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Abstract: Selenate removal from a water body is being vigorously debated owing to severe health
impact, but inhibitions of coexisting anions have been reported. To suggest a viable treatment option,
this study investigates the effect of nitrate and perchlorate on selenate reduction in a laboratory-scale
sequencing batch reactor. The experimental design tests how competing electron acceptors (NO3

−

and ClO4
−) and electron donor (acetate) limitations affect selenate reduction in the reactor. Results

show that the reactor achieves almost complete selenate reduction within the initial concentration
ranges of 0.1–1 mM by enriching selenate-reducing bacteria with appropriate temperature (30 ◦C)
and acclimation period (50 days). We monitored simultaneous selenate and nitrate reduction in the
reactor without specific inhibition due to a difference in microbial growth strategy related to electron
donor status. Lack of perchlorate-reducing bacteria makes perchlorate addition (0.2 mM) not to be
closely associated with dissimilative perchlorate reduction. These results provide information that
can help us to understand the effect of competing electron acceptors on selenate reduction and the
kinetics of potential parallel reactions in the reactor.

Keywords: biological selenate reduction; electron donor competition; nitrate; perchlorate;
sequencing batch

1. Introduction

Selenium (Se) is an essential micronutrient but can cause adverse health effects (e.g. hair loss,
fingernail loss, numbness in fingers or toes, and circulatory problems) with long-term and heavy
exposure [1,2]. Since Se in water originates from not only geological sources such as weathering of
seleniferous soils/rocks but also anthropogenic processes such as mining, fossil fuel combustion, and
other industrial activities [3], the World Health Organization has set a provisional total Se guideline
of 40 µg/L in drinking water [4]. The United States Environmental Protection Agency permits the
maximum concentration limit (MCL) of total Se as 50 µg/L and the regulations of national primary
drinking water as 5 µg/L [2]. Likewise, the Korean Ministry of Environment is reducing the MCL to
10 µgSe/L in drinking water [5].

Se has four oxidation states (−II, 0, IV, VI) and forms several organic complexes [6]. In surface
water, most Se primarily exists either selenate (SeO4

2−) or selenite (SeO3
2−). Both oxyanions are toxic

to living organisms thus various treatment technologies have been investigated to remove Se from
water [7]. Although physicochemical technologies effectively separate Se from the water supplied for
domestic and industrial use, eventual post-treatments for the byproducts are required and technical
limitations are still existing [8]. Fortunately, biological treatment can reduce selenate and selenite
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to insoluble elemental Se (Se0) via anaerobic microbial metabolisms [6,9]. From a wide variety of
environments, selenate- or selenite-reducing bacteria have been isolated [10,11].

When selenate or selenite coexist with other anions such as nitrate (NO3
−), sulfate (SO4

2−),
and perchlorate (ClO4

−), biological Se reduction can be inhibited by the electron scavenging
of denitrifying bacteria, sulfate-reducing bacteria, or perchlorate-reducing bacteria because most
selenate-reducing bacteria are heterotrophic facultative anaerobes which compete for electron donors
under anoxic or anaerobic conditions. Another limiting factor might be the drastic change of selenate
in the water body due to irrigated agricultural drainage [11], sedimentary soil erosion [3], surface
mining [12], coal-fired power plants [13], and so on.

Most biological selenate reductions are targeted for either pure culture or up-flow anaerobic
sludge blanket process [14]. Relatively little reports are available about the simultaneous reduction of
selenate in a mixed culture when competing anions exist [14–17]. This study, therefore, investigates the
feasibility of simultaneous selenate, nitrate, and perchlorate reduction in a sequencing batch reactor
(SBR) and evaluate the inhibitory effects of nitrate and perchlorate on biological selenate reduction.

2. Materials and Methods

2.1. Selective Enrichment of Selenate-Reducing Bacteria

To selectively enrich selenate-reducing bacteria, bench-scale SBRs were semi-continuously operated
in parallel for more than one and a half months. Seed sludge was activated sludge taken from a local
municipal wastewater treatment plant with a treatment capacity of 30,000 m3/d in the northern part
of I-city, Korea. Using selenate as a sole electron acceptor, the enrichment period was kept under
anoxic conditions. To support selective pressure on selenate-reducing bacteria, the temperature was
controlled to 30 ◦C by aquarium heaters following previous literature [18].

2.2. Operating Condition of SBRs

Figure 1 shows the schematic diagram of the triplicate SBRs. The working volume of each SBR was
5 L. To verify the proper temperature condition (25 ◦C and 30 ◦C), SBRs were continuously monitored
for more than 200 h until complete selenate reduction at the first batch. And then all the reactors were
operated with 24 h sequence with the optimal temperature condition using the pre-acclimated biomass
for 30 ◦C. Each SBR was completely mixed for 23 h. And then, an hour of settling period followed by
rapid draw sequence of the upper liquid (2.5 L) and fill sequence with fresh feed solution. The feed
solution contains selenate, acetate (CH3COO−), buffer, and essential minerals: 50 mg/L of SeO4

2−,
200 mg/L of CH3COO−, 46 mg/L of (NH4)2SO4, 13.7 mg/L of K2HPO4, 84 mg/L of NaHCO3, 51.3 mg/L
of MgSO4·7H2O, 43 mg/L of CaSO4·2H2O, and 2.5 mg/L of FeSO4·7H2O. Other micronutrients were
available from inoculum and endogenous cell decay. Acetate was a sole carbon source (electron donor).
To test the effects of nitrate and perchlorate on selenate reduction, we designed the experiments as
shown in Table 1.
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Figure 1. Schematic diagram of triplicate sequencing batch reactors (SBRs).

Table 1. Operating conditions of SBRs according to experimental design.

Division
Initial Concentration of Target Contaminants C: N

(CH3COO−-C:
NO3-N)Selenate

(mM SeO42−)
Nitrate

(mM NO3−)
Perchlorate

(mM ClO4−)
Acetate

(mM CH3COO−)

Phase 0 a 0.35 0.00 0.0 3.4 N.A.

Phase 1 0.1 1.0 0.0 3.4 6.7: 1

Phase 2 1.0 1.0 0.0 5.1 11.1: 1

Phase 3 0.1 1.0 0.0 0.6 1.2: 1

Phase 4 1.0 1.0 0.0 0.9 2.3: 1

Phase 5 0.1 1.0 0.2 3.4 5.8: 1
a Initial acclimation period.

2.3. Analytical Methods

Influent and effluent liquid samples were filtered using a 0.2 µm syringe filter (Whatman,
GE Healthcare Life Sciences, Marlborough, MA, USA) and kept in a refrigerator at 4 ◦C before analysis.
Selenate was determined by using an ion chromatograph (Dionex ICX-1100, Dionex, Sunnyvale, CA,
USA) equipped with an IonPac AS15 analytical column and AG15 guard column. The used eluent
was a 36.5 mM NaOH solution (Daejung Chemicals, Siheung, Korea). The volume of the used sample
loop for selenate determination was 100 µL. For perchlorate determination, we used the same ion
chromatograph equipped with IonPac AS16 analytical column and AG16 guard column (Dionex,
Thermo Fisher Scientific, Waltham, MA, USA). In this case, we used the sample loop volume of 1000 µL
with the same 50 mM NaOH eluent. Nitrate and acetate concentrations were monitored by using an
IonPac AS9-HC analytical and AG9-HC guard column with 9 mM Na2CO3 eluent and a 25 µL sample
loop. The detection limits for selenate and perchlorate were 5 µg/L each. And those of acetate and
nitrate were 0.5 mg/L. All the regressions for experimental data were conducted by Sigmaplot software
(Systat Software Inc., San Jose, CA, USA) based on the assumption of first-order removal [19].

3. Results and Discussion

3.1. Appropriate Temperature for Selenate-Reducing Bacteria Acclimation in SBRs

To increase the activity of selenate-reducing bacteria in the seed sludge, initial acclimation (phase
0) was conducted for about 50 days using two sets of triplicate SBRs. Figure 2a shows the variations
of selenate concentrations at the very first batch of the SBRs. During nine days of phase 0, only 27%
of initial selenate (0.72 mM SeO4

2−) was reduced on average at the SBRs of 25 ◦C. However, in the
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SBRs at 30 ◦C selenate was reduced to below detection level after nine days. This result indicates that
30 ◦C, higher than room temperature, is more appropriate for the growth of selenate-reducing bacteria,
which is consistent with previous literature [14,20,21]. With the revealed temperature condition, all the
SBRs enriched selenate-reducing bacteria at 30 ◦C for the rest of phase 0 for further experiments.

At the end of phase 0, monitoring results indicate that SBRs could reduce selenate (0.9 mM) to
below detection level in less than four hours. This enhancement indicates that phase 0 must have made
the selenate-reducing bacteria successfully acclimated to start instantaneous selenate reduction right
after fill-sequence without lag-period. Figure 2b demonstrates that enriched microorganisms actively
reduce selenate to Se0 biologically at the last batch of phase 0, consistent with the literature [6,14,22,23].
Regression indicates that the observed selenate reduction rate was revealed as rapid as 0.96 h−1.Processes 2020, 8, x FOR PEER REVIEW 4 of 8 
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3.2. Effect of Nitrate on Selenate Reduction

At phase 1 and phase 2, this study tests the effect of most probable electron-competing anion,
nitrate, on selenate reduction (Table 1). We artificially constitute low (0.1 mM, phase 1) and high
(1 mM, phase 2) selenate conditions for better interpretation. Figure 3 illustrates the dynamics of
average (n = 3) selenate and nitrate in a whole sequence of SBRs at a steady state. When 3.8 mM
CH3COO− was added to 0.1 mM SeO4

2− (phase 1) as an excess electron donor in the presence of
0.96 mM NO3

−-N (approximately 1:10 of influent SeO4
2−: NO3

− mole ratio), selenate and nitrate were
simultaneously reduced to below detection level within six hours in SBRs (Figure 3a). In the case of
phase 2, nitrate was completely reduced to below detection level, whereas a small amount of selenate
was detected (0.02 mM, 98% reduction) after six hours in SBRs (Figure 3b). Close to the end of the
sequence, the selenate concentration decreased to below detection level.

Within the ratio of SeO4
2−: NO3

− between 1:1 and 1:10 tested in this study, both selenate and
nitrate could be simultaneously reduced without significant inhibition. The selenate reduction rate
was maintained at 0.55–0.57 h−1 regardless of initial concentration. This result indicates that selective
enrichment and long acclimation (>30 days) could make selenate-reducing bacteria endure competitive
inhibition, described previously [24]. In addition, it was noticed that the denitrification rate was not
interrelated with the selenate concentration and kept the rate as 0.88 h−1 almost constantly, which
supports simultaneous selenate and nitrate reduction under excess electron donor condition.
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3.3. Effect of External Carbon Limitation on Selenate Reduction

Two sets of experiments were performed to investigate the effect of carbon source limitation
on simultaneous selenate and nitrate reduction in the SBRs under low (0.1 mM, phase 3) and high
selenate (1 mM, phase 4) conditions. Acetate concentration was limited to 0.8 mM for phase 3 when
the initial SeO4

2− concentration was 0.1 mM. Keeping the nitrate concentration as 1.0 mM results in
the decrease of C:N ratio from 6.7:1 to 1.2:1 compared to phase 1. Phase 4 was conducted with 1 mM of
SeO4

2− reducing C:N ratio from 11.1:1 (phase 2) to 2.3:1 (phase 4). Phase 3 and phase 4 were directly
comparable to phase 1 and phase 2, respectively. Figure 4a,b demonstrate the variations of selenate,
nitrate, and acetate concentrations in SBRs at phase 3 and 4, respectively, as described in Table 1.

Figure 4a (phase 3) shows that all the selenate was reduced instantaneously within two hours
but the accompanying nitrate reduction significantly decelerates when the acetate was depleted at
around 3 h. Figure 4b (phase 4) illustrates that nitrate reduction similarly stops when the acetate was
depleted, but selenate reduction gradually progressed further despite the depletion of external carbon
sources. This result indicates that denitrifying bacteria are more sensitive to electron donor compared
to selenate-reducing bacteria. The increase of acetate concentration from 0.7 mM to 1.2 mM enhanced
the nitrate reduction rate about 80% (from 0.79 hr−1 to 1.42 hr−1) at phase 4 but the nitrate reduction rate
drastically ceased as the carbon source depleted. Selenate reduction rate was also decreased by 27.4%
(from 0.95 h−1 to 0.69 h−1) possibly owing to inhibition associated with carbon source competition.
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When the selenate and nitrates are coexisting, selenate-reducing bacteria might present the ability
to compete successfully for limited carbon resources like K-strategist microorganisms [25] while
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nitrate-reducing bacteria exploit relative offspring trends like r-strategist microorganisms [26] in this
study. This result suggests that selenate-reducing bacteria has a more competitive advantage over
withstanding harsh carbon-limiting condition than nitrate-reducing bacteria.

3.4. Nitrate and Perchlorate Effect on Selenate Reduction in SBRs

To investigate the effect of another oxyanion, perchlorate, on the simultaneous selenate reduction,
SBRs were operated with a feed solution containing selenate (0.1 mM), nitrate (1.0 mM), and perchlorate
(0.15 mM) with an excess amount of external carbon source (3.4 mM).

Figure 5 demonstrates that selenate and nitrate reduction are not affected by perchlorate
significantly. It was observed that 38% of perchlorate (reduction rate of 0.02 h−1) can be reduced
together with selenate and nitrate in the SBRs during 24 h of a sequence. This result indicates that
dissimilatory perchlorate-reducing bacteria can grow together with selenate- and nitrate-reducing
bacteria under anaerobic conditions if the carbon source (electron donor) is not limiting [27]. In this
study, an insufficient population of perchlorate-reducing bacteria might have prevented the perchlorate
from being a competitive inhibitor of selenate or nitrate reduction under excess electron donor
conditions. Owing to perchlorate, the reduction rate of nitrate was significantly reduced from
0.9~1.4 h−1(excess electron donor condition) to 0.5 h−1 at phase 5. However, that of selenate did not
decline but maintained to around 0.7–1.3 h−1, which evidences the ability of selenate-reducing bacteria
to endure harmful perchlorate as well as electron donor competition without significant inhibition.
This result also means that selenate-reducing bacteria can be dominantly enriched from activated
sludge within a reasonable period of time if the carbon source is not limiting.
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competitions associated with other oxyanions reduction and electron donor without significant 
inhibition after appropriate acclimation. This study may contribute to understanding biological Se 
reduction better in relation to competing anions and electron donor conditions. 
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Figure 5. Dynamics of SeO4
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− with excess carbon source in SBRs.

4. Conclusions

This research provides information about how competing anions, nitrate, and perchlorate, affect
selenate reduction in SBRs which are seeded with activated sludge. Based on the observed data from
this research, the following conclusions are drawn as below:

(1) SBRs can rapidly enrich selenate-reducing bacteria from the activated sludge by using the
selective pressure of temperature (30 ◦C) and sufficient acclimation period of >40 days.

(2) Complete selenate and nitrate reduction can be accomplished simultaneously in anaerobic
SBRs by supplying the excess amount of electron donor. Limitation of electron donor may decrease the
activity of nitrate-reducing bacteria instantaneously while selenate-reducing bacteria responds slowly
using the limited resources more efficiently.

(3) Coexistence of perchlorate in the feed did not affect selenate reduction significantly owing
to the shortage of dissimilatory perchlorate reducing bacteria. However, together with selenate and
nitrate, 38% of perchlorate could be reduced without acclimation when electron donor is not limited.
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Overall, these results evidence that selenate-reducing bacteria are capable of enduring competitions
associated with other oxyanions reduction and electron donor without significant inhibition after
appropriate acclimation. This study may contribute to understanding biological Se reduction better in
relation to competing anions and electron donor conditions.
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