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Abstract: The conventional maximum power point tracking (MPPT) method fails in partially
shaded conditions, because multiple peaks may appear on the power–voltage characteristic curve.
The Pigeon-Inspired Optimization (PIO) algorithm is a new type of meta-heuristic algorithm. Aiming
at this situation, this paper proposes a new type of algorithm that combines a new pigeon population
algorithm named Parallel and Compact Pigeon-Inspired Optimization (PCPIO) with MPPT, which can
solve the problem that MPPT cannot reach the near global maximum power point. This hybrid
algorithm is fast, stable, and capable of globally optimizing the maximum power point tracking
algorithm. Therefore, the purpose of this article is to study the performance of two optimization
techniques. The two algorithms are Particle Swarm Algorithm (PSO) and improved pigeon algorithm.
This paper first studies the mechanism of multi-peak output characteristics of photovoltaic arrays in
complex environments, and then proposes a multi-peak MPPT algorithm based on a combination of
an improved pigeon population algorithm and an incremental conductivity method. The improved
pigeon algorithm is used to quickly locate near the maximum power point, and then the variable step
size incremental method INC (incremental conductance) is used to accurately locate the maximum
power point. A simulation was performed on Matlab/Simulink platform. The results prove that
the method can achieve fast and accurate optimization under complex environmental conditions,
effectively reduce power oscillations, enhance system stability, and achieve better control results.

Keywords: MPPT; Pigeon-Inspired Optimization; meta-heuristic algorithm; Particle Swarm Algorithm

1. Introduction

Recently, the human demand for energy is increasing. At present, the environmental pollution
caused by traditional fossil energy is becoming increasingly serious. The end of fossil fuel use requires
alternative sources of renewable energy. Solar energy has been widely used due to its universal,
clean, huge, and long-lasting characteristics. A photovoltaic power generation system (PVPS) has the
advantages of no harm to the environment, long-term operation, maintenance-free, etc., and is widely
considered as an extremely attractive solution [1]. In addition, human beings are paying more and
more attention to the protection of the environment. From global warming to the frequent and sudden
increase in the number of haze days, people have been urged to continuously find and improve clean
energy. It is imperative to gradually replace the high-carbon traditional fossil energy economic growth
model with the low-carbon energy economic growth model.
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First, the reserves of solar energy are quite abundant. About 130 trillion tons of solar energy
converted into standard coal reaches the surface of the Earth every year, which is inexhaustible
for human beings. Second, solar energy is a clean energy source that does not produce dust,
carbon dioxide, or other toxic gases, nor does it cause environmental damage. At the same time,
the equipment of photovoltaic power generation systems accounts for a very small part of the
entire power generation system, but the growth rate has been very fast in recent years. In general,
the development environment of photovoltaic power generation is quite excellent, and various factors
have promoted the development of photovoltaic power generation. Therefore, the future power
generation mode will take solar energy as the core of new energy-dominated power generation.

However, the current photovoltaic power generation equipment and algorithms are relatively
dependent on the environment, and the utilization efficiency of solar energy is low, which will cause
relatively large waste. The main reason is mainly due to the materials of photovoltaic cells and the
control algorithms of photovoltaic power generation systems. However, the material performance of
photovoltaic power generation is to absorb solar energy and convert it into electrical energy. To improve
the material of photovoltaic cells, a large amount of manpower and time must be invested. Moreover,
the effect of this improvement is not so obvious. Improving the MPPT algorithm in photovoltaic power
generation systems has become the best way to significantly improve the efficiency of photovoltaic
power generation systems.

The purpose of the intelligent calculation method is the same as the calculation method
(or numerical analysis). Calculate a satisfactory approximate solution close to the real solution.
Use this approximate solution instead of the real solution. In general, many problems have no
analytical solution. At this time, calculation methods can be used to find numerical solutions. When
the problem is really complicated, the calculation method is too large or it is difficult to implement the
calculation method. In essence, intelligent computing methods are bionic, randomized, and empirical.
Nature is random and empirical. It extracts this characteristic of nature and automatically adjusts to
form experience.

At present, with the rapid development of computer technology [2–6], intelligent computing is
one of the important methods of intelligent science, and it is also a cutting-edge subject of information
technology. The intelligent computing technologies and new methods developed in recent years
have been widely used in many disciplines, and have achieved fruitful results in military, financial
engineering, nonlinear system optimization, knowledge engineering, and computer-aided medical
diagnosis. Intelligent computing includes neural networks [7,8], fuzzy logic [9–11], and evolutionary
computing [12]. Evolutionary computing is a type of random search optimization algorithm that
simulates biological evolution and genetic principles (survival of the fittest). The evolution process
of the entire group can be regarded as an optimization process, but the evolution trajectory of a
single individual may not be an optimization process. Evolutionary calculations include Genetic
Algorithm (GA) [13], Particle Swarm Optimization (PSO) [14–17], Grey Wolf Optimizer (GWO) [18–21],
Cat Swarm Optimization [22–24], Differential Evolution (DE) [25–27], Ant Colony Optimization
(ACO) [28–30], Artificial Bee Colony (ABC) [31,32], Flower Pollination Algorithm (FPA) [33,34],
Bat Algorithm (BA) [35–37], QUasi-Affine TRansformation Evolutionary (QUATRE) [38–41], and
Multi-Verse Optimizer (MVO) [42,43]. The pigeon swarm algorithm is a new meta-heuristic algorithm
proposed by Duan in 2014 [44]. This algorithm is proposed to simulate the process of pigeons returning
home. The algorithm includes two operator stages, which has strong global search ability and local
convergence ability.

Although PIO was proposed recently, it has achieved a lot of research results in terms of model
improvement and application. Starting from the introduction of the pigeon’s autonomous homing
behavior, the mechanism principle and mathematical model of the flock optimization algorithm
are explained, and typical applications in the fields of drone formation [45], control parameter
optimization [46], and image processing [47] are introduced.
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2. Related Work

Compared with traditional power generation systems, the biggest difference of photovoltaic
power generation systems is that the core component is photovoltaic cells. One is a thin-film battery.
The conversion efficiency of this battery is about 13% or even lower. The other is a monocrystalline
silicon and polycrystalline silicon photovoltaic cell. The conversion efficiency is higher than that of a
thin-film battery, which can reach about 18–20%. Thin film batteries can be combined with buildings
and are inexpensive, thus they have a wide range of applications.

2.1. Basic Principles of Photovoltaic Cells

The main material of photovoltaic cells is semiconductors, which have the best photovoltaic effect,
that is, they are most efficient way to convert solar energy into electricity. This is because, when the PN
node in the semiconductor is illuminated by sunlight, the neutral atoms in it will lose electrons and
generate electron–holes. At this time, under the action of the electric field, the electrons will be forced
to move toward the N region. The hole moves in the opposite direction to reach the P area. At this
time, the PN junction generates a new electric field with opposite polarity at both ends, and has the
opposite polarity to the original electric field. The interaction between the two forces the P zone to be
positively charged and the N zone to be negatively charged. Photogenerated electromotive forces are
generated at both ends. When a load is connected to both ends of the PN junction, a photogenerated
current is generated, that is, electrical energy is available for the load. The photovoltaic effect principle
diagram is shown in Figure 1.

Figure 1. The principle diagram of the photovoltaic effect.

According to the description of the photovoltaic effect, solar light can be divided into three parts:
one part is the light energy used by solar cells, in which photons are absorbed by the solar PN junction;
and the other two parts are light energy that cannot be used, including the light energy reflected by
the photovoltaic cell and the light energy absorbed by the other parts of the photovoltaic cell except
the PN junction. Therefore, this is also a reason for the low efficiency of photovoltaic cells using solar
energy one.

2.2. Physical Model of Photovoltaic Cell

Because the volt–ampere characteristics of photovoltaic cells are non-linear and easily affected by
the external environment, physical models and mathematical models must be established to facilitate
quantitative research. In fact, the mathematical model of photovoltaic cells is extremely complicated.
In engineering applications, approximate equivalent circuits are often used instead. The approximate
physical model of a photovoltaic cell is shown in Figure 2.
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Figure 2. The physical approximate equivalent model of photovoltaic cells.

In Figure 2, the relationship between the port voltage of the solar cell and the current flowing to
the port can be expressed by a mathematical equation, as shown in Equation (1).

IPV = ISC − ID[exp
(

VPV+IPV RS
nNSVT

)
− 1]− VPV+IRS

RSH

VT = m KT
q

(1)

In Equation (1), IPV is the current flowing through the port, ISC is the current flowing to the port
when the equivalent circuit is short-circuited, ID is the reverse saturation current of the photovoltaic
cell, VPV is the port voltage of the solar cell, RS is the series resistance in the equivalent circuit, Rsh is
the parallel resistance in the equivalent circuit, n is the ideal factor, NS is the number of photovoltaic
modules in series, and k is the Boltzmann constant. T is the absolute temperature of the photovoltaic
cell, q is the amount of electronic charge in the photovoltaic cell, and VT is the voltage equivalent of
temperature. Since k and q are constant values, VT can be known by getting T. For example, when the
temperature T is 27 °C, VT is 26 mV.

Because the output voltage of a photovoltaic cell is generally only 0.5 V, it must be connected
in series and parallel to form photovoltaic modules to increase the port voltage. Therefore, the
mathematical model of photovoltaic array current is shown in Equation (2).

IPV = NP ISC − NP ID[exp
[

VPV + ipvRS

nNSVT

]
− 1]− V + IRS

RSH
(2)

Among them, NP is the number of photovoltaic cells connected in parallel, and other parameters
are the same as those in Equation (1). The mathematical model of the photovoltaic cell voltage is
derived from the analysis of the equivalent model diagram, as shown in Equation (3).

VPV =
NS AKT

q
ln(1 +

NP ISC − I
NP ID

) (3)

Therefore, the equation for photovoltaic cell output power can be obtained by multiplying
Equations (2) and (3), as shown in Equation (4).

PPV = VPV IPV = NP ISCVPV − NP IDVPV [exp
VPV + IPV RS

nNSVT
− 1] (4)

Because the unit magnitude of the parameters in the formula varies widely, to facilitate the
calculation and analysis, the photovoltaic cell model can be simplified. In Equation (2), the magnitudes
of the parallel resistance and the series resistance are greatly different. The unit magnitude of the
parallel resistance is thousands of ohms, and the unit magnitude of the series resistance is milliohms.
Thus, Equation (2) is simplified as shown in Equation (5).
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PPV = NP ISC − IDexp[
q(VPV + IRS)

NS AKT
] + ID (5)

Considering that the multiples of the diode’s reverse saturation current are exponentially
distributed, the single diode reverse saturation current in Equation (5) can be ignored, thus it is
finally simplified to Equation (6).

PPV = NP ISC − IDexp[
q(VPV + IRS)

NS AKT
] (6)

2.3. Maximum Power Point Tracking

When the photovoltaic power generation system is at a constant temperature and constant
light intensity, the volt–ampere characteristics of the photovoltaic array remain basically unchanged,
but are still non-linear, and the P–U characteristic curve always has a maximum value. When the
temperature or light intensity changes, or the photovoltaic array is under complex lighting conditions,
this maximum value starts to shift. At this time, the MPPT algorithm starts to work. It monitors the
photovoltaic array voltage and current while changing the DC voltage control system and output
power to verify that the output power is maximum.

According to the circuit theory, it can be concluded that, when the output impedance of the
photovoltaic array and the impedance of the external load are the same, the output power of the
photovoltaic array is the largest.

Among MPPT algorithms, the most widely used algorithm in engineering today is the Perturb and
Observe algorithms (P&O), which is also one of the earliest algorithms. Its advantages are simple and
efficient under non-complex lighting conditions, low cost, and convenient detection and calculation.
The so-called disturbance is to increase or decrease a voltage increment U from the original detected
voltage. Then, the principle of P&O is to obtain the current and voltage values at the current time
through the current and voltage detection elements, calculate the power value at the current time,
and then add a perturbation to the original voltage. If it is large, then P&O continues to increase
the perturbation comparison, otherwise it reduces one perturbation. In short, the direction of the
disturbance is consistent with the direction of power increase. The flowchart is shown in Figure 3.

P&O is the most commonly used MPPT algorithm today because of its simplicity and versatility.
This is based on the fact that the derivative of power versus voltage is zero at the maximum power
point. At a working point on the P–V curve, if the operating voltage of the photovoltaic array is
disturbed in a given direction and dP > 0, then the disturbance is known to move the operating
point of the array to MPP. Then, the P&O algorithm will continue to disturb the PV array voltage in
the same direction. If dP < 0, the change of the operating point moves the photovoltaic array away
from the MPP, and the P&O algorithm reverses the direction of the disturbance. This paper uses a
five-parameter model of a single diode to reproduce the non-linear characteristics of a photovoltaic
array. Considering any point on the I–V curve, a mathematical expression by which P&O determines
the next disturbance direction can be written.

δPO = ∂P/∂V (7)

While P&O decides the direction of the next perturbation based on the sign of δPO, the discrete
form of Equation (7) becomes Equation (8).

ΦPO =
Pk − Pk−1
Vk −Vk−1

=
∆P
∆V

(8)

where ΦPO is the discrete form of δPO, Pk = IkVk, and Pk−1 = Ik−1Vk−1. The other notations have
the following meaning: Pk, Vk, and Ik are the power, voltage, and current at the kth (actual) sampling
instance, respectively; and Pk−1, Vk−1, and Ik−1 are the power, voltage, and current at the previous
sampling instance, respectively.
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Figure 3. Flowchart of perturbation and observation algorithm.

However, according to the principle of P&O, the system will sway back and forth near the
maximum power point, i.e., oscillating, causing power loss. In addition, because the perturbation
of the P&O algorithm is a fixed value, at the beginning of the algorithm, the optimization speed is
slow and cannot be changed, thus the power lost in the optimization process is large. To solve the
problem that the optimization speed is slow and cannot be changed, a variable step size perturbation
observation method has appeared.

3. Pigeon-Inspired Optimization

The Pigeon-inspired optimization algorithm is a new meta-heuristic algorithm. PIO was proposed
in 2014 and was inspired by the behavior of pigeons returning home [48]. Pigeons can find their home
with tools that help them to return home, the tools include magnetic fields, the sun, and landmarks.
A magnetic field is formed in the pigeon’s mind. The magnetic field can be used to shape the map
in the pigeon’s mind, and adjust its flight direction according to the height o and the angle of the
sun. It will also affect the direction of the entire population. In the second phase, nearby landmarks
help pigeons fly closer to their destination. To simulate the natural phenomenon of pigeons going
home, the PIO algorithm uses two operators to describe the clustering behavior of carrier pigeons.
In the PIO algorithm, the map and compass operators in the first stage represent the influence of the
magnetic field and the sun, while the landmark operators in the second stage describe the influence of
the landmark on the return of the pigeon.
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3.1. Map and Compass Operator

Initialize the entire flock, the number of pigeons is Np, the dimension of the activity is Dim,
the map and compass factor are R, and the position and speed of the pigeons are expressed by
Equations (9) and (10).

Posi = [Posi1, Posi2, ...PosiDim ] (9)

Veli = [Veli1, Veli2, ...VeliDim ] (10)

In the map and compass operator stages, the entire pigeon population presents a strong global
search ability, which effectively avoids falling into a local optimum. The new position and speed
update strategy for the flock is the following Equations (11) and (12).

Post+1
i = Post

i + Velt+1
k (11)

Velt+1
i = e−R∗t ∗Velt

i + φ1 ∗ (Posgbest − Posi) (12)

In Equation (12), Posgbest represents the position of the pigeon with the best fitness value in the
entire population after each update, t represents the number of iterations of the entire population, and
φ1 is a variable limited to 0–1.

Velt+1 = w ∗Velt + c1 ∗ rand(0, 1)(Pbest − Pos) + c2 ∗ rand(0, 1)(Gbest − Pos) (13)

The speed update formula of the PSO algorithm is Equation (13), which is the migration direction
of the simulated bird swarm. The inertial weight is introduced, and the inertial weight is adjusted
linearly (or non-linearly) according to the process and the flight of the particles to balance the search.
The speed update formula of PIO is Equation (12), which simulates the behavior of pigeons returning
home. This formula is the speed update formula of the first stage. Unlike PSO, it has no individual
optimal impact and has a strong global search ability to avoid the problem of getting trapped in a
local optimum.

3.2. Landmark Operator

As the flock is approaching or nearing its end, the influence of maps and compass operators
on the returning behavior of the entire flock becomes smaller. The target closer to the destination
will become the new navigation reference for the pigeons until the pigeons return home. The PIO
algorithm simulates this natural phenomenon using the pigeon with the best fitness value in the entire
population as the center of the entire population, and the person with the most sensible way to lead
the entire population to iteratively update. First, the entire pigeon population should be excluded from
the pigeons that do not have a way to identify it to prevent these pigeons from affecting the iteration
direction of the entire population, as shown in Equation (14). Second, choose the pigeon that has the
most leadership in the entire population, as shown in Equation (15). Finally, this pigeon that leads the
entire population is iterated, as shown in Equation (16).

Nt
p =

Nt−1
p

2
(14)

Post
center =

∑
Nt

p
i=1 Post

i ∗ F(Post
i)

Nt
p ∗∑

Nt
p

i=1 F(Post
i)

(15)

Post+1
i = Post

i + φ4 ∗ (Post
center − Post

i) (16)

In Equation (15), F(Post
i) is the process of fitness value solution. When the function takes the maximum

value and the minimum value, it has different expressions, as shown by Equation (17), ε is a random
constant that prevents F(Post

i) from being set to zero.
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F(Post
i) =


f itness(Post

i) f or maximization problem

1
f itness(Post

i )+ε
f or minimization problem

(17)

4. Hybrid Parallel and Compact Pigeon-Inspired Optimization

Since photovoltaic power generation cannot reach the maximum power under cover, this paper
proposes an improved PIO algorithm based on parallel and compact hybrid. The improved PIO
algorithm is a progress of previous work [19,20], considering both parallel and compact technologies.
Parallel communication strategy is used to exchange information with other groups, share computing
load, and enhance the calculation of individual diversity is of great significance. Compact technology
can provide a very effective way to save variable memory. Taking advantage of the population-based
algorithm, an effective method is adopted to save the variable memory without the need to store the
actual population solution. This paper makes use of the advantages of this population-based algorithm,
and does not need to store the actual population solution, using an effective method to represent the
search space solution. The compact algorithm simulates the behavior of a population-based algorithm
by replacing the virtual population with a probability representation.

4.1. Parallelized Pigeon-Inspired Optimization

In meta-heuristic algorithms, parallel algorithms with communication methods often have faster
convergence speeds and more accurate fitness values than native algorithms. Parallel processing
is a very important way to deal with computer optimization. This is a form of calculation that
runs simultaneously in the same direction. To construct a parallel structure, this paper divides the
population into iterative ways, divides the entire population into several sub-populations according
to a predetermined method, iterates and updates continuously according to the set target fitness
value, and generates the next generation from the result. The parallel processing results proposed in
this paper require constant exchange of attributes between their sub-populations, such as operations,
substitution, exchange, movement, or mutation Algorithm 1 is a communication strategy proposed in
this paper. The excellent solution and the poor solution in the solution space are operated, and the
search is continuously performed in the search space.

Algorithm 1 A pseudo-code of a parallel with communication strategies.

1: if m > 2 then//m is the number of pigeons in each group, and c is 0.5.
2: if random < c then//Stategy1- neighboring groups
3: for i = 1 to m do
4: Replace the worst (Gi) with the best in each group (Gj, j 6= i)
5: end for
6: end if
7: if random >= c then//Stategy2- the best to all
8: for i = 1 to m do
9: Use the best variation in each group the worst in each group

10: end for
11: end if
12: end if

All communication strategies are substituted for all sub-populations in the population, and the
best and worst among the sub-populations are updated. In the replacement process, the best pigeons
of all sub-populations will migrate to each group, mutate them by replacing the worst pigeons in
each group, and update them after a specified period. The strategy with neighbouring populations is
to migrate the best pigeons in each population to adjacent populations, and then replace the poorer
pigeons in adjacent populations.
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4.2. Compacted Pigeon-Inspired Optimization

In the estimated distribution algorithm (EDA), the probabilistic representation is used to obtain
fewer storage variables, and the overall population of all solutions is stored in the PIO algorithm,
while still obtaining the same optimization results. Compact uses the above-mentioned EDA principle
to simulate the iterative behavior of the population for meta-heuristic calculations. The probabilistic
model, to represent the population-based algorithms, operate in a compact model. In this case, in the
compact model algorithm, the actual population is treated as a virtual population. Virtual populations
are set based on EDA’s probability density functions (PDFs). Not all solutions are stored in memory,
but some new candidate solutions are generated based on the probability distribution of the solutions
in memory. When a new candidate solution is generated, it is generated in a solution space with
a relatively good fitness value. In the compact algorithm, the possibility of individuals and virtual
populations indicates that learning from the previous generation will then affect the next generation
of solutions. In this paper, the vector of the generated solution is called Perturbation Vector (PV).
These principles are applied to the improvement of compact PIO memory variables.

Different from the original PIO, the compact method [49–53] uses the encoded data structure
of the probability vector and calls the population a virtual population. New candidate solutions are
generated in the process of constantly changing probability, which affects the change of probability.
The compact algorithm’s optimization processing goal is to simulate the behavior of pigeons, but its
storage unit variable memory is much smaller than the original algorithm. PV continuously generates
candidate solutions from vector probabilities. The updated probability vector will reflect the changing
process of the solution. PV is a matrix that includes two specified parameters, average µ and quasi
deviation σ, in the PDF. t is the number of iterations, µ and σ values are in the range of [−1, 1], and it
can be defined as: PVt = [µt, σt].

PDF =
e
− (x−µ[k])2

2∗σ[k]2 ∗
√

2
π

σ[k] ∗ (er f ( µ[k]+1√
2∗σ[k] − er f ( µ[k]−1√

2∗σ[k] )))
(18)

where PDF is the probability distribution function of PV, µ and σ are two parameters of Equation (18),
which control the probability change of PDF. The definition of er f can be found in [37]. PDF in this
paper is achieved by constructing a polynomial cumulative distribution function (CDF) [54].

4.3. Parallel Compact Pigeon-Inspired Optimization

This section introduces the implementation of hybrid parallel and compact PIO algorithms.
Constructing a parallel method, the entire pigeon population can be divided into several
sub-populations in a predetermined manner, and there is a point to stimulate when communicating
between the sub-populations. This method is based on the optimization of pigeon populations,
and the sub-populations are run in parallel. The independent evolutions of pigeons do not affect
each other. When performing inter-group communication, for example, when the best pigeons in
one sub-population are moved to another sub-population, they can be replaced with the weakest
pigeons based on the measured fitness, and the subgroups are updated during this period. In the
compact phase, we calculate the agreement on the sub-population based on the probability vector
through competition.

New candidate solutions are generated based on the distribution of the previous generation of the
PDF samples. It can be said that the PV operation will randomly generate the position of the pigeon.

Algorithm 2 can represent the initialization PV operation as the CPIO pseudo code, and train the
probability generation Posgbest based on the measured results. In the algorithm, c is a relatively large
constant, and it is often set to 10.
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Algorithm 2 Initialization of CPIO.

1: Initialization of PV(µ, σ)
2: for i = 1 to Dim do
3: µt

i = 0;
4: σt

i = c;
5: end for
6: Initializing pigeons location Pos via PV
7: Initializing Posgbest with the best location value: Posgbest = arg minf[x].

The Winner and Loser variables are constantly changing. When a new solution is generated, it will
be compared with the best global solution that has been generated. The better solution will become the
new Winner, and the worse solution will become the new Loser. The evaluation criterion is based on
the degree of fitness. Based on the above comparison,PDF will transfer the winner to a region in the
search space that is more promising to produce a better solution. The newly selected candidate object
is evaluated by the value of the fitness value. Algorithm 3 shows what is described in this paragraph.

Algorithm 3 Compete for winner and loser.

1: if fitness (Post
gbest) > fitness (Post+1) then

2: Winner is set to Post+1

3: Loser is set to Post
gbest

4: else
5: Winner is set to Post

gbest
6: Loser is set to Post+1

7: end if

In addition, the two vectors in the PV operation will be continuously updated according to the
changes of Winner and Loser in Equations (19) and (20). A parameter called a virtual population
does not correspond to a strict variable of a population size variable such as in a population-
based algorithm.

µt+1
i = µt

i +
winneri − loseri

N
(19)

σt+1
i =

√
(σt

i )
2 + (µt+1)2 +

winner2
i − loser2

i
N

(20)

Compare with Posgbest, and use the selected position Pos to evaluate the fitness function to obtain
the next-generation winner solution. The update operation of PV is shown in Algorithm 4.

Algorithm 4 Updating PV for new candidates.

1: for i = 1 to Dim do
2: µb = µ

3: µt+1
i = µt

i +
winneri−loseri

N

4: σt+1
i =

√
(σt

i )
2 + (µt+1

b )2 +
winner2

i −loser2
i

N
5: end for

Algorithm 5 represents the pseudo code of the steps of the compact PIO. Sampling by probability
model simulates the population-based iterative process of the original PIO. The virtual population is
represented in its probability.
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Algorithm 5 The Compact PIO (CPIO).

1: Initialization phase according to Algorithm 2
2: while stop criteria are not met do
3: Generating Pos by PV
4: Enter map and compass operator;
5: Update Pigeons via Equations (11) and (12)
6: Select Posgbest by Compete via Algorithm 3
7: [winner, loser] = compete (Pos, newPos);
8: Fnew=f (newPos);
9: Update PV scheme µt+1, σt+1, via Algorithm 4

10: Global best update;
11: [winner, loser] = complete (newPos, Posgbest);
12: Update winner and loser;
13: Enter landmark operator
14: Finding virtual pigeons with the ability to know the way according to the iterative process of

the first stage
15: Virtual population shrinking via Equation (14)
16: Update Pigeons via Equation (15)
17: Select Posgbest by Compete via Algorithm 3
18: [winner, loser] = compete (Pos, newPos);
19: Fnew=f (newPos);
20: Update PV scheme µt+1, σt+1, via Algorithm 4
21: Global best update;
22: [winner, loser] = complete (newPos, Posgbest);
23: Update winner and loser;
24: t = t + 1;
25: end while

The simplified steps for Hybrid Parallel and compact PIO (PCPIO) are as follows. First, the entire
population is divided into G sub-populations, and the objective function fitness of the algorithm and
the communication cycle of the algorithm are set. Next, enter the compact policy and assess the results
of the current to find the best solution. Finally, check whether the current number of iterations meets
the setting. If it is not satisfied, go to the second step to continue the iteration; otherwise, the position
of the best pigeon and the output fitness value will be recorded. Algorithm 6 shows the overall pseudo
code of PCPIO, where G is the number of sub-populations, Np is the number of pigeons per group,
R is the map and compass operator, usually set to 0.2, T is the inter-species communication cycle, and
CPIO is the compact program.

Algorithm 6 Pseudo code for Parallel and Compact Pigeon-Inspired Optimization (PCPIO).

1: Initialization
2: generate G1...m m <= Np subgroups, each G has n = Np/G pigeons
3: set exchanging time T, counter=1;
4: solutions Post

i,j in the j-th sub-group with m pigeons, i = 1, 2, ..., m; j = 1, 2, ..., n
5: while termination is not satisfied do
6: for i = 1 to m do

7: CPIO according to Algorithm 5
8: end for
9: if mod (t,T)==0 then

10: communication according to Algorithm 1
11: Find the current best fitness solution Posgbest
12: end if
13: t+1
14: end while
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5. Experiment with Numerical Optimization Problems

To evaluate the performance of the PCPIO algorithm proposed in this paper, the test function
in [19,37] was used as the criterion. Detailed information about the function is given in Tables 1–3,
where TM represents the theoretical minimum of the test function. PCPIO, PIO, PSO, and CPIO
were compared. Table 4 gives detailed experimental results. The number of iterations of PIO and its
improved algorithm were 120 times in the first stage, 80 times in the second stage, and 200 times of
PSO operation.

Table 1. Single peak in test function.

Number Function Space Dimension TM

1 F1(y) = ∑No
j=1 y2

j [−100, 100] 30 0

2 F2(y) = ∑No
j=1

∣∣∣yj

∣∣∣+ ∏No
j=1

∣∣∣yj

∣∣∣ [−10, 10] 30 0

3 F3(y) = ∑No
j=1

(
∑

j
k=1 yk

)2
[−100, 100] 30 0

4 F4(y) = maxj

∣∣∣yj

∣∣∣ , j ∈ [1, m] [−100, 100] 30 0

5 f5(y) = ∑No−1
j=1

[
100

(
yj+1 − y2

j

)2
+
(

yj − 1
)2
]

[−30, 30] 30 0

6 f6(y) = ∑No
j=1

([
yj + 0.5

])2
[−100, 100] 30 0

7 f7(y) = ∑No
j=1 j ∗ y2

j + rand[0, 1) [−1.28, 1.28] 30 0

Table 2. Multimodality peak in test function.

Number Function Space Dimension TM

8 F8(y) = ∑No
j=1−yj ∗ sin

(√∣∣∣yj

∣∣∣) [−500, 500] 30 −12,569

9 f9(y) = ∑No
j=1

[
y2

j − 10 ∗ cos
(

2πyj

)
+ 10

]
[−5.12, 5.12] 30 0

10
f10(y) = −20 ∗ exp

(
−0.2

√
1

No ∑No
j=1 y2

j

)
−exp

(
1

No ∑No
j=1 cos

(
2πyj

)
+ 20 + 2.718

) [−32, 32] 30 0

11 f11(y) = 1
4000 ∗∑No

j=1 y2
j −∏No

j=1 cos
(

yj√
j

)
+ 1 [−600, 600] 30 0

12

f12(y) = π
No ∗

{
10 ∗ sin (πy1) +

∑No−1
j=1

(
yj − 1

)2 [
1 + 10 ∗ sin2(πyj+1)

]
+ (yNo − 1)2

}
+∑No

j=1 u(yj, 10, 100, 4),

yj = 1 + yj+1
4 ∗ u(zl , a, k, m) =


k(yj − a), y > a
0,−a < yj < a

k(−yj − a), y > a

[−50, 50] 30 0

13

f13(y) = 0.1∗{
sin2 (3πy1) + ∑No

j=1

(
yj − 1

)2 [
1 + sin2

(
3πyj + 1

)]
+ (yNo − 1)2 [1 + sin2 (2πyNo)

] }
+∑No

j=1 u
(

yj, 10, 100, 4
) [−50, 50] 30 0
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Table 3. Others peak in test function.

Number Function Space Dimension TM

14 f14(y) =
(

1
500 ∗∑25

j=1
1

j+∑2
k=1(zk−akj)

6

)−1
[−65, 65] 2 1

15
f15(y) = ∑11

j=1

[
aj −

y1

(
b2

j +bjy2
)

b2
j +bjy3+y4

]2
[−5, 5] 4 0.00030

16 f16(y) = 4y2
j − 2.1y4

j +
1
3 y6

j
+yjy2 − 4y2

2 + 4y4
2

[−5, 5] 2 −1.0316

17 f17(y) =
(

y2 − 5.1
4π2 y2

j +
5
π yj − 6

)2

+10
(

1− 1
8π

)
cosyj + 10

[−5, 5] 2 0.398

18

f18(y) =
[
1 + (y1 + y2 + j)2 ∗(

19− 14y1 + 3y2
1 − 14y2 + 6y1y2 + 3y2

2
) ]

∗
[
30 + (2y1 − 3y2)

2 ∗(
18− 32y1 + 12y2

1 + 48y2 − 36y1y2 + 27y2
2
) ]

[−2, 2] 2 3

19 f19(y) = −∑4
j=1 cj ∗ exp

(
−∑3

k=1 ajk

(
yk − pjk

)2
)

[1, 3] 3 −3.86

20 f20(y) = −∑4
j=1 cj ∗ exp

(
−∑6

k=1 ajk

(
yk − pjk

)2
)

[0, 1] 6 −3.32

22 f22(y) = −∑7
j=1

[(
y− aj

) (
y− aj

)T
+ cj

]−1
[0, 10] 4 −10.4028

23 f23(y) = −∑10
j=1

[(
y− aj

) (
y− aj

)T
+ cj

]−1
[0, 10] 4 −10.5363

21 f21(y) = −∑5
j=1

[(
y− aj

) (
y− aj

)T
+ cj

]−1
[0, 10] 4 −10.1532

Table 4. Comparison of OPIO, PPIO, PC-PIO, and PSO algorithms.

Test
Function

OPIO CPIO PCPIO PSO

Mean Std Mean Std Mean Std Mean Std

F1 4.31× 102 1.29× 102 4.14× 10−1 8.14× 10−2 4.92× 10−3 4.02× 10−3 1.02× 103 6.12× 104

F2 9.12× 10−1 2.08× 100 2.80× 100 3.55× 10−1 3.33× 10−1 1.72× 10−1 1.45× 101 1.17× 101

F3 2.97× 103 3.45× 103 1.18× 100 3.79× 10−1 5.40× 10−2 3.12× 10−2 4.88× 103 3.75× 106

F4 4.04× 10−1 4.77× 10−1 2.89× 101 3.56× 10−2 3.24× 10−2 2.30× 10−2 1.65× 101 5.98× 100

F5 1.50× 104 4.56× 104 6.62× 101 9.29× 100 2.95× 101 3.02× 10−1 9.01× 104 5.34× 109

F6 3.30× 101 9.31× 101 5.00× 100 5.72× 10−1 1.95× 100 2.01× 10−1 1.00× 103 1.07× 105

F7 4.48× 10−3 1.31× 10−2 8.10× 10−1 3.06× 10−1 1.50× 10−3 1.81× 10−3 1.51× 10−1 1.22× 10−2

F8 −4.08× 103 6.21× 102 −7.18× 103 1.59× 103 −8.56× 103 3.52× 103 −5.67× 103 5.05× 105

F9 1.33× 101 2.79× 101 1.53× 102 5.68× 101 2.14× 10−5 7.85× 10−6 5.89× 101 2.33× 102

F10 8.42× 10−1 1.60× 100 1.06× 100 1.76× 10−1 6.29× 10−2 2.76× 10−2 8.18× 100 8.20× 10−1

F11 5.67× 10−1 4.21× 10−1 1.93× 10−4 4.54× 10−4 5.16× 10−4 3.63× 10−4 9.45× 100 8.90× 100

F12 1.00× 100 1.06× 100 1.18× 10−1 8.88× 10−2 6.12× 10−1 6.27× 10−1 6.44× 100 5.47× 100

F13 2.36× 100 2.29× 100 2.33× 10−1 1.02× 10−1 1.14× 100 1.24× 100 3.85× 103 1.62× 108

F14 4.37× 100 3.28× 100 1.27× 101 1.24× 10−9 8.15× 100 4.09× 100 2.55× 100 3.73× 100

F15 1.57× 10−3 1.40× 10−3 3.73× 100 2.17× 10−3 9.10× 10−3 9.76× 10−3 1.10× 10−3 4.00× 10−6

F16 −1.03× 100 2.93× 10−12 −1.02× 100 1.13× 10−2 −1.03× 100 4.90× 10−4 −1.03× 100 4.17× 10−31

F17 4.04× 10−1 4.10× 10−2 5.62× 10−1 1.44× 101 3.98× 10−1 1.87× 100 3.98× 10−1 2.59× 10−2

F18 3.00× 100 7.83× 10−3 8.74× 100 4.02× 100 3.74× 100 3.15× 100 3.00× 100 2.65× 10−30

F19 −3.80× 100 2.92× 10−2 −3.54× 100 4.68× 10−1 −3.80× 100 6.91× 10−2 −3.81× 100 2.29× 10−3

F20 −2.29× 100 4.39× 10−1 −2.38× 100 3.20× 10−1 −2.97× 100 2.76× 10−1 −2.09× 100 1.81× 10−1

F21 −5.48× 100 2.07× 100 −2.62× 100 8.83× 10−1 −5.04× 100 1.07× 10−2 −1.62× 100 1.07× 100

F22 −5.29× 100 1.78× 100 −2.56× 100 9.26× 10−1 −5.08× 100 6.23× 10−3 −1.54× 100 3.48× 10−1

F23 −4.87× 100 1.66× 100 −2.48× 100 8.89× 10−1 −5.12× 100 8.45× 10−3 −1.92× 100 5.85× 10−1
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The simulation method proves that the method works well, but the lack of real photovoltaic
equipment to perform the experiment will have more parameters affecting the experimental results.
The experiments were performed on a system with Windows 10 and a CPU of i7-4710MQ 2.5 GHZ.
The software environment was MATLAB R2016b.

The parameters of the algorithm were set as follows. The virtual population size was 120.
The number of dimensions in the solution space was set according to the references. Each test function
was required to run 30 times, and its average and variance were taken after the end of the run.
The entire population communicates once every 20 times. PIO, CPIO, PCPIO, and PSO were compared
with experiments. From the comparison results in Figures 4–6, PCPIO has faster convergence speed
and more accurate target values in high dimensions. Comparing PCPIO with other algorithms in
this paper, for the convergence speed and the optimal value reached, more than half of the test
functions analyzed from the experimental results show that PCPIO is quite competitive. PCPIO has
greater competitiveness.
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Figure 4. Comparison of running times of the PCPIO, with the CPIO, PIO, and PSO algorithms in the
test functions. (a): f1 function, (b): f2 function, (c): f3 function, (d): f4 function.
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Figure 5. Comparison of running times of the PCPIO, with the CPIO, PIO, and PSO algorithms in the
test functions. (a): f5 function, (b): f6 function, (c): f7 function, (d): f8 function, (e): f10 function, (f): f11
function, (g): f12 function, (h): f13 function.
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Figure 6. Comparison of running times of the PCPIO, with the CPIO, PIO, and PSO algorithms in the
test functions. (a): f14 function, (b): f15 function, (c): f20 function, (d): f21 function, (e): f22 function, (f):
f23 function.

6. Applied PCPIO Based MPPT Technique for PV Systems

Applied for PV Systems

As a new type of bionic evolutionary algorithm, the working process of the PIO algorithm is to
iteratively update the parameters and finally approach the optimal solution. In addition, while the
PIO algorithm optimizes global parameters, it can also identify each pigeon as a solution to solve the
optimization and search problems. The solution to this problem is the result of elimination after each
pigeon evolved and compared. Under complex lighting conditions, the PU characteristic curve of the
photovoltaic array becomes a multi-peak state. The traditional single-dimensional algorithm cannot
distinguish the difference between the extreme values, which may lead to local optimization and cause
power loss. Figures 7 and 8 show the characteristics of P–V and I–V with cover and MPP optimization
using PSO and PCPIO. The results show that PCPIO is better than PSO to find the maximum power
point that PCPIO and PSO can reach with cover. The basic principle of PCPIO-based MPPT can be
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explained as: during the iterative operation of the objective function, each pigeon records its own
speed and compares with its previous position, and finds the closest position to the MPP, which is the
optimal value of the group of pigeons gbest. After the elimination and evolution of the particles, when
gbest reaches the MPP, the function iteration terminates.

PPV =
N

∑
k=1

Vpvk Ipvk − r̂sk i2Lk
−

V2
pvk

R̂pk

(21)

Equation (21) is the fitness function, while parameters r̂sk and R̂pk are the estimated equivalent
losses parameters.
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Figure 7. P–V curve of PV array under partial shadow and standard environment. (a): PV array under
standard environment (b): PV array under shadow environment
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Figure 8. I–V curve of PV array under partial shadow and standard environment. (a): PV array under
standard environment (b): PV array under shadow environment

PCPIO performs better under complex lighting conditions, and has the following specific
performances: (1) PCPIO algorithm has the ability of global optimization when comparing
single-dimensional MPPT algorithm. (2) When comparing PCPIO algorithms with multi-dimensional
intelligent algorithms, there are not many parameters, the equations are simple and easy to understand,
and it is easy to implement in engineering. (3) In the PCPIO algorithm, setting the inertia weight and
the number of particles can control the convergence speed, each particle has memory, and the solution
spaces do not interfere with each other.

To conveniently analyze and study the volt–ampere characteristics and external characteristics of
photovoltaic cells, we must first model the photovoltaic cells, including photovoltaic cell size, system
maximum voltage value, peak power, maximum power range, open circuit voltage, short circuit
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current, and current and voltage values at maximum power. Using these parameters and the above
equation model, a photovoltaic cell simulation model was built in MATLAB.

Figure 9 shows the MPPT algorithm model is shown. Figure 10 shows the PCPIO-based MPPT
algorithm model. The specific model parameters are shown in Table 5.
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Figure 9. The part of the simulation model of MPPT algorithm.
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Table 5. The chart of PV array’s parameter settings.

Parameter Value

Open circuit voltage Uoc 43.6 V

Short-circuit current Isc 8.35 A

Maximum power point voltage Ump 35 V

Maximum power point current Imp 7.6 A

At the installation site of the photovoltaic array, the temperature and light will inevitably change
at any time. Moreover, the shadows generated by moving clouds and other parts will partially
block the photovoltaic array and other similar complex lighting conditions. This situation leads to a
multi-peak state of the PV characteristic curve of the photovoltaic array, which not only reduces the
power generation efficiency of the photovoltaic array, but also the power oscillations it generates and
it will reduce the life of the related photovoltaic elements. To solve this problem, this paper proposes
PCPIO and MPPT hybrid algorithm.

MPPT was performed on photovoltaic arrays using ordinary perturbation observation methods.
The array was composed of three above-mentioned modules in series. The three photovoltaic modules
had a temperature of 25 ◦C and a light intensity of 1000, 800, and 600 W/m2. The simulation model
uses an algorithm that directly perturbs the duty cycle. As can be seen in Figure 11, the power of the
pure MPPT algorithm is finally stable at about 1.25× 102 W, while the hybrid algorithm of PCPIO and
MPPT is stable at about 5.15× 102 W. Although the traditional variable-step-disturbance observation
method is fast and stable, it does not have the ability of global optimization, and the PCPIO algorithm
can make up for the above shortcomings.
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Figure 11. Maximum power curve of photovoltaic power generation under the control of MPPT
algorithm and PCPIO and MPPT hybrid algorithm.

7. Conclusions

This paper evaluates and improves the global MPPT performance based on the PCPIO algorithm.
The proposed algorithm aims to increase the maximum power that can be achieved by photovoltaic
power generation under partially shaded conditions. The proposed photovoltaic system is composed
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of MPPT system, boost converter, and photovoltaic array, and is implemented in Matlab/Simulink
software. The tracking efficiency and overall performance of the MPPT technology studied were
evaluated. According to the experimental results, compared with the traditional algorithm, the tracking
algorithm based on PCPIO has high accuracy and stability in extracting global MPP. On the other
hand, this paper improves the PIO algorithm, a new hybrid parallel and compact PIO algorithm, and
applies it to the maximum power point tracking of photovoltaic power generation. The new algorithm
performs very well in the test function. This method avoids most local solution problems in compound
constrained optimization problems, and has faster convergence speed and more accurate accuracy. The
experimental results provide a new method for tracking the maximum power point of photovoltaic
power generation.
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