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Abstract: Industrial waste heat recovery is an attractive option having the simultaneous benefits
of reducing energy costs as well as carbon emissions. In this context, thermal energy storage can
be used along with an optimal operation strategy like model predictive control (MPC) to realize
significant energy savings. However, conventional control methods offer little robustness against
uncertainty in terms of daily operation, where supply and demand of energy in the cluster can vary
significantly from their predicted profiles. A major concern is that ignoring the uncertainties in the
system may lead to the system violating critical constraints that affect the quality of the end-product
of the participating processes. To this end, we present a method to make optimal energy storage
and discharge decisions, while rigorously handling this uncertainty. We employ multivariate data
analysis on historical industrial data to implement a multistage nonlinear MPC scheme based on
a scenario-tree formulation, where the economic objective is to minimize energy costs. Principal
component analysis (PCA) is used to detect outliers in the industrial data on heat profiles, and to
select appropriate scenarios for building the scenario-tree in the multistage MPC formulation. The
results show that this data-driven robust MPC approach is successfully able to keep the system
from violating any operating constraints. The solutions obtained are not overly conservative, even
in the presence of significant deviations between the predicted and actual heat profiles. This leads
to an energy-efficient utilization of the storage unit, benefiting all the stakeholders involved in
heat-exchange in the cluster.

Keywords: industrial clusters; thermal energy storage; uncertainty; robust model predictive control;
energy-efficiency; data-driven

1. Introduction

The International Energy Agency estimates that the industrial sector accounts for more almost
two-fifths of the global energy consumption [1]. As such, this sector is responsible for releasing large
quantities of industrial waste heat to the environment—via cooling media, exhaust gases, and hot
equipment surfaces, among others. This is especially true for chemical, minerals and metals, pulp
and paper, and the food industries [2]. Recovering, storing, and reusing this surplus heat when
required is a means of improving industrial energy efficiency and lowering its overall environmental
impact. Moreover, waste heat recovery presents a low-cost energy resource with the potential to realize
significant energy savings, improving the competitiveness of the sector.

According to [3], industrial symbiosis occurs when multiple process plants are located within
the same geographical area, facilitating by-product reuse, utilities and infrastructure sharing, and a
joint provision for shared services. Surplus heat recovery is an especially attractive proposition for
such industrial clusters since it presents an opportunity for flexible energy exchange within the cluster,
with plants representing both sources and sinks of surplus heat. Today, recovered high-grade heat
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is mostly reused within the process itself in order to reduce exergy losses, but low-grade surplus
heat below 200 ◦C provides recovery potential for external energy exchange [4]. Such low-grade heat
integration is thus highly beneficial for energy exchange in industrial clusters, since participating
plants can fulfill their low-grade heat demands from within the cluster itself.

For optimal use of energy, two main aspects must be considered: (1) Design of the process and its
infrastructure; and (2) How to optimally operate the system to maximize energy recovery. For example,
in [5], optimal location of the intermediate-fluid circuits was determined for heat integration across
multiple plants to maximize savings. Some studies have focused specifically on design optimization
in industrial clusters [6–9]. However, even for plants with a well-designed surplus heat recovery
system, there may be further operational and control challenges to deal with. A prominent operational
challenge for surplus heat exchange between multiple plants is the temporal decoupling between
the availability of surplus heat and its demand [10]. From the various available technologies [11],
thermal energy storage (TES) is a viable option to handle this issue. Surplus heat is supplied to,
and extracted from, a TES unit at different temperatures, allowing for a diverse set of plants to
participate in the energy exchange. TES units offer operating flexibility to heat recovery by creating a
buffer between the supply and demand of surplus heat, thereby reducing peak energy requirements.
With TES, however, the dynamic operational aspects become extremely important. Optimal operation
and control of TES units has been studied previously within different application areas. For instance,
optimal operation of TES units in buildings for reducing peak loads was considered by [12]. In [13,14],
model predictive control (MPC) is implemented on a TES system for energy-efficient buildings.
Another application of MPC on a TES system for multi-energy district boilers is investigated in [15].
Classical control techniques like the proportional-integral-derivative (PID) control have also been
investigated, for instance in TES for concentrated solar polar [16]. An optimal control scheme was
proposed by [17] for surplus heat exchange using TES in industrial clusters. A review of various types
of TES and their applications can be found in [18,19], whereas a review of optimization and control for
TES systems is given in [20].

A TES unit within an industrial cluster setting presents a unique challenge from an operator’s
perspective, in that there are various system uncertainties to contend with. In [21], it is noted that
supply of low-grade surplus heat is usually unstable because of temperature fluctuations in the
processes producing it. Similarly, there is volatility in consumer-side heat demands and process
temperatures. These uncertainties in the supply and demand profiles of surplus heat affect efficient
utilization of the TES unit. Additionally, daily variability in the electricity prices can directly influence
the operating costs, since electricity from the grid is often used for peak heating. Disregarding these
uncertainties in the system can lead to control solutions that are not only suboptimal, but also infeasible.
The plant–model mismatch that arises due to these uncertainties may result in control solutions that
cause critical constraint violations. In an industrial cluster, this may translate to larger heat-acquisition
costs to satisfy consumer demands, leading to high carbon emissions if fossil fuel-based peak heating
is involved. Operating constraints relating to safety or process specifications may also be violated.
Such constraint violations usually come with a significant economic penalty, and so may not be
acceptable to the stakeholders in the industrial cluster.

To achieve robust operation against uncertainty, the multistage nonlinear MPC proposed by [22]
can be employed. Here, the uncertainty is modeled in terms of discrete scenarios of operation,
evolving in the form of a “scenario-tree”. The scenario-tree gives a measure of how future control
inputs can take recourse action to negate the effect of future uncertainties, since these scenarios are
explicitly modeled. This notion of feedback is what makes the multistage MPC less conservative
than other robust MPC methods like the min-max MPC [23]. However, a limitation of this approach
is that the problem size increases exponentially an with increasing number of considered scenarios.
For computational efficiency, it is important to capture maximum uncertainty information with
fewer scenarios.
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In this context, the availability of historical data from industrial processes motivates the need for
data-driven approaches to scenario selection in multistage MPC. Industrial data is particularly useful
for heat integration processes, since the heat supply and demand profiles often exhibit correlations.
Principal component analysis (PCA) is a popular multivariate data-analysis method that can be used to
identify correlations in such datasets. By identifying correlations, PCA is able to explain the uncertainty
data in fewer dimensions. This means it can be effectively leveraged to choose fewer scenarios without
losing uncertainty information, leading to a compact scenario tree for multistage MPC. Apart from
dimensionality reduction, PCA can be used in data pre-processing to detect outliers. These represent
instances where the system was either sampled wrongly or was not in normal operation. Statistically,
outliers are considered to not be a part of the general sampling population, and are excluded from our
analysis to avoid unnecessary conservativeness in scenario selection.

Although a control method like the standard MPC offers a limited degree of robustness against
process disturbances [24], it does not explicitly account for uncertainties in the system. In this paper,
we argue that for optimally operating a TES unit in an industrial cluster, uncertainty in heat supply
and demand must be taken into account rigorously. To this end, we implement the scenario-based
multistage MPC method on an industrial cluster model. We further show that the inherent correlations
present in the supply and demand profiles can be exploited using the data-driven PCA approach, and
that these can be used to quantify the uncertainty in the multistage MPC framework. We demonstrate
that in comparison to a standard MPC formulation where uncertainties are not modeled, the proposed
framework leads to an efficient utilization of the TES unit by avoiding violations of critical operating
constraints specified by the stakeholders in the industrial cluster.

2. Methods

2.1. System Modeling

Figure 1 illustrates the topology of an industrial cluster with nS suppliers and nC consumers of
heat, along with a TES as buffer. The TES unit is considered to be a hot water tank.

Thermal Energy
Storage

District Heating

Commercial
Buildings

Industrial plant

Heat dump to
environment

HEX

HEX HEX

HEX

HEXHEX

Heat Suppliers Heat Consumers

Industrial plant

Industrial plant

Industrial plant

Heat dump to
environment

Heat dump to
environment

Peak heating
source

Peak heating
source

Peak heating
source

Figure 1. Topology of an industrial cluster with multiple energy suppliers and consumers, with a
thermal energy storage (TES) as buffer. The red lines represent the hot streams and the blue ones
cold streams.
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The supplier plants are sources of energy, supplying excess heat to the TES. On the other hand,
the consumer plants are heat sinks, extracting energy from the TES to fulfill their energy demands.
The heat exchange between the supplier/consumer plants and the TES happens with the help of heat
exchangers, with hot water being the energy carrier. The temperatures of the process streams in the
supplier and consumer plants drive the heat transfer.

In cases of high volatility with sharp fluctuations in heat demand on the consumer side, it may
happen that the energy from the TES is not enough to satisfy any extra demand. A common practice
for such an extra-demand scenario is to purchase electricity externally from the market, or to burn
fossil fuels using boilers, to heat up the required process streams. Not only are these peak heating
sources of energy expensive, significantly increasing the operating costs in the cluster, but they also
lead to higher carbon emissions. The source of surplus heat in the suppliers is assumed to be the
cooling of certain batch processes. As such, the suppliers can dump heat to the environment to meet
their cooling demands.

In this paper, we focus on modeling the dynamics of the heat exchange between the TES, and one
pair of supplier and consumer plants. This involves the energy balances over the heat exchangers and
over the TES. The heat exchangers are considered to have countercurrent flow, and are discretized in
space into a series of nhex cells. Each cell of the heat exchanger is assumed to be well mixed, such that
the temperature within the cell volume is the same as the exit temperature. The carrier fluid is assumed
to be incompressible and has a constant heat capacity. Further, we consider that the supplier and
consumer plants are close enough to each other such that the heat losses in the pipes due to time delays
are assumed to be negligible.

The incoming surplus heat from the supplier is denoted as Qsupply
S (t). This heat has to be delivered

through the supply-side heat exchanger to the tank. The temperature at which this heat is supplied
is denoted by Tprocess

S (t) and the return temperature (after exiting the heat exchanger) is denoted
by Treturn

S (t). On the return stream, there is a provision to dump heat so as to reduce the return

temperature to a desired level, denoted by Qdump
S (t). The temperatures on the hot and cold sides of the

heat exchanger are denoted by Thex,hot
S,k (t) and Thex,cold

S,k (t), where k ∈ {1, 2, . . . , nhex} is the cell index
of the heat exchanger. The volumetric flow rates on the hot and cold sides of the supplier-side heat
exchanger are denoted by qhot

S (t) and qcold
S (t). The supplier-side temperatures can be collected into

vectors TS(t) = [Tprocess
S (t), Treturn

S (t), Thex,hot
S,k (t), Thex,cold

S,k (t)]T . Similarly, we denote the volumetric
flow rates qS(t) = [qhot

S (t), qcold
S (t)]T . Formulating the energy balances on the supplier side results in

the following:
ṪS(t) = fS

(
TS(t), qS(t), Qsupply

S (t), Qdump
S (t), QTES,in

S (t)
)

(1)

where fS is the vector-valued function describing the ordinary differential equations (ODE) system.
QTES,in

S (t) is the heat supplied to the TES, and can be calculated as the heat transfer from the hot to
cold side of the heat exchanger (since heat loss in the pipes is negligible).

QTES,in
S (t) =

nhex

∑
k=1

(UA)hex
k (Thex,hot

S,k (t)− Thex,cold
S,k (t)) (2)

where (UA)hex is the heat-transfer conductance of the heat exchangers.
On the consumer side, the demanded heat flow rate is Qdemand

C (t). Analogous to the
supplier-side temperatures, we denote the vector for consumer-side temperatures TC(t) =

[Tprocess
C (t), Treturn

C (t), Thex,hot
C,k (t), Thex,cold

C,k (t)]T , and the vector for volumetric flow rates qC(t) =

[qhot
C (t), qcold

C (t)]T . On the consumer side, there is a provision to heat up the return stream using

the expensive peak heating to satisfy required demand, denoted by Qpeak
C (t). The resulting energy

balances are:
ṪC(t) = fC

(
TC(t), qC(t), Qdemand

C (t), Qpeak
C (t), QTES,out

C (t)
)

(3)
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where fC is the vector-valued function describing the ODEs on the consumer side, and QTES,out
C (t) is

the heat extracted from the TES.

QTES,out
C (t) =

nhex

∑
k=1

(UA)hex
k (Thex,hot

C,k (t)− Thex,cold
C,k (t)) (4)

The details of the vector-valued functions fS and fC are explained in Appendix A.
Typically, a large hot water tank will have a temperature gradient along its height leading

to different densities at the top and the bottom of the tank. In this work, however, modeling of
such thermal stratification is not considered. Instead, the tank is assumed to have uniform mixing
throughout its volume, such that the temperature within the tank is same as the tank outlet temperature,
denoted by TTES(t). Since the temperature ranges considered in this paper are below the boiling
temperature of water, we assume an unpressurized tank. The tank volume is VTES, the density and
the specific heat capacity of water are denoted by ρ and cp respectively. The resulting TES energy
balance is:

ρcpVTESṪTES(t) = QTES,in
S (t)−QTES,out

C (t)−QTES,loss(t) (5)

where QTES,loss(t) is the heat lost by the tank to the surroundings.

QTES,loss(t) = (UA)TES(TTES(t)− Tamb(t)
)

(6)

where (UA)TES is the heat-loss conductance of the tank, and Tamb(t) is the ambient temperature.
Note that the volumetric flow rates into and out of the tank are always equal, so the fluid volume
inside the tank always remains constant (see Figure A1). The initial conditions for the temperatures
can be stated as:

TS(0) = Tinit
S (7)

TC(0) = Tinit
C (8)

TTES(0) = TTES,init (9)

where Tinit
S , Tinit

C , and TTES,init are the initial values for each of the temperatures.

2.2. Dynamic Optimization of TES

Dynamic operational optimization of the energy storage requires a central cluster operator to
apply optimal control inputs to the system such that the heating and cooling requirements of the
plants in the industry cluster is satisfied. Table 1 shows the states, inputs, and uncertainties in the
system. The volumetric flow rates on the supplier side, qS(t), are considered to be fixed, and are
not degrees of freedom in the system. The operator should thus determine how much heat to dump
on the supplier side, Qdump

S (t), and how much heat to acquire through the peak heating sources,

Qpeak
C (t), on the consumer side. Additionally, the operator must determine how much heat can be

extracted from the TES by adjusting the volumetric flow rates through the consumer-side valves, qC(t).
Determining optimal values of the inputs requires prediction of the uncertainty in the system, which
pertains to the heat supply and demand, Qsupply

S (t) and Qdemand
C (t). The developed model estimates

the future evolution of temperatures in the system for given inputs using the predicted values of heat
supply and demand.
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Table 1. System states, inputs, and uncertainties.

Symbol Description Unit

States
TS(t) Supplier-side temperatures ◦C
TC(t) Consumer-side temperatures ◦C
TTES(t) Temperature of the TES ◦C

Inputs
qC(t) Volumetric flow rates on the consumer-side

heat exchanger
m3/s

Qdump
S (t) Heat dump rate for supplier kW

Qpeak
C (t) Peak heating rate for consumer kW

Uncertain Parameters
Qsupply

S (t) Surplus heat supply from supplier kW
Qdemand

C (t) Surplus heat demand from consumer kW

There are various operating constraints to deal with within the heat exchange framework. These
may relate to physical limitations on certain variables, safety considerations, or some performance
criteria. Since the tank is considered to be unpressurized, its temperature TTES(t) is upper bounded
with TTES

max so as to prevent boiling. Further, there is a lower bound on the tank temperature, TTES
min , in

order to prevent growth of bacteria in the tank. Similar bounds are applicable to the other temperatures.
For instance, process specifications may mandate that the return temperatures (on either side) are
below a certain maximum value.

TS,min ≤ TS(t) ≤ TS,max (10)

TC,min ≤ TC(t) ≤ TC,max (11)

TTES
min ≤ TTES(t) ≤ TTES

max (12)

The various volumetric flow rates are also constrained between certain values. These values
may represent the physical limit of the flow rate (e.g., 0% and 100% valve openings). Also worth
noting is that a very low flow rate may lead to fast fouling of the heat exchanger, necessitating a lower
bound. Similarly, there are limits on the operation of the heat pumps that are used for heat dumping
or peak heating.

qC,min ≤ qC(t) ≤ qC,max (13)

Qdump
S,min ≤ Qdump

S (t) ≤ Qdump
S,max (14)

Qpeak
C,min ≤ Qpeak

C (t) ≤ Qpeak
C,max (15)

The economic objective for the operator is to minimize the use of expensive peak heating sources
in the industrial cluster. This can be formulated as the objective function:

min
∫ t f

t0

(
Qpeak

C (t)

)
dt (16)

The integral represents the total peak heating during the operating period of t = 0 to t = t f .
Objective (16) is an L1 cost function, which assists in getting sparse solutions [25]. It also ensures that
peak heating is only used in cases where the heat demands cannot be fully met by the TES. With a
purely economic objective, the idea is for the cluster operator to primarily give directives on how much
heat to dump to the surroundings and/or how much peak heating to use, at every hour. We assume
that there is a lower regulatory level (e.g., PID control) to handle other process disturbances on a faster
time scale—e.g., in temperatures, mass flows, etc.
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Remark 1. We have added regularization terms to the linear objective (16) in our simulations to avoid
ill-conditioned singular control problems (see Chapter 10 of [26]). These terms are quadratic costs associated with
the other control inputs Qdump

S (t) and qC(t), weighted with some positive penalty parameters << 1. This is
similar to the objective function formulation used in [17].

Finally, the dynamic optimization problem can be described as having to minimize the objective
function (16), subject to the system dynamics represented by the model Equations (1)–(9) and the
operating constraints (10)–(12) and (13)–(15). Equation (A9) in Appendix B shows the complete
formulation of the dynamic optimization problem.

2.3. Standard and Multistage Model Predictive Control

The problem (A9) has continuous-time dynamics and is thus infinite-dimensional. This problem
is converted into a finite-dimensional nonlinear program (NLP) by discretizing the equations into
finite elements.The inputs and uncertain parameters are also considered discretized. In the standard
MPC framework, this discretized dynamic optimization problem can be stated compactly as follows:

min
xj ,uj

N−1

∑
j=0

φ(xj, uj) (17a)

s.t.

x0 = xinit (17b)

xj+1 = f(xj, uj) ∀j ∈ {0, . . . , N − 1} (17c)

g(xj, uj) ≤ 0 ∀j ∈ {0, . . . , N − 1} (17d)

where N is the length of the prediction horizon of the dynamic optimization problem (each time
step indexed by the subscript j). The states and inputs for the jth time step are denoted by xj ∈ Rnx

and uj ∈ Rnu respectively. Equation (17a) represents the minimization of cost φ : Rnx × Rnu → R
Equation (17b) show the initial conditions, with xinit being the vector of starting points for each
of the states. Equation (17c) represents the mathematical model of the nonlinear dynamic system,
described by the vector of state equations f : Rnx ×Rnu → Rnx . Equation (17d) represents the system
constraints, denoted by g : Rnx × Rnu → R. Note that the uncertain parameters are not explicitly
modeled in problem (17).

To account for the mismatch between the model and the real system, state feedback information
is incorporated by repeatedly solving problem (17). After every time step, problem (17) is solved with
updated state information, and with a receding prediction horizon. The updated state information
typically comes from a state observer that uses input-output data of the controlled system to
compute the new states. However, observers are not needed in cases where the states are directly
measurable—like temperatures. The reader is referred to [27] for a comprehensive discussion on MPC.

Remark 2. In conventional MPC implementations, terminal state constraints are added separately to ensure
stability and recursive feasibility of the MPC. However, stable performance is often observed in the absence
of such terminal constraints (see [28], for example). In our study, the fluid volume in the TES never empties
as it is always constant owing to equal flows in and out of the TES. The TES model dynamics also implicitly
ensure that the TES temperature is always between the supplier (upper bound) and consumer (lower bound)
process temperatures during operation. This prevents the energy in the TES from depleting all at once at the
end of the prediction horizon. When the energy in the TES is sufficiently depleted (i.e., when the ∆T across the
consumer-side heat exchanger is too small to facilitate heat transfer), the peak heating on the consumer side
takes over. As such, the system tends to be stable in terms of energy in the TES because, at worst, the consumer
can use peak heating to satisfy any excess demand without having to destabilize the TES. Moreover, since we
consider a long enough prediction horizon, we avoid such “at worst" suboptimal solutions.
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The typical standard MPC strategy used for optimal operation for the industrial cluster case
study is illustrated in Figure 2. However, this implementation does not explicitly account for the
uncertainty in the heat supply and demand in the optimizer. System–model mismatch arising from
these uncertain parameters may cause the optimizer to suggest control actions that cause the system
to violate critical operating or safety constraints. Another possible consequence is that the resulting
optimization problem might simply be infeasible. This uncertainty can be modeled in the form
of discrete realizations of the supplied and demanded heat flow rates. Each scenario represents a
unique combination of specific realizations of the uncertain parameters: Qsupply

S (t) and Qdemand
C (t).

The multistage MPC approach, described next, is used to deal with such a robust control problem with
scenario-based uncertainty.

Optimizer SystemObjective (10)

Model (1)-(7)

Constraints (8)-(9)

Optimal Control Inputs

Updated States

Predicted Uncertainty

QS i
dump ,QC j

peak ,qC j

Q S i
supply ,QC j

demand
(predicted mean)

TSi
,TC j
,T TES

Solve problem (11) 
with new states

True Uncertainty
Q S i
supply ,QC j

demand
(actual )

Figure 2. Standard model predictive control scheme with data flow between optimizer and the system.

Using notation analogous to problem (17), the scenario-based multistage optimal control problem
is formulated as follows:

min
xi,j ,ui,j

M

∑
i=1

ωi

N−1

∑
j=0

φ(xi,j, ui,j) (18a)

s.t.

xi,0 = xinit, ∀i ∈ {1, . . . , M} (18b)

xi,j+1 = f(xi,j, ui,j, πππi) ∀j ∈ {0, . . . , N − 1}, ∀i ∈ {1, . . . , M} (18c)

g(xi,j, ui,j) ≤ 0 ∀j ∈ {0, . . . , N − 1}, ∀i ∈ {1, . . . , M} (18d)
M

∑
i=1

Eiui = 0 ∀j ∈ {0, . . . , N − 1}, ∀i ∈ {1, . . . , M} (18e)

where M is the total number of scenarios (each scenario indexed with the subscript i). The uncertain
parameters for the ith scenario are denoted by πππi ∈ Rnπ and ωi is the weight assigned to the ith
scenario. The scenario weights may be based on some underlying probability distribution if such
information is availble. In this paper, we consider equal weights for all scenarios.

Equation (18e) represents the non-anticipativity constraints. The non-anticipativity constraints
enforce that all control inputs that branch at the same node are equal. This is because, in real
applications, the uncertainty is realized only after the control input is applied. In other words,
one cannot anticipate how the scenario-tree is going to branch out at a node before a decision is taken
at that node. The reader is referred to [29] for details on the construction of the non-anticipativity
matrix Ei.

Branching of scenarios at every time step of the prediction horizon leads to rapid growth of the
scenario-tree. To curb this, the uncertainty can be assumed to be constant after a certain point in the
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prediction horizon in order to ease the computational effort [30]. This point corresponds to the so-called
robust horizon of the problem, with a length Nr. The scenario-tree evolution showing the prediction
horizon and the robust horizon is illustrated in Figure 3. Therefore, for D discrete realizations of the
uncertainty, there are M = DNr scenarios. The NLP (18) is solved in a closed-loop, receding-horizon
fashion to implement the multistage MPC. For the industrial cluster problem, the multistage MPC
strategy is shown in Figure 4. This implementation is similar to that of the standard MPC, but with
the scenario-tree being an additional input to the optimizer to model the uncertainty in heat supply
and demand.

x1,0
x2,0
x3,0
x4,0

x1,1
x2,1

x3,1
x4,1

x1,2

x2,2

x3,2

x4,2

x1,3

x2,3

x3,3

x4,3

x1,4
Scenario 1

x2,4
Scenario 2

x3,4
Scenario 3

x4,4
Scenario 4

Present
t0 t1 t2 t3 t4

u1,0

u1,0

u1,1

u1,1

u2,1

u2,1

u1,2

u2,2

u3,2

u4,2

u1,3

u2,3

u3,3

u4,3

Prediction horizon

Robust horizon

Figure 3. Illustration of a scenario-tree with D = 2 realizations of uncertainty. The prediction horizon
N = 4 and the robust horizon Nr = 2.

Optimizer SystemObjective (10)

Model (1)-(7)

Constraints (8)-(9)

Optimal Control Inputs

Updated States

Predicted Uncertainty

QS i
dump ,QC j

peak ,qC j

QS i
supply , QC j

demand

(predictedscenarios)

TSi
,TC j
,T TES

Solve problem (12) 
with new states

True Uncertainty
Q S i
supply ,QC j

demand
(actual )

Figure 4. Multistage model predictive control scheme with data flow between optimizer and plant.

2.4. Data-Driven Selection of Scenarios in Multistage MPC

The scenarios selected in multistage MPC should be representative of the uncertainty in the
system. Conventionally, uncertain parameters are described using probability distribution functions
(PDFs), which may be statistically derived from historical measurement data. In scenario-based
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approaches to stochastic optimization, these PDFs are then discretized to generate scenarios. For easier
computation, it is important to sufficiently describe the parametric uncertainty with few scenarios, since
the scenario-tree grows exponentially with increasing number of scenarios. As such, the discretization
of the PDF can be chosen according to the required confidence interval. In [31,32], a data-driven
approach is proposed for scenario selection when the uncertain parameters exhibit interdependencies.
Such correlations in the uncertain parameters can be exploited using multivariate data-analysis
techniques like PCA, which we employ in this work.

The PCA is an orthogonal linear transformation of an existing data set into a new coordinate
system, where the new axes are called principal components (see [33], for example). The first principal
component aligns in the direction of maximum variance in the data, and subsequent components
explain the remaining data variance in decreasing order. Consider a scaled data matrix X ∈ Rno ×Rnπ ,
where no is the number of observations and nπ is number of the uncertain parameters. The PCA
procedure on X results in a transformed data matrix Y ∈ Rno × Rnπ′ , with π′ ≤ π, according to
Y = XP. Here, P ∈ Rnπ ×Rnπ′ is the projection matrix, where each column represents a principal
component. The columns of P contain the coefficients, called loadings, that project the original data
point to the new coordinate system Y of π′ principal components. The new data matrix Y is called the
scores matrix. The score of a data point along a principal component represents the distance of that
data point from the mean along the direction of that principal component.

We select scenarios corresponding to the maximum and minimum scores along the dominant
principal component that explains the variations in the data sufficiently. Figure 5 shows scenarios
marked by red “X”s selected along the dominant principal component. In addition, we also select
a scenario representing the mean value in each dimension. It can be seen that the chosen scenarios
encompass most of the parametric variation in the data shown in Figure 5, without any significant loss
in explained variability. Using fewer scenarios makes the size of resulting multistage MPC problem
significantly smaller.

−2 0 2
π1

−2

0

2

π
2

X

X

X

Dominant PC

Uncertainty data

Figure 5. Selected scenarios, marked by ‘X’, correspond to the maximum and minimum scores along
the first principal component, along with the mean.

3. Case Study: Data Description and Analysis

We consider a case study with one supplier and one consumer of heat, exchanging heat via a TES
tank. The values of the various system parameters are given in Table 2.
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Table 2. System parameters.

Symbol Value Unit

VTES 1000 m3

(UA)TES 0.1 kW/◦C
Vhex 1 m3

(UA)hex 3000 kW/◦C
nhex 5 -
Tamb −5 ◦C
ρ 1000 kg/m3

Cp 4.18 kJ/kg◦C
qhot

S ,qcold
S 0.3 m3/s

A tank volume of VTES = 1000 m3 is considered. This approximately corresponds to a cylindrical
tank with a height of 10 m and a diameter of 11 m. The heat losses in heat exchangers, and in the pipes
carrying the hot water, are considered to be negligible. The operating bounds on the various system
variables are given in Table 3.

Table 3. Operating bounds.

Symbol Value Unit Symbol Value Unit

Tprocess
S,min 50 ◦C Tprocess

S,max 100 ◦C
Treturn

S,min 50 ◦C Treturn
S,max 85 ◦C

Tprocess
C,min 50 ◦C Tprocess

C,max 100 ◦C
Treturn

C,min 60 ◦C Treturn
C,max 100 ◦C

TTES
min 50 ◦C TTES

max 100 ◦C
qhot

C,min,qcold
C,min 0.001 m3/s qhot

C,max,qcold
C,max 0.3 m3/s

Qdump
S,min,qpeak

C,min 0.0 kW Qdump
S,max,qpeak

C,max 10,000 kW

The heat supply and demand data used in this case study is based on the 2017 data from Mo
Fjernvarme, a district heating company which is part of the Mo Industrial Park in northern Norway.
The surplus heat in Mo Fjernvarme is sourced from a smelting plant within the industrial park in form
of flue gases. The demand, on the other hand, comes from the town of Mo i Rana and from within the
industrial park itself. For simplicity, we do not model the various processes within Mo Industrial Park
in this work. As such, the models that describe our case study are not directly related to the industry
park layout or processes. We instead focus on the overall heat supply and demand data from the
industry park for data analysis, along with the general model developed in Section 2.1, to demonstrate
the effectiveness of our proposed approach.

The hourly heat supply and demand for 2017 is shown in Figure 6. For the spring, summer,
and fall months of April to November, it can be seen that the demand is lower. However, for the
winter months of January–March and December, there is large variation in the demand compared to a
relatively smaller variation in supply. Since optimal operation is considered on a daily basis, a TES
unit is not relevant for periods when supply is always higher, since the demand can be completely
satisfied by the supplied heat. However, for the winter months, an optimal operation strategy would
allow for making TES storage and discharge decisions in order to reduce the peak heating. Moreover,
for diurnal thermal storage there must be a period in the day at which supply is greater than demand.
Figure 7 shows the aggregated heat supply and demand for each month of 2017.
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Figure 6. The hourly supplied and demanded heat flow rates for 2017.
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Figure 7. The total supplied and demanded heat for each month of 2017.

We analyzed the demand and supply data the winter months of January–March and December
to detect any outliers. For a total of 121 winter days with hourly variation in heat flows, PCA was
performed separately in both sets of supply and demand data. Our analysis shows that there were
many outliers in the data during the month of December, and hence this month was discarded (see
Appendix C for more details on outlier detection). Of the remaining winter months, January shows
the least difference between the total supplied heat and the total heat demand, making it a suitable
candidate to inspect daily storage. Hence, we focus on the month of January in this work.

Since hourly heat data is available, the January data includes 31 sample points (for 31 days),
corresponding to each of the 24 h of the day. However, our analysis in Figure A2 shows that the 2nd,
3rd, 4th, 5th, and the 13th days of the month are outliers in terms of either the heat supply or demand.
Hence, these are excluded from the analysis. The scatter plot of the data points for each of the 24 h is
shown in Figure 8. For most of the day, a linear correlation can be seen for the heat supply and demand.
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The exceptions are the morning hours of 8–10 a.m., and the afternoon hours of 3–5 p.m. These are the
peak demand hours, as can be expected of a district heating system. The supply and demand data for
these hours are thus not linearly correlated to each other. Figure 9 shows the mean hourly demand
trend averaged over the winter months of January–March and December. It is evident that 8–10 a.m.
and 3–5 p.m. are the expected peak heating hours.
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Figure 8. Hourly scatter plot of heat supply and demand (normalized) in January. The plots in blue
show a linear trend in the data. The plots in red correspond to the peak demand hours, and do not
show the linear correlation.

The aim is to apply the optimal control strategy for operation during a typical January 2018 day,
based on the available January 2017 data shown in Figure 8. Applying standard or multistage MPC as
described in Section 2.3 requires a prediction of the heat supply and demand across the prediction
horizon, which is taken to be 24 h. These values are taken to be the means of the data corresponding
to each of the scatter plots in Figure 8. Additionally, the multistage MPC also requires scenario
selection for each hour of operation. This scenario selection can be done by performing PCA on the
corresponding scatter plots in Figure 8, as explained in Section 2.4. For the non-peak demand hours,
since there is a strong linear correlation between the supply and demand, the scenarios are chosen
only along the dominant principal component. This implies a total of 3 scenarios, corresponding to
the minimum and maximum scores, along with the mean value. For the peak hours of 8–10 a.m. and
3–5 p.m., the correlation is not strong enough, and thus the scenarios are chosen along the first two
principal components to more accurately encompass the uncertainty. The number of scenarios is 5,
corresponding to the extreme scores along the two principal components, along with the mean.
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Figure 9. Mean hourly demand data for winter months (January-March and December) in 2017
showing expected peak demand hours between 8–10 a.m. and 3–5 p.m.

4. Results and Discussion

The infinite-dimensional problem (A9) is converted into a finite-dimensional NLP by using
third-order Radau collocation to approximate the state equations. The inputs and the uncertain
parameters are discretized into finite elements, but are considered to be piecewise constant within each
element. The reader is referred to Chapter 10 of [26] for more on the collocation-based discretization
method. We consider a prediction horizon of N = 24 h. The finite-dimensional NLP is formulated
using 24 finite elements, implying that control action is taken every hour. This also implies that
the uncertain parameters are assumed to evolve on an hourly basis, as is also the case from the
industrial data.

The scenarios representing the uncertainty are chosen according to PCA from their respective
January 2017 data sets. As explained before, we have D = 3 discrete realizations of the uncertainty
for every stage of the multistage MPC problem, in case of the non-peak demand hours. Similarly, we
have D = 5 discrete realizations for the peak hours. We assume a robust horizon of Nr = 1 in this
study, giving us either 3 or 5 total scenarios in the multistage MPC problem, depending on the hour of
operation. Further, we consider equal weights for all scenarios.

To evaluate the effectiveness of the multistage MPC strategy for this case study, we compare it
with a standard MPC formulation where no uncertainty is considered. To simulate the “true” plant
data, we use the same system model as that in the NLP, but the heat supply and demand data from a
typical day in January 2018. For comparison, identical data representing the true values of heat supply
and heat demand is used in the plant simulation, for both the standard and multistage MPC methods.

An important point to note is that we only consider the application of both the MPC strategies
during dynamic operation of the TES, and not during edge-cases like when the TES is empty at the
start. The initial conditions of the system are obtained by solving the steady-state problem of the
system for some given heat supply and demand. To begin with an empty TES would be equivalent
to a start-up phase where all the supplied heat goes to heating up the tank, and all the demanded
heat is fulfilled via peak heating. In this case, there are not enough degrees of freedom to improve
performance or robustness via MPC, especially over a shorter horizon. The advantage of using MPC is
thus not obvious in this case.

The NLPs (17) and (18) are modeled using the software JuMP [34] (version 0.18.5), within the
framework of the Julia [35] (version 0.6.2). The solver used within this framework is Ipopt [36]
(version 3.12.8), which uses interior-point algorithms to solve the NLPs. The MA27 [37] linear solver
is used within Ipopt. It must be noted that Ipopt is not a global optimization solver. This implies
that for nonconvex problems like the one considered in this paper, Ipopt can guarantee local, but not
global, optimality.
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4.1. Storage vs. No Storage

We begin by demonstrating the advantage and the economic benefit of using the TES as a buffer,
as opposed to direct heat exchange between the suppliers and consumers. The modeling of the system
without storage considers a single heat exchanger that is used to directly couple the supplier and the
consumer. Figure 10 shows the results of a standard MPC formulation applied to both cases—with and
without storage. For the sake of this comparison, no plant–model mismatch is considered, implying
perfect prediction of supply and demand by the cluster operator. Further, the initial temperature of the
tank is 70.63 ◦C.
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Figure 10. The heat supply and demand across 24 h; and the heat dumping and peak heating as
obtained by standard MPC applied to the cases with and without thermal storage.

In the case with no storage, the extent of peak heating and dumping is solely determined by the
operating bounds on the system variables. As such, the predictive ability of MPC does not provide
any added benefit for operation. When the supply exceeds the demand, the excess heat is dumped
and when the demand exceeds the supply, the deficit heat is acquired through peak-heating—subject
to the operating constraints. On the other hand, using TES significantly reduces the heat dumping
as well as peak heating. During periods of low demand, the excess heat is used to charge up the
TES, and during periods of high demand, the expensive peak-heating only begins after using the
stored energy in the tank. This is also apparent from the variation in the temperature of the TES as
shown in Figure 11, going up during off-peak periods and falling when the demand is higher. Overall,
using a TES leads to around 52% reduction in the dumped heat and around 68% reduction in the peak
heating requirements.
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Figure 11. The TES temperature across 24 h with standard MPC and no plant–model mismatch.

4.2. Standard vs. Multistage MPC

Next, we compare the results of the standard and multistage MPC applied to the TES system.
We focus on the operating constraints in the system for this demonstration. The supply of heat on
the supplier side is assumed to come from a batch cooling process, which requires that the return
temperature Treturn

S (t) does not exceed 85 ◦C. As such, any temperatures above the mandated limit
may lead to inferior product quality in the batches. Similarly, the district heating network on the
consumer side needs the return temperature Treturn

C (t) to be above 60 ◦C. Therefore, any constraint
violation on these return temperatures carries an economic penalty for the respective supplier or
consumer. The initial values of the process temperatures, Tprocess

S (0) and Tprocess
C (0), are 91.28 ◦C and

50 ◦C respectively. The initial temperature in the tank is 70.63 ◦C. These values are obtained from the
steady-state optimization of the system for mean values of heat supply and demand.

To investigate the robustness of the methods, the actual heat supply and demand profiles of
6 January 2018 are considered. The expected values in both the MPC formulations come from the
2017 data, as do the scenarios of multistage MPC method. The difference in the 2017 and 2018 data
creates the plant–model mismatch. Figure 12 shows the supplier return, consumer return, and the tank
temperature profiles obtained by the application of the two control strategies, given the constraints
on the return temperatures. It can be seen that the temperature profiles are higher with multistage
MPC in general. The multistage MPC keeps the tank heated up and discharges it less than the
standard MPC, even though there is a higher demand. This conservativeness is because the multistage
MPC respects the constraint on consumer-side return temperature Treturn

C (t) to keep it above 60 ◦C.
In contrast, the standard MPC violates this operating constraint during 8 out of the 24 h of operation,
since it prioritizes the economic objective of demand satisfaction at the cost of constraint violation.
The multistage MPC, having accounted for such a scenario in its scenario-tree formulation, anticipates
that recourse action is possible in the future time steps. As a consequence, Treturn

C (t) is always above
its limit in order to satisfy consumer demand, and does not violate it.

Multistage MPC, however, has a higher cost of peak heating than standard MPC, as shown in
Figure 13. While standard MPC suggests a total peak heating of 42.15 MWh, multistage MPC results in
88.73 MWh of peak heating across the day. This can be thought of as the “cost of robustness” required
by multistage MPC. Since Treturn

C (t) can only drop so much, the remaining heat demand has to be
satisfied through additional peak heating. The supplier also has to dump a lot of heat compared
to standard MPC, since the temperature of the return stream has to be brought down below 85 ◦C.
Another factor is the temperature difference between the supplier and the TES, which becomes too
small to transfer heat. Figure 13 also shows the differences in the actual and expected heat supply
and demand profiles. The standard MPC is oblivious to these differences in the heat supply and
demand, and proposes control solutions that require lesser peak heating. The plant–model mismatch
that arises from this uncertainty, however, causes the states to violate their operating constraints.
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Although the standard MPC suggests lower peak heating requirements compared to multistage MPC,
this is counterproductive because it is not robust and ends up violating the operating constraint for a
significant operating period. The economic penalty of such suboptimal operation may be significantly
higher than any savings achieved via lower peak heating.
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Figure 12. The supplier return, consumer return, and tank temperature profiles in the standard and
multistage MPC formulations, for 6 January 2018.

We repeated the simulations for all days of January 2018 using the corresponding heat supply
and demand profiles, and found that multistage MPC is consistently successful in keeping the system
within the specified limits, whereas the standard MPC frequently results in constraint violations.
This can be seen in Figure 14, which shows the supplier and consumer return temperature profiles for
all the days in January 2018. These simulations show the applicability of the method even when the
heat supply at the start of the horizon is lower than the heat demand, as was the case for multiple days
in January 2018.

The robustness offered by multistage MPC comes with a higher peak heating cost. The average
daily use of peak heating across all days in January with standard MPC is found to be 17.27 MWh,
whereas for multistage MPC it is 73.11 MWh. We also noted the frequency of constraint violations in
both cases. The supplier and consumer-side return temperature constraints are violated during a daily
average of 3.2 h and 3.6 h respectively for standard MPC. The corresponding values for multistage
MPC are 0.06 h and 0.03 h respectively. This shows that the cluster operator is better off employing the
multistage MPC strategy even though it has higher peak heating cost. This is because the long periods
of unprofitable operation in standard MPC may not be acceptable to the stakeholders, resulting in
higher overall costs. Multistage MPC thus helps to keep the overall costs down, while also making the
system robust against uncertainties in heat supply and demand.
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Figure 13. The heat supply and demand profiles; and the corresponding heat dumping and peak
heating profiles obtained from standard and multistage MPC formulations for 6 January 2018.
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Figure 14. The supplier and consumer return temperature profiles for the whole month of January
2018; standard MPC leads to frequent constraint violations, multistage MPC keeps the temperatures
within bounds.

5. Conclusions

In this paper, the application of multistage MPC strategy was investigated for an industrial cluster
system with a hot water TES unit. The case study presented a model with one supplier and one
consumer of surplus heat, whereby the heat exchange happens through a TES tank. The model was
derived using energy balances over the various system components. The surplus heat exchange in the
cluster with a TES was found to be much more cost-effective compared to a corresponding system
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without TES. We further looked at the challenge of effectively handling the uncertainty in heat supply
and demand for this system, with the proposed multistage MPC scheme. A scenario-tree formulation
for the uncertain supply and demand was implemented, and the robustness of this strategy was
demonstrated by comparing it to a standard MPC formulation where uncertainty is not taken into
account. The scenario selection in the multistage MPC is done via the data-driven PCA algorithm,
which results in a computationally efficient but robust formulation. We use additional data analysis to
detect outliers in the data and to predict trends in the heat profiles.

The results demonstrated that although the multistage MPC is more conservative than the
equivalent standard MPC formulation in terms of peak heating requirements (the “cost of robustness”),
it is much better at keeping the system within specified bounds on the system states. We considered
operating constraints on the return temperatures on the supplier and consumer plants, and found that
a standard MPC strategy leads to frequent, non-trivial, constraint violations. The multistage MPC,
on the other hand, was able to steer the system while respecting these operating constraints and was
also not overly conservative. We argue that large economic penalties for constraint violations justify
the use of the multistage MPC strategy over standard MPC, as it is more effective in handling the
uncertain heat supply and demand. In a nutshell, we demonstrated that implementing the proposed
robust control strategy can result in an energy-efficient utilization of the TES unit for surplus heat
exchange, not only providing cost-savings to the industrial cluster as a whole, but also benefiting its
individual stakeholders.
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Abbreviations

Q Heat flow rate (kW)
T Temperature (◦C)
q Volumetric flow rate (m3/s)
UA heat transfer conductance (kW/◦C)
V Volume (m3)
ρ Density (kg/m3)
Cp Specific heat capacity (kJ/kg◦C)
PID Proportional-Integral-Derivative
TES Thermal Energy Storage
MPC Model Predictive Control
ODE Ordinary Differential Equations
NLP Nonlinear Program
PCA Principal Component Analysis
PDF Probability Distribution Function

Appendix A. Detailed Heat Exchanger Model Equations

The vector-valued functions fS and fC are expanded upon in this appendix. A full schematic of
the process used for model derivation is shown in Figure A1.
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Figure A1. Detailed model illustration for the heat exchangers in the TES. The red and blue lines
represent the hot and cold streams respectively.

We apply enthalpy balances over the components shown in Figure A1, namely the process and
return pipe elements, as well as the hot and cold sides of the heat exchanger. Note that we consider
countercurrent flow in the heat exchangers. The enthalpy balance over the process pipe element yields:

ρCpVhex
partṪ

process
S (t) = Qsupply

S (t)− ρCpqhot
S (t)(Tprocess

S (t)− Treturn
S (t)) (A1)

Similarly, the enthalpy balance over the return pipe element gives:

ρCpVhex
partṪ

return
S (t) = ρCpqhot

S (t)(Thex,hot
S,nhex

(t)− Treturn
S (t))−Qdump

S (t) (A2)

The balances over the hot and cold sides of the supplier-side heat exchanger lead to the
following equations:

ρCpVhex
partṪ

hot
S,k (t) = ρCpqhot

S (t)(Thot
S,k−1(t)− Thot

S,k (t))−UAhex(Thot
S,k (t)− Tcold

S,k (t)), (A3a)

Thot
S,0 (t) = Tprocess

S (t), ∀k ∈ {1, 2, . . . , nhex} (A3b)

ρCpVhex
partṪ

cold
S,k (t) = ρCpqcold

S (t)(Tcold
S,k+1(t)− Tcold

S,k (t)) + UAhex(Thot
S,k (t)− Tcold

S,k (t)), (A4a)

Tcold
S,nhex+1(t) = TTES(t), ∀k ∈ {1, 2, . . . , nhex} (A4b)

The Equations (A1)–(A4) together form the vector-valued function fS. The enthalpy balances for
the consumer side fC are analogous to fS. The enthalpy balance for the process pipe element leads to:

ρCpVhex
partṪ

process
C (t) = ρCpqhot

C (t)(Treturn
C (t)− Tprocess

C (t))−Qdemand
C (t) (A5)

Similarly, the balance over the consumer-side return pipe element yields:

ρCpVhex
partṪ

return
C (t) = Qpeak

C (t)− ρCpqhot
C (t)(Treturn

C (t)− Thex,cold
C,1 (t)) (A6)

Finally, the enthalpy balances over the hot and cold sides on the consumer-side heat exchanger
result in the following equations:

ρCpVhex
partṪ

hot
C,k (t) = ρCpqhot

C (t)(Thot
C,k−1(t)− Thot

C,k (t))−UAhex(Thot
C,k (t)− Tcold

C,k (t)), (A7a)

Thot
C,0(t) = TTES(t), ∀k ∈ {1, 2, . . . , nhex} (A7b)

ρCpVhex
partṪ

cold
C,k (t) = ρCpqcold

C (t)(Tcold
C,k+1(t)− Tcold

C,k (t)) + UAhex(Thot
C,k (t)− Tcold

C,k (t)), (A8a)

Tcold
C,nhex+1(t) = Tprocess

C (t), ∀k ∈ {1, 2, . . . , nhex} (A8b)
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It may be noted from Figure A1 that the volumetric flow rates of water going in and out of the
TES are equal. The volume of the water inside the TES is thus always constant.

Appendix B. Dynamic Optimization Problem for the TES System

The complete formulation of the dynamic optimization problem for the industrial park system
with one supplier, one consumer and a TES tank is as follows:

Energy cost

min
∫ t f

t0

(
nC

∑
j=1

Qpeak
C (t)

)
dt

s.t.

Supply side balances

ṪS(t) = fS
(
TS(t), qS(t), Qsupply

S (t), Qdump
S (t), QTES,in

S (t)
)

QTES,in
S (t) =

nhex

∑
k=1

(UA)hex(Thex,hot
S,k (t)− Thex,cold

S,k (t))

Consumer side balances

ṪC(t) = fC
(
TC(t), qC(t), Qdemand

C (t), Qpeak
C (t), QTES,out

C (t)
)

QTES,out
C (t) =

nhex

∑
k=1

(UA)hex(Thex,hot
C,k (t)− Thex,cold

C,k (t))

Tank balance

ρcpVTESṪTES(t) = QTES,in
S (t) + QTES,out

C (t)−QTES,loss(t) (A9)

QTES,loss(t) = (UA)TES(TTES(t)− Tamb(t)
)

Initial state constraints

TS(0) = Tinit
S

TC(0) = Tinit
C

TTES(0) = TTES,init

Operating constraints—states

TS,min ≤ TS(t) ≤ TS,max

TC,min ≤ TC(t) ≤ TC,max

TTES
min ≤ TTES(t) ≤ TTES

max

Operating constraints - inputs

qC,min ≤ qC(t) ≤ qC,max

Qdump
S,min ≤ Qdump

S (t) ≤ Qdump
S,max

Qpeak
C,min ≤ Qpeak

C (t) ≤ Qpeak
C,max

Indices

∀k ∈ {1, . . . , nhex}

Appendix C. Data Preprocessing for Outlier Detection

Here is a more detailed explanation of how the data was treated to detect outliers. The data set was
limited to winter months of January–March and December when thermal energy storage is applicable.
This resulting supply and demand data sets each had 121 sample days with 24 hourly measurements in
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each day. PCA was performed separately on the supply and demand data matrices each of dimensions
121× 24, resulting into two models. Since we aim at finding a linear correlation between supply and
demand, then we detect outlier samples appearing in either of the two PCA models. The supply data
PCA model covered a total variance of about 89.90% using 7 principal components. On the other
hand, demand data PCA model captured more variation with fewer components and achieved a total
explained variance of 95.58% using 6 principal components.
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Figure A2. Influence plots for demand and supply data in the winter months (January–March
and December). The confidence interval was set to 95% and the limits are shown as red-dashed
lines. Samples with either high Hotelling’s T2 or F-Residuals (F-distributed) are considered outliers.
The outliers are labelled with their corresponding date.

Determination of an outlier was done by calculation of sample residuals and leverage in each
PCA model. Leverage is the distance of the sample point from the origin of the PCA model measured
along the new model subspace. A sample with high leverage implies over-influence on the PCA model,
making it not a general representation of the system. Samples with significantly higher residuals
and leverage compared to the others are considered outliers. This is a statistical anomaly detection
which can be applied to processes as explained in [38,39]. The sample residuals are estimated to be
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F-distributed and the X-residuals were converted to F-residuals. A multivariate t-test on the PCA
scores (not the original variables) is called the Hotelling’s T2 statistic [40]. The Hotelling’s T2 statistic
is directly related to the leverage of the sample on the PCA model. It is also approximated as being
F-distributed. The critical limits for Hotelling’s T2 and F-residuals were estimated such that the
confidence interval was 95%. A plot of F-residual against Hotelling’s T2 shown in Figure A2, called the
influence plot, represents the outlier analysis for supply and demand data sets.

The samples that were above the critical limits (red-dashed lines) in either F-residual and
Hotelling’s T2 statistic were considered outliers and were discarded from further analysis. In the
Figure A2, the outliers corresponding to the months of January and December are numbered with
their corresponding date.
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