low levels of gallic and vanillic acids were found in Q. cerris heartwood, while the highest
concentration of (E)-coniferyl alcohol was found in this wood. Q. ilex was found to be rich in gallic
acid, (+)-catechin, and (−)-epicatechin, as expected based on the literature data [41] (Table 2).

Qualitative identification of (E)-sinapyl alcohol was possible for Q. petraea and Q. cerris samples
extracted by NEP. Moreover, this compound was identified in the Q. petraea extracts obtained
according to protocols EHP-B and EHP-C (Table S1, Supporting Information). However, no quantitative
evaluations of the sinapyl alcohol isomers were possible, due to the poor standard purity grade. Figure 2
shows typical chromatograms obtained from EHP from Q. petraea heartwood. Only the (E)-coniferyl
alcohol was quantitatively determined on the extracts submitted to EHP-B (time of reaction: 24 h).
EHP-C, based on the use of Et2O, was the only protocol that allowed vanillin quantitation, while EHP-A
allowed the evaluation of ferulic acid. By comparing EHP-A and EHP-C with EHP-B results, the key
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role of the reaction time (72 vs. 24 h) was clearly evident (Table 4). It is noteworthy that (E)-coniferyl
alcohol was unambiguously identified and quantified in all the examined extract solutions.Processes 2020, 8, x FOR PEER REVIEW 8 of 13 
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Figure 2. Profile of Q. petraea according to (A) EHP-A; (B) EHP-B; (C) EHP-C. Peak numbers identify
the compounds as reported in Table 1.

The abundance of (+)-catechin and (−)-epicatechinin the younger tissues of R. pseudoacacia highlighted
the potential for their recovery from forestry-activity-derived wastes. Moreover, the presence of quite a
high level of (E)-coniferyl alcohol confirmed its biosynthetic origin. Accordingly, lignin biosynthesis
implies the co-polymerization of the coniferyl and sinapyl alcohols [14,40]. In R. pseudoacacia extracts,
caffeic, ferulic, protocatechuic, and vanillic acids were also detected, but only the last one was
quantitatively evaluated (Table 4; Figure 1).

3.2. Implementation of Eco-Friendly Extraction/Hydrolysis Protocols in the Forestry Waste Management Field

Quantitative recovery of several useful compounds from Q. petraea lignin hydrolysis was achieved
under mild chemical and physical conditions, with low concentrations of NaOH, low reaction
temperature (50 ◦C), and using solvents with a negligible toxic/environmental impact, except for MeOH
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which could be reasonably substituted by EtOH [42]. Moreover, air oxygen was the oxidizing agent
used, and the prolonged reaction time, with strong mechanical mixing of the reaction solutions, was able
to replace harsher reaction conditions. This approach was more ecofriendly than standard industrial
processes carried out for the lignin treatment. Strong acid conditions used in EHP-A promoted
significant formation of the ultimate oxidation products of coniferyl alcohol (ferulic and vanillic acids),
whereas a weaker acidification, as in EHP-C, led to the prevalent formation of aldehydes (vanillin
and syringaldehyde). As reported in Table 4, the EHP yields were influenced by the fractionation
solvent. In fact, for instance, vanillin was freely soluble in Et2O (according to the EHP-C protocol),
thus enabling its quantification.

The use of EtOAc in EHP-A to lower the pH caused its hydrolysis to EtOH and NaOAc, which
precipitates and hence could be easily separated. Interestingly, recovered EtOH could be reused
as primary extraction solvent or, combined with the AcOH obtained via HCl acidification and
NaOAc, could regenerate EtOAc. The formation of EtOH during the EtOAc hydrolysis in an alkaline
environment allows a solvent endowed with a middle polarity (ε = 26.0) to be used, on a scale where
water is the most polar (ε = 80.1), and AcOH (ε = 6.2) with EtOAc (ε = 6.0) represent the lower
dielectric constants. Water/EtOH mixtures are commonly used to extract the most polar tannins,
namely those with two or more hydroxyl groups and with a middle/high molecular weight [42,43].
EtOAc is suitable for phenols with a low polarity (generally with low molecular weight) and for huge
nonpolar compounds.

Although mild lignin degradation conditions imply low yields, the target compounds were achieved
in a more ecofriendly and energy-saving way, with respect to the traditional methods. Moreover, the
use of wastes from forestry activities and of eco-friendly solvents allowed products not contaminated
by unwanted/toxic chemicals to be obtained, in contrast to the byproducts from the Kraft and sulfite
processes [15]. Additionally, the variety of obtainable substances could compensate their lower yields.
Some simple forest resource planning could provide an overview of the potential exploitable biomasses
achievable from the evaluated oaks’ woods. For each species, the biomass obtainable from forestry
management can be evaluated by the following relationship (Equation (2)).

ABM = SW × AABI × AFWC (2)

where ABM (kg/(ha × y)) is the available biomass (kg) from a forest area of one hectare per year, SW
(kg/m3) is the specific weight of the wood with a 12% content in weight of moisture, AABI (m3/(ha × y)) is
the average annual biomass increase, and AFWC (%) is the average forestry waste coefficient, which
indicates the percent rate of exploitable annual biomass. This parameter depends on factors such as
forest type and management, age and type of logging, and especially on the final main use of the
woody biomass.

In Central Italy’s forestry management, Q. cerris, Q. ilex, and R. pseudoacacia are mainly exploited
as firewood. This feature justifies the possible use of their biomasses for extractions. For Q. cerris and
Q. ilex, Central Italian forest estimations provide an AFWC value of 17.5%. The same value can be
assumed for Q. petraea. Q. ilex’s AABI is 3.5 m3/ha, while a value of 3.0 m3/ha is the lower limit for
the other species. Considering the woody mass as heartwood, a first evaluation for ABMs and the
achievable compounds is given in Table 5.

A possible industrial recovery cycle based on EHP-A could be implemented to obtain phenols
(low and high molecular weight) from lignin hydrolysis. By using EtOH instead of MeOH and
AcOH instead of HCl, the only net inputs would be NaOH and the energy required for the process.
This energy could be obtained from the biomass itself, and the extracted wastes could be reused as
energetic material. In addition, EtOH can be obtained by biomass fermentation. It is noteworthy
that NaCO3/KCO3 “lye” solutions can be obtained (with low environmental impact) by settling or
thermal treatment of woody ashes with water [40], and carbonate solutions could replace NaOH in the
hydrolysis process.
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Table 5. Compounds yields (grams per hectare per year) and available biomass (ABM) values.

TMS Derivatives Q. cerris h Q. ilex h Q. petraea R. pseudoacacia s

(+)-Catechin 7.5 431.4 - 86.2
(E)-Coniferylalcohol 43.9 9.6 44.2 b 7.5

(−)-Epicathechin - 10.4 - 20.9
Ferulic acid - - 712.2 a -
Gallic acid 3.5 11.3 50.9 h -

Syringaldeyde 0.4 - 330.3 c -
Vanillic acid 2.4 - 145.9 a 1.6

Vanillin - - 24.5c -

Specific weight
(SW, kg/m3) 750 710 850 750

ABM, kg/[ha × y] 393.7 434.9 446.3 393.8
h Heartwood by NEP, s sapwood-bark by NEP; a heartwood by EHP-A; b heartwood by EHP-B; c heartwood by
EHP-C; -: not detected.

With regard to NEP conditions, it should be underlined that “cheap” woods such as Q. ilex and
R. pseudoacacia produced notable quantities of (+)-catechin and (−)-epicathechin under very mild
conditions. The evaluations for R. pseudoacacia were based on a NEP sapwood/bark analysis, but young,
branch-type woody wastes are also easily available as byproducts of the forestry activities. Moreover,
the NEP quantifications did not account for high-molecular-weight phenols soluble in water/MeOH,
which could be recovered by a global industrial process.

4. Conclusions

The main goal was the identification of the most suitable extraction conditions in terms of
efficiency, eco-friendliness, and possibly low cost. The applied methods could potentially be extended
to large-scale applications. This work showed the usefulness of NEP and especially of EHP in the
treatment of woody wastes which, by mild and eco-friendly conditions, allowed

(i) the quantitative recovery by NEP of several naturally occurring valuable compounds ((+)-catechin,
(E)-coniferyl alcohol, (−)-epicathechin, gallic acid, syringaldhehyde, and vanillic acid);

(ii) the possible implementation of an industrial cycle, particularly for the EHP-A protocol, justified
by the estimated yields of (E)-coniferyl alcohol, ferulic acid, syringaldehyde, vanillic acid, and
vanillin obtained from Quercus petraea heartwood samples.

The protocols described in the study allowed an analytical characterization of the bioactive
compounds attainable from oak waste. The unambiguous GC-MS detection of (E)-coniferyl alcohol
in all the analyzed samples provided the basis for implementation of a valuable method for the
quantitative appraisal of the natural and alkali-induced lignin degradation processes.

This study lays the basis for future investigations aimed at the individuation of optimal and
sustainable conditions for oak waste valorization, addressed at the recovery of precious bioactive
molecules in the perspective of their applications in multiple industrial fields (pharmaceutical, textile,
cosmetic, and food industries).

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/4/387/s1,
Figure S1: GC-MS chromatogram and mass spectrum profile in EI mode at 70 eV for the identification of the
synthesized coniferyl alcohol (as TMS-derivative) [3,4]. Table S1: Mass spectral matching (%) between the selected
TMS-standards and the identified phenols in the extracts; Table S2: Explored linearity ranges, LOD and LOQ
values for the investigated and identified phenols; Table S3: NEP/EHPs yields (mg/10g) comparison with data
reported in literature for Quercus petraea.
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