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Abstract: In order to achieve better dynamics performances of a class of automobile active suspensions
with the model uncertainties and input delays, this paper proposes a generalized robust linear H2/H∞
state feedback control approach. First, the mathematical model of a half-automobile active suspension
is established. In this model, the H∞ norm of body acceleration is determined as the performance index
of the designed controller, and the hard constraints of suspension dynamic deflection, tire dynamic load
and actuator saturation are selected as the generalized H2 performance output index of the designed
controller to satisfy the suspension safety requirements. Second, a generalized H2/H∞ guaranteed
cost state-feedback controller is developed in terms of Lyapunov stability theory. In addition,
the Cone Complementarity Linearization (CCL) algorithm is employed to convert the generalized
H2/H∞ output-feedback control problem into a finite convex optimization problem (COP) in a linear
matrix inequality framework. Finally, a numerical simulation case of this half-automobile active
suspension is presented to illustrate the effectiveness of the proposed controller in frequency-domain
and time-domain.

Keywords: robust control; active suspension; input delay

1. Introduction

With the application and implement of automobile suspension design, it is necessary to attain
a well balance between the handling stability and ride quality, which are usually contradictive with
each other [1–3]. To mention that, how to cooperate with these two conflicting performance indicators
has been a research hotspot currently [4–6]. Over the past decades, to address the issue of active
suspension control, many researchers have proposed a lot of control methods such as linear optimal
control [7], fuzzy neutral network control [8], adaptive robust control [9], robust control and nonlinear
control [10], etc.

In a real engineering application, a class of active suspension system (ASS) should keep the
desirable dynamics performance in case of sustaining the model uncertainty caused by the body mass,
and the actuator input delay that is unavoidable in the control system, see [11] in detail. On one side,
if the model parameter uncertainties are not taken into account in the process of controller design,
then it will deteriorate suspension performances to some extent, which not only affects the ride comfort,
but also endangers the driving safety. Therefore, it is very necessary to take the parametric uncertainties
of the control plant into account, and then to develop a robust control method with higher accuracy.
On the other side, as demonstrated in [12], for the controller design of a vehicle active suspension, there
inevitably exists input delay that may generated from the controller calculations, the signal acquiring
of sensor, along with the actuator operation. Once occurring the input delay in a closed-loop system,
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it means that the working stats of the control system at one time will not only be determined by the
current system states, but also be affected by the system condition at the previous time. Although the
input delay is very important in the control scheme design and development, it is usually ignored by a
lot of researchers, like [7–12]. However, it is needed to know that even a small input delay may result
in the decrease of control efficiency and the instability of control system [13,14].

In recent years, the robust H∞ and H2 control theory and technique have received extensive
attentions. This is because the H∞ control approach can easily handle the hard constraint problem
of ASS in time domain, and the safety constraints condition can be restrained within a finite range,
thus the vehicle body vibrations can be maximally inhibited in the presence of uneven road surface;
moreover, H2 control can effectively handle the convergence rate of the closed-loop control system. For
instances, literature [15,16] designed a mixed H2/H∞ controller by using linear matrix inequality (LMI)
method, and conducted a comparative study for the ASS with H∞ controller by itself. Note that the
effects of the parameter perturbations in vehicle active suspensions on the designed controller are not
considered. Literature [17,18] also designed a class of mixed H2/H∞ controllers for ASS, but the model
uncertainty issue is not considered. In literature [19], the authors have developed a full-state feedback
controller with considering the input delay for a seat suspension system, and this controller achieved
better control effects in a certain delay range. These studies inspired our study along this direction.

Synthesizing the above discussions, this paper presents a robust generalized H2/H∞ full state
feedback controller for the ASS. Compared with the related studies in [12–21], the key contribution
points lie in the two aspects:

(1) a comprehensive dynamics model of ASS is established with incorporating the input delay and
parametric uncertainties, and the H∞ norm of the body vertical acceleration is taken as the controller
output performance index, meanwhile, the hard constraints of suspension dynamic deflections,
tire dynamic loads and the actuator saturations are taken as the generalized H2 performance index for
the desirable controller.

(2) a generalized robust H2/H∞ state feedback control law is designed and this controller design
issue is converted into a COP in the LMI framework, which simplifies the controller solution.

Finally, a numerical example of half-vehicle suspension is presented to validate the effectiveness
of our proposed mixed H2/H∞ full state feedback controller.

We organize the rest of this work as follows. Section 2 gives the system model and problem
formulation. The proposed controller is discussed in Section 3 in detail. Section 4 summarizes the
simulation investigations to reveal the designed controller’s effectiveness. In Section 5, we will display
the conclusions.

2. System Model and Problem Formulation

2.1. Automobile Active Suspension with Input Time Delay

Figure 1 shows a half-automobile dynamics model that is extensively employed in literatures
such as [14,20]. According to the second law of Newton, the dynamics equations can be constructed as

Ms
..
q(t) = GKs(zu(t) − zs(t)) + GCs

( .
zu(t) −

.
zs(t)

)
+ Gu(t− τ) (1)

Mu
..
zu(t) = Ks(zs(t) − zu(t)) − u(t− τ) + Cs

( .
zs(t) −

.
zu(t)

)
+ Ku(zr(t) − zu(t)) (2)

where q(t) = [zc(t), φ(t)]
T, zs(t) = [zs f (t), zsr(t)]

T and zu(t) = [zu f (t), zur(t)]
T; zr(t) = [zr f (t), zrr(t)]

T

is the input vector of road surface, u = [u f (t− τ), ur(t− τ)]
T is the input vector of actuator control

force for this ASS. In Equations (1) and (2), the coefficient matrices of Ms, Mu, Cs, Ks, Ku and G are
respectively given as

Ms =

[
ms 0

0 Iy

]
, Mu =

[
mu f 0

0 mur

]
, Cs =

[
c f 0

0 cr

]
, Ks =

[
k f 0

0 kr

]
, Ku =

[
kt f 0

0 ktr

]
, G =

[
1 1

−a b

]
.
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Figure 1 Dynamics model of half-automobile active suspension system (ASS). 
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Figure 1. Dynamics model of half-automobile active suspension system (ASS).

To ensure that ASS has a better dynamics characteristic and meets this automobile suspension
safety performance’s requirements, the control objectives can be summarized as [22]:

(1) Ride comfort
To obtain better the performances of vehicle dynamics, the designed controller should guarantee

the minimization of
..
zc and

..
φ.

(2) Running safety
1O The dynamic displacements should be less than its allowable maximum value of zmax, which

are expressed by
∆yi =

∣∣∣zsi(t) − zui(t)
∣∣∣ ≤ ∆yimax, i = f , r (3)

2O The tire’s dynamic load must be restrained within the corresponding static load, i.e., Fi
radio =

kti(zui − zri)/Fti < 1, wherein kti(zui− zri) is the dynamic loads at the front and rear tire, Fti is expressed by Ft f =
(
bmsg + (a + b)mu f g

)
(a + b)−1

Ftr = (amsg + (a + b)murg)(a + b)−1 (4)

3O The control forces should not exceed its maximum value of umax, which is given by

|ui| ≤ umax, i = f , r (5)

To achieve the above control goals, define z1 as the dynamics output vector, and z2 as the
normalized constraint output vector, for this automobile ASS, which are expressed by

z1(t) =

 ..
zc(t)..
φ(t)

, z2 =


zs − zu

Fk(zu − zr)

u

 ∈ R6

where Fk = diag
(

kt f
Ft f

, ktr
Ftr

)
.

Considering input time delay τ, the system can be obtained.

.
x(t) = Ax(t) + B1w(t) + B2u(t− τ)
z1(t) = C1x(t) + D1u(t− τ)
z2(t) = C2x(t) + D2u(t− τ)
x(t) = ϕ(t),∀t ∈ [−τ, 0]

 (6)
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where x(t) =
[
(zs(t) − zu(t))

T .
zT

s (t) (zu(t) − zr(t))
T .

zT
u(t)

]T
is the state vector, u(t) =[

u f (t) ur(t)
]T

is the control force vector, w(t) = [
.
zr f (t),

.
zrr(t)]

T is the input disturbance vector,
ϕ(t) is the continuous differentiable initial condition function. A, B1, B2, C1, D1, C2 and D2 are the
corresponding coefficient matrices with appropriate dimension, which are given as follows:

A =
[

A1 A2

]
, A2 =


02 −I2

02 GTM−1
s GCs

02 I2

−M−1
u Ku −M−1

u Cs

, A1 =


02 I2

−GTM−1
s GKs −GTM−1

s GCs

02 02

M−1
u Ks M−1

u Cs

, B1 =


02

02

−I2

02



B2 =


02

GTM−1
s G

02

M−1
u

, C1 =


−M−1

s GKs

−M−1
s GCs

0
M−1

s GCs

, C2 =


I2 02 02 02

02 02 Fk 02

02 02 02 02

, D1 =
[
M−1

s

]
, D2 =


02

02

I2

.
where in A, B1, B2, C, D and E are the coefficient matrices with appropriate dimension, respectively,
and they are dependent with the model parametric uncertainties, which will be illustrated in the
subsequent section, and all the detailed matrices are given in Appendix A.

2.2. Active Suspension Model with Time Delay and Parameter Uncertainties

Based on Equation (6), the following closed-loop systems against parameter uncertainties and
time delay can be obtained as

.
x(t) = (A + ∆A)x(t) + B1w(t) + (B2 + ∆B2)u(t− τ)
z1(t) = C1x(t) + D1u(t− τ)
z2(t) = C2x(t) + D2u(t− τ)
x(t) = ϕ(t),∀t ∈ [−τ, 0]

 (7)

where ∆A, ∆B2 represent the quantized uncertainty of ms, and it can be expressed in a norm-bounded
form as [

∆A ∆B2
]
= HF(t)

[
E1 E2

]
(8)

where in H, E1 and E2 are the corresponding coefficient matrices with appropriate dimension, and F(t)
is the unknown time-varying matrix function, which are mathematically constrained by

FT(t)F(t) ≤ I, t ≥ 0 (9)

According to the performance requirements of ASS, the designed state-feedback control law is
designed as

u(t) = Kx(t) (10)

where K ∈ R2 is the determined controller gain matrix.
Substituting Equation (10) into Equation (7) yields

.
x(t) = (A + ∆A)x(t) + B1w(t) + (B2 + ∆B2)Kx(t− τ)
z1(t) = C1x(t) + D1Kx(t− τ)
z2(t) = C2x(t) + D2Kx(t− τ)
x(t) = ϕ(t),∀t ∈ [−τ, 0]

 (11)

Herein, by referring to [4–6], we summarize the robust state feedback controller (RSFC) design in
Equation (11) as follows
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:

(a) The system in Equation (11) is asymptotically stable.
(b) Given ∀w(t) ∈ L2[0,+∞), the H∞ norm of the transfer function Tz1w from w(t) to z1(t) should be

satisfied with Equation (12) under the zero initial conditions.

‖Tz1w‖∞ = sup
w∈L2

‖z1(t)‖2
‖w(t)‖2

< γ∞ (12)

where γ∞ is a minimized positive value and ‖z1(t)‖2 =
√∫

∞

0 zT
1 (t)z1(t)dt.

(c) Given ∀w(t) ∈ L2[0,+∞) and the positive constant γ2, under zero initial conditions, the
generalized H2 norm of the transfer function Tz2w from w(t) to z2(t) should be satisfied as
follows:

‖Tz2w‖GH2
= sup

w∈L2

‖z2(t)‖∞
‖w(t)‖2

< γ2 (13)

where ‖w(t)‖2 =
√∫

∞

0 w2(t)dt, ‖z2(t)‖∞ = max
1≤ j≤6

∣∣∣∣z2 j(t)
∣∣∣∣, z2 j(t) indicates the deterministic

constraint index in the vector z2(t).

3. Robust Controller Design with Input Delay and Parameter Uncertainties

Lemma 1. [23]: Assume that a(·) ∈ Rna , b(·) ∈ Rnb and N ∈ Rna×nb are defined on the interval Ω, then there
exists an arbitrary matrix X ∈ Rna×nb , Y ∈ Rna×nb and Z ∈ Rna×nb satisfying

− 2
∫
Ω

aT(α)Nb(α)dα ≤
∫
Ω

[
a(α)
b(α)

]T[
X Y−N

YT
−NT Z

][
a(α)
b(α)

]
dα (14)

where [
X Y
YT Z

]
> 0

Lemma 2. [22]: Given matrices Y, C, D satisfies Y + CF(t)D + DTFT(t)CT < 0 for all F(t) satisfying
FT(t)F(t) ≤ I, if and only if there exists some ε > 0 such that

Y + εCCT + ε−1DTD < 0 (15)

Theorem 1. The system in Equation (11) for the automobile active suspension model has the asymptotical
stability property satisfying Equations (12) and (13) for all non-zero ∀w(t) ∈ L2[0, + ∞), γ∞ > 0, γ2 > 0,
and 0 ≤ τ ≤ τ. If and only if there exists positive definite matrices L > 0, R > 0, W > 0, ε > 0, M, V and N
such that the inequalities are satisfied 

Γ ΘT
2 εΘ1

∗ −εI 0
∗ ∗ −εI

 < 0 (16)

[
M N
∗ LR−1L

]
> 0 (17)

[
L LCT

2
∗ γ2

2/γ2
∞

]
> 0 (18)
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where Γ, Θ1, Θ2 is expressed as

Γ =


Ψ6 B2V−N B1 τLAT LCT

1
∗ −W 0 τVTBT

2 VTDT
12

∗ ∗ −γ2
∞I τBT

1 0
∗ ∗ ∗ −τR 0
∗ ∗ ∗ ∗ −I


,

Θ1 =
[

HT 0 0 τHT 0
]T

,

Θ2 =
[

E1L E2V 0 0 0
]
.

where
Ψ6 = sym(AL + N) + τM + W

Proof. For the closed-loop system in Equation (11), one can design the Lyapunov-Krasovskii as

V(t) = V1 + V2 + V3 (19)

where V1 = xT(t)Px(t), V2 =
∫ 0
−τ

∫ t
t+β

.
xT
(t)Zx(t)dαdβ, V3 =

∫ 0
t−τ

∫ t
t+β xT(t)Qx(t)dαdβ. It is noted that

P > 0, Z > 0 and Q > 0 are the undetermined matrices.
In order to acquire the designed controller, two steps are provided to prove Theorem 1.
Step 1. Validate the asymptotical stability of the closed-loop system in Equation (11) with

guaranteeing the H∞ performance index of system in Equation (11) and satisfying ‖TZ1W‖ ≤ γ∞.
The time derivative of V1 in Equation (19) is

.
V1 =

.
xT
(t)Px(t) + xT(t)P

.
x(t) (20)

According to Leibniz–Newton formula, we have

x(t− τ) = x(t) −
∫ t

t−τ

.
x(θ)dθ. (21)

Substituting Equation (20) into Equation (11) of parameter certainties leads to

.
x(t) = (A + B2K)x(t) −B2K

∫ t

t−τ

.
x(θ)dθ+ B1w(t). (22)

Substituting Equation (22) to Equation (20), we have

.
V1 =

.
xT
(t)Px(t) + xT(t)P

.
x(t)

= xT(t)[sym(PA + PB2K)]x(t) − 2xT(t)PB2K∫ t
t−τ

.
x(θ)dθ+ wT(t)BT

1 Px(t) + xT(t)PB1w(t).
(23)

Define a(·) = x(t), b(·) =
.
x(θ), N = PB2K, according to Lemma 1, we have

−2xT(t)N
∫ t

t−τ
.
x(α)dα ≤

∫ t
t−τ

[
x(t)
.
x(α)

]T[
X Y−N
∗ Z

][
x(t)
.
x(α)

]
dα

=
.
xT
(α)Zx(α)]dα+

∫ t
t−τ

[
xT(t)Xx(t) + 2xT(t)(Y−N)

] .
x(α)

= τxT(t)Xx(t) + 2xT(t)(Y−N)
∫ t

t−τ
.
x(α)dα

+
∫ t

t−τ
.
xT
(α)Zx(α)dα ≤ τxT(t)Xx(t) + 2xT(t)(Y−PB2K)

[x(t) − x(t− τ)] +
∫ t

t−τ
.
xT
(α)Zx(α)dα

(24)
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where [
X Y
YT Z

]
> 0 (25)

Substituting Equation (24) to Equation (23), we have

.
V1 ≤ xT(t)[sym(PA + Y) + τX]x(t) + 2xT(t)(PB2K− Y)x(t− τ)

+wTBT
1 Px(t) + xT(t)PB1w(t) +

∫ t
t−τ

.
x(α)Z

.
x(α)dα

(26)

The derivative of V2 is

.
V2 = τ

.
xT
(t)Zx(t) −

∫ t
t−τ

.
x(α)Zx(α)dα ≤ τ[Ax(t) + B1w(t) + B2Kx(t− τ)]T

Z[Ax(t) + B1w(t) + B2Kx(t− τ)] −
∫ t

t−τ
.
x(α)Z

.
x(α)dα

(27)

The derivative of V3 is

.
V3 = xT(t)Qx(t) − xT(t− τ)Qx(t− τ) (28)

Substituting Equations (26), (27) and (28) into Equation (19), we obtain

.
V =

.
V1 +

.
V2 +

.
V3 ≤ xT(t)[sym(PA + Y) + τX]xT(t) + 2xT(t)(PB2K− Y)x(t− τ)

+τ[Ax(t) + B1w(t) + B2Kx(t− τ)]TZ[Ax(t) + B1w(t) + B2Kx(t− τ)]
+xT(t)Qx(t) − xT(t− τ)Qx(t− τ) + wT(t)BT

1 Px(t) + xT(t)PB1w(t).
(29)

Assume ϕ(t) = 0, ∀t ∈
[
−τ, 0

]
, then V(t)|t=0 = 0 . Consider the following index

Jz1w =

∫
∞

0

[
zT(t)z(t) − γ2

∞wT(t)w(t)
]
dt (30)

Then, for non-zero ∀w(t) ∈ L2[0,+∞), we have

Jz1w ≤
∫
∞

0

[
zT(t)z(t) − γ2

∞wT(t)w(t)
]
dt + V(t)

∣∣∣
t=∞ − V(t)

∣∣∣
t=0

=
∫
∞

0

[
zT(t)z(t) − γ2

∞wT(t)w(t) +
.

V(t)
]
dt

=
∫
∞

0 ηT(t)Πη(t)dt,
(31)

where
η(t) =

[
x(t) x(t− τ) w(t)

]T
,

Π =


Φ Ψ1 τATZB1 + PB1

∗ Ψ2 τKTBT
2 ZB1

∗ ∗ −γ2
∞I + τBT

1 ZB1

,
Ψ1 = PB2K− Y + τATZB2K + CT

1 D12K,

Ψ2 = −Q + τKTBT
2 ZB2K + KTDT

12D12K,

Φ = sym(PA + Y) + τX + Q + τATZA + CT
1 C1.

when assuming w(t) = 0, if Π < 0, then
.

V(t) < 0 and (11) is asymptotically stable. Moreover, for w(t)
∈ L2[0,∞), Π < 0 we can get Jz1w < 0 and ‖z1(t)‖

2
2 < γ2

∞‖w(t)‖22, in zero initial conditions, it can
guarantees that the system in Equation (11) has a given attenuation level γ∞.
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By using Schur complement, the inequality Π < 0 is transformed into
Ψ3 PB2K− Y PB1 τATZ CT

1
∗ −Q 0 τKBT

2 Z KTDT
12

∗ ∗ −γ2
∞I τBT

1 Z 0
∗ ∗ ∗ −τZ 0
∗ ∗ ∗ ∗ −I


< 0 (32)

where Ψ3 = sym(PA + Y) + τX + Q.

Define L = P−1, pre-and post-multiplying Equation (32) by diag
(

L L I Z−1 I
)T

and its
transpose, we obtain 

Ψ4 B2KL− LYL B1 τLAT LCT
1

∗ −LQL 0 τLKTBT
2 LKTDT

12
∗ ∗ −γ2

∞I τBT
1 0

∗ ∗ ∗ −τZ−1 0
∗ ∗ ∗ ∗ −I


< 0 (33)

where Ψ4 = sym(AL + LYL) + τLXL + LQL.
After substituting V = KL, M = LXL, N = LYL, W = LQL, R = Z−1, we further obtain

Ψ5 B2V−N B1 τLAT LCT
1

∗ −W 0 τVTBT
2 VTDT

12
∗ ∗ −γ2

∞I τBT
1 0

∗ ∗ ∗ −τR 0
∗ ∗ ∗ ∗ −I


< 0 (34)

Ψ5 = sym(AL + N) + τM + W

Considering the parameter uncertainties, replacing A by A+∆A and B by B2 +∆B2 in Equation (34),
we can get

Γ + sym[Θ1F(t)Θ2] < 0

where

Γ =


Ψ6 B2V−N B1 τLAT LCT

1
∗ −W 0 τVTBT

2 VTDT
12

∗ ∗ −γ2
∞I τBT

1 0
∗ ∗ ∗ −τR 0
∗ ∗ ∗ ∗ −I


, (35)

Ψ6 = sym(AL + N) + τM + W

Θ1 =
[

HT 0 0 τHT 0
]T

,

Θ2 =
[

E1L E2V 0 0 0
]
.

By using Lemma 2 in the above equation, there exist a scalar ε̃ > 0 such that

Γ + ε̃Θ1ΘT
1 + ε̃−1ΘT

2 Θ2 < 0 (36)

By applying Schur complement, the inequalities of Equation (36) is equivalent to
Γ ΘT

2 ε̃−1
1 Θ1

∗ −ε̃−1I 0
∗ ∗ −ε̃−1

1 I

 < 0 (37)
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Substitute ε = ε̃−1 into Equation (37), we obtain Equation (16).
Pre- and post-multiplying the inequality in Equation (25) by diag

(
L LT

)
and its transpose,

we can obtain [
LXL LYL
∗ LZL

]
≥ 0 (38)

Substitute M = LXL, N = LYL and R = Z−1 into the above equation, we obtain Equation (17).
Step 2. Guarantee that generalized H2 performance index of Equation (11) satisfies with

‖z2(t)‖∞ < γ2‖w(t)‖2.
According to Equation (30) and Π < 0, we have

zT
1 (t)z1(t) − γ2

∞wT(t)w(t) +
.

V(t) < 0 (39)

Due to zT
1 (t)z1(t) ≥ 0, we have

.
V(t) < γ2

∞wT(t)w(t) (40)

Integrating Equation (40) gives

V(t) < γ2
∞

∫
t
0wT(t)w(t) (41)

Synthesizing the above discussions, we can derive that the last two terms of Equation (19) are
positive definite, so we can further get

xT
g(t)Pxg(t) < γ2

∞

∫ t

0
wT(s)w(s)ds (42)

Multiplying the inequality in Equation (42) by
γ2

2
γ2
∞

, we have

γ2
2

γ2
∞

xT
g(t)Pxg(t) < γ2

2

∫ t

0
wT(s)w(s)ds (43)

So that, only if the inequality holds with t ∈ [0,∞) and ‖z2(t)‖
2
∞
≥ zT

2 (t)z2(t)

‖z2(t)‖
2
∞
<
γ2

2

γ2
∞

xT
g(t)Pxg(t) (44)

Consequently, we further get

zT
2 (t)z2(t) = xT(t)CT

2 C2x(t) < xT(t)
γ2

2

γ2
∞

Px(t) < γ2
2

∫ t

0
wT(t)w(t) (45)

If Equation (45) holds, it is only needed to be ensured that Equation (46) comes into existence.

CT
2 C2 <

γ2
2

γ2
∞

P (46)

By Schur complement, we obtain [
P CT

2
∗ γ2

2/γ2
∞

]
> 0 (47)
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Multiplying the inequality in Equation (47) by diag
{
P−1, I2

}
and then using the congruent

transformation in matrix, we get (18). The proof is completed. �

The nonlinear term LR−1L in Equation (17) lead to the inability to use the LMI algorithm to solve
the controller gain K. We need to transform inequalities into cone complementary linearization iterative
problem of LMI algorithm.

For the nonlinear term LR−1L in Equation (17), there is a new variable S such that[
M N
∗ S

]
> 0 (48)

LR−1L− S ≥ 0 (49)

According to Equation (49), we have

L−1RL−1
− S−1

≤ 0 (50)

By applying Schur complement, the condition of Equation (50) is equal to[
S−1 L−1

L−1 R−1

]
> 0 (51)

By introducing new variables T = S−1, J = L−1, G = R−1, we obtain[
T J
J G

]
> 0 (52)

Now, in terms of a CCL problem description, it is suggested that the orignal non-convex feasibility
problem of Theorem 1 can be trasnformed into the following non-linear minimization problem with
LMI conditions:

min tr(ST + LJ + RG)

subject to (10), (12)
,


[

M N
∗ S

]
> 0,

[
T J
J G

]
> 0[

S I
I T

]
> 0,

[
L I
I J

]
> 0,

[
R I
I G

]
> 0.

(53)

The specific steps for solving the above problem in Equation (53) are described as follows:
Step-1, Given initial value τ, γ2 and γ∞.
Step-2, Find out a feasible set (S0, T0, J0, G0, L0, R0, W0, N0, M0, V0) with satisfying Equations

(16), (18) and (53). If there is no solution, then exit. If there exist solutions, verify whether the condition
in Equation (17) holds. Find the feasible set that meets the above requirements, if condition (17) is
established, the iteration is completed. If it is not established, it enters Step-3 and sets k = 1.

Step-3, Solve the following LMI problem for the variables (S, T, J, G, L, R, W, N, M, V)

min tr(SkT + TkS + LkJ + JkL + RkG + GkR)

Subject to Equations (16), (18) and (53). Set Jk+1 = J, Gk+1 = G, Lk+1 = L, Rk+1 = R, Sk+1 = S and
Tk+1 = T.

Step-4, Substitute the result obtained in Step-3 into Equation (17), we need to verify whether the
inequality holds. If it is true, the iteration ends. If it is not true, and the number of iterations is within
100 times, perform Step-3 again and continue the iteration.

Step-5, Repeat Step-2~Step-4 by decreasing γ∞ appropriately and iterate again.
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4. Simulation Investigation and Discussion

In this section, a numerical example is uesd to verify the proposed robust controller’s effectiveness
under bump and random road disturbances, respectively. Table 1 give the used parameters of
the simulation.

Table 1. The parameters of half-vehicle ASS.

ms Iy muf mur

500 kg 1222 kg·m2 36 kg 36 kg
a b kr kf

1.5 m 2.5 m 26,000 N−1 16,000 N·m−1

ktr ktf cf cr

16,000 N·m−1 160,000
N·m−1 980N·s·m−1 980 N·s·m−1

It is assumed that zfmax = zrmax = 0.1 m, Fmax = 1500 N, ms has a perturbation of ± 10% and the
matrix H, E1, E2 for the uncertain in Equation (4).

H =
[
0 0

1
10ms

1
10ms

0 0 0 0
]T

E2 =
[

1 1
]
, E1 =

[
−k f −kr −c f −cr 0 0 c f cr

]
.

In the condition of the given time delay τ(t) = 20ms and the generalized H2 performance index
of 26.4537, the H∞ performance index is elected as 28.2843. Based on Theorem 1, the input delay of
the proposed robust controller can be calculated by the cone complement linearization algorithm.
The control gain matrix K is obtained as

K = 104
×

[
0.1385 0.3031 −0.1015 0.0146
0.0363 −0.1378 0.0039 −0.0684

−0.4037 0.9008 −0.0782 0.0240
0.1712 −1.2296 −0.0093 −0.0907

]
4.1. Simulation Results in Frequency Domain

Based on ISO 2361 criteria, in vertical vibration, the human bodies are sensitive to about 4–8 Hz,
in pitch vibration directions, the human bodies are sensitive to about 1–2 Hz.

Figure 2 shows the response comparisons of
..
zc and

..
ϕ in the frequency domain in case of

ms = 454.5 kg, ms = 500 kg and ms = 555.5 kg, respectively. It is obvious that, compared to the passive
control (PC), RSFC can attain a better control performance on the whole, especially in the frequency
ranges of 4–8 Hz for the vertical direction, and 1–2 Hz for the pitch direction, respectively. In addition,
even for the propsoed RSFC, we can see that the parameter uncertianty of body mass ms hardly impose
any effects on the output performances, which means the desinged RSFC can be tolerant with the
variatons of body mass uncertainty.
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4.2. Bump Road Response in Time Domain

The bump road is also utilized to conduct the simulations under bump road surface, which is
described in literature [21] and is mathematically given by

zr f =

 hb
2 (1− cos(5πt)), 1 ≤ t ≤ 0.4

0, otherwise
(54)

where hb, and v represent the height of the bump, and the vehicle forward speed, respectively, and the
time input delay is expressed by (a + b)/v, where their corresponding values is given as hb = 0.1 m and
v = 45 (km/h).

Figures 3 and 4 show the bump responses results of
..
zc,

..
ϕ, ∆y f , ∆yr, F f

radio, Fr
radio, u f and ur for the

passsive controlled system (u(t) = 0) and ASS with the proposed RSFC when there exists time delay as
τ = 0 s, τ = 0.02 s and τ = 0.12 s, respectively. The simulation results from Figure 3a,b show that when
the input delay τ are 0 and 0.02 s, compared with PC,

..
zc and

..
ϕ with RSFC can be remarkably reduced,

and then reach into asymptotic stability within a shorter time. However, when the input delay τ is
increased to 0.12 s, the amplitude of

..
zc and

..
ϕ is very high, and the dynamic stability cannot be achieved

in the simulation time 3 s. The ASS’s index of ∆y f and ∆yr with RSFC have the smaller positive peaks,

they are all less than the value of ∆y f and ∆yr in PC system; F f
radio and Fr

radio are always less than 1,
implying that the dynamic load is less than its static load and ensuring the firm uninterrupted contact
from the wheels to the road. Additionally, it can be seen from Figure 4 that u f and ur are always less
than umax, satisfying the actuator input saturation requirement.
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radio, (f) Fr
radio under bump

road disturbances.
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4.3. Random Road Response in Time Domain

In order to further verify the control effectiveness of the designed RSFC, a random road surface
mimicked by the Gaussian white noise is used to conduct the simulation, which is expressed by [24]

.
zr(t) − 2π f0zr(t) + 2πn0

√
G0uω(t) (55)

wherein n0 represent the reference spatial frequency, f 0 represent the lower cut-off frequency for
different road profiles, ω(t) represent zero mean the white Gaussian noise signal, Gq(n0) represent the
road roughness coefficient. Herein, the parameter values of road surface are chosen as n0 = 0.1 (1/m),
Gq(n0) = 64 × 10−6 (m3) and v = 45 (km/h), which corresponds to B-class road surface.

The root mean square (RMS) is employed to further analyze the robustness of the RSFC to different
input delays and the influence of ASS’s control performance. The RMS expression of the variable x(t)
is defined [23]:

RMSx =

√
(1/T)

∫ T

0
xT(t)x(t)dt (56)

For different input time delay in the closed-loop system, the controller’s effectiveness in dealing
with the time delay problem is studied by calculating the following RMS ratios as

Ji(τ)

Jio
(57)

Among Equation (57), J1, J2, J3, J4, J5 and J6 mean the RMS values of the proposed RSFC system,
and Jio means the RMS value of the PC system.

As shown in Figures 5–7, the RMS ratios of
..
zc,

..
ϕ, ∆y f , ∆yr, F f

radio and Fr
radio are all less than 1 when

τ < 0.12 s, which denotes that the designed controller’s performance is much better than the passive
suspension. With the increase of time delay, the RMS ratio, especially

..
zc,

..
ϕ, ∆y f and ∆yr, increases

dramatically, which reflects the sharp deterioration of ASS performance under the input time delay of
about 0.12 s or more, and the controlled ASS tends to be unstable.

The results reveal that the proposed design method is conservative. Additionally, it can be
seen from Figure 8 that u f and ur are always less than umax with satisfying the actuator input
saturation requirement.
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5. Conclusions

(1) A half-vehicle active suspension model considering the parameter uncertainties, input delay,
as well as the external road surface disturbances is established. the H∞ norm of vehicle body
acceleration is selected as the performance index of the controller output. The hard constraints of
suspension dynamic deflections, tire dynamic loads and actuator saturations are taken as the
generalized H2 performance output index of the designed controller. A robust controller based
on cone complementary linearization algorithm is proposed.

(2) The simulation experiments under different road excitations show that the generalized H2/H∞
controller in this paper can tolerate the performance loss and fluctuation caused by the parameters
uncertainty and the control input delay. It can not only enhance the ride comfort of vehicles,
but also meet the hard constraints of ASS in time domain and frequency domain, respectively.

(3) In the next stage work, the author will consider the effects of time-varying input delay on the
control stability and discuss how to design a stable and reliable active fault-tolerant controller
when the actuators occur faults or failures.
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Appendix A

A =



0 1 0 0 0 0 0 0
a21 a22 a23 a24 a25 a26 a27 a28

0 0 0 1 0 0 0 0
a41 a42 a43 a44 a45 a46 a47 a48

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a71 a72 a73 a74 a75 0 a77 0
a81 a82 a83 a84 0 a86 0 a88


, B1 =



0 0
0 0
0 0
0 0
0 0
0 0

kt f
mu f

0

0 ktr
mur


, B2 =



0 0
1

mc
1

mc

0 0
−a
Iy

b
Iy

0 0
0 0
−1

mu f
0

0 −1
mur


,
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C =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

a21 a22 a23 a24 a25 a26 a27 a28

a41 a42 a43 a44 a45 a46 a47 a48

1 0 −a 0 −1 0 0 0
1 0 b 0 0 −1 0 0
0 0 0 0 kt f 0 0 0
0 0 0 0 0 ktr 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



, D =



0 0
0 0
0 0
0 0
0 0
0 0
−kt f 0

0 −ktr

0 0
0 0



, E =



0 0
0 0
1

ms
1

ms
−a
Iy

b
Iy

0 0
0 0
0 0
0 0
1 0
0 1


wherein the corresponding elements in A and C are listed as follows:

a21 =
−k f − kr

mc
, a22 =

−c f − cr

mc
, a23 =

ak f − bkr

mc
, a24 =

ac f − bcr

mc
, a25 =

k f

mc
, a26 =

kr

mc
, a27 =

c f

mc
,

a28 =
cr

mc
, a41 =

ak f − bkr

Iy
, a42 =

ac f − bcr

Iy
, a43 =

−a2k f − b2kr

Iy
, a44 =

−a2c f − b2cr

Iy
, a45 =

−ak f

Iy
,

a46 =
bkr

Iy
, a47 =

−ac f

Iy
, a48 =

bcr

Iy
, a71 =

k f

mu f
, a72 =

c f

mu f
, a73 =

−ak f

mu f
, a74 =

−ac f

mu f
, a75 =

−k f − kt f

mu f
,

a77 =
−c f

mu f
, a81 =

kr

mur
, a82 =

cr

mur
, a83 =

bkr

mur
, a84 =

bcr

mur
, a86 =

−kr − ktr

mur
, a88 =

−cr

mur
,
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