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Abstract: The area of the contact surface of phases is one of the main hydrodynamic indicators
determining the separation and heat and mass transfer equipment calculations. Methods of evaluating
this indicator in the separation of multicomponent two-phase systems were considered. It was
established that the existing methods for determining the interfacial surface are empirical ones,
therefore limited in their applications. Consequently, the use of the corresponding approaches
is appropriate for certain technological equipment only. Due to the abovementioned reasons,
the universal analytical formula for determining the interfacial surface was developed. The approach
is based on both the deterministic and probabilistic mathematical models. The methodology was
approved on the example of separation of two-phase systems considering the different fractional
distribution of dispersed particles. It was proved that the area of the contact surface with an accuracy
to a dimensionless ratio depends on the volume concentration of the dispersed phase and the volume
of flow. The separate cases of evaluating the contact area ratio were considered for different laws of
the fractional distribution of dispersed particles. As a result, the dependence on the identification of
the abovementioned dimensionless ratio was proposed, as well as its limiting values were determined.
Finally, a need for the introduction of the correction factor was substantiated and practically proved
on the example of mass-transfer equipment.

Keywords: multiphase flow; separation; heat and mass transfer; probabilistic approach; fractional
distribution; contact area ratio

1. Introduction

Adsorption, rectification, and separation processes are accompanied by heat and mass transfer.
As known, the transfer of heat and mass derives through the surface of the phase contact, which
is obtained from the surfaces of dispersed gas or liquid particles in a continuous phase. The area
size of the interfacial surface is the main hydrodynamic indicator and defining characteristic for the
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design of heat–mass transfer and separation equipment. This parameter is basic for calculations of
technological modes of heat–mass transfer and separation processes, the dimensions and number
of single contact and separation sections, and consequently the main unit dimensions. The specific
interfacial surface a per unit volume is commonly determined depending on the average diameter of
the dispersed particles dp and gas volume fraction ϕ as a = 6ϕ/dp, where coefficient 6 corresponds with
the case of particles of the equal diameters. However, despite the wide use of this expression, there is
no theoretical foundation to evaluate this coefficient for different distribution laws of particle size.

The specific interfacial surfaces for individual cases are also possible to determine using other
quantities and their conversion. For example, the above equation can be used for calculation of
the specific contact surface per unit area of a tray or the contact surface in bubble absorbers with
mechanical mixing.

Herewith, the calculation of the interfacial area is difficult due to the impossibility of accurately
determining the diameter of an individual dispersed particle, their quantity per unit volume, and the
heterogeneous structure of the interfacial layer. It is almost impossible to calculate the exact value of the
droplet diameter since their shape and size constantly change as a result of a breakup or merging with
another drop. It takes place under the action of gravity, buoyancy, surface tension, the resistance of the
continuous phase, etc. It should be noted that the mechanisms of the formation of dispersed particles
in the oil/gas separation equipment are natural in contrast to mass transfer equipment. For example,
single-phase flows are introduced into an absorber and after passing through dispersant or contact
elements bubbles and droplets are formed. On the other hand, gas or liquid flow with a wide range
of dispersed phase is introduced into the separators. The diameter of the dispersed particles in the
separation equipment volume is a function of the three coordinates and time because the drop passes
through devices for separation and coalescence from the moment of their formation or entry into the
equipment by the time of transition to another phase (condensation, evaporation) or merging with the
primary phase. Doubtless, determining the droplet diameter for separators is a more complex task and
requires considering the fractional distribution of dispersed particles, unlike mass transfer equipment.

Determination of the interfacial surface in mass transfer equipment is provided by choosing from
a significant number of experimental methods, which do not determine actual surface with considering
the different activities of dispersed particles but by some of its averaged value—the effective surface.
These methods are divided into three groups according to their intended purpose. The first group
includes methods applied to equipment with the fixed interfacial surface, the second group includes
methods for bubbling machines and in some cases for spraying equipment, the third group is chemical
methods. The last group is the most universal for devices of all types. What is more, analytical or
mathematical methods for determining the area of the interfacial surface were not found. Besides, many
types of research are devoted to the processes of dispersed bubbles or drop formation, the laws of their
movement, and the calculation of the diameter. Such researchers as Anshtein, Ditnersky, and Gelperin
considered processes which occur in the absorption and fractionating equipment. They noted that for
the formation of dispersed particles, their sizes depend on the liquid/gas outflow mode (free, chain)
and dispersion mode (drip, wave, saw) which is implemented by various devices. Bystryi and Kutepov
paid attention to the motion modes of both a separate dispersed particle in a continuous medium
and two separate phases inside the same equipment. For example, individual bubble movement is
described at different values of the Reynolds criterion. In addition, the resistance coefficients of the
particle movement are calculated by sphericity of its shape. In addition, models of the multiphase flow’s
movement are considered by both the abovementioned researchers: the homogeneous flow model,
the separated flow, and the drifting flow. The structures of liquid–gas systems (e.g., bubble, drop) are
also considered. The motion characteristics of dispersed particles are determined by these models.

Therefore, the aim of the research is in creating analytical solutions for determining the interfacial
surface during the separation of two-phase multicomponent systems considering the fractional
distribution of dispersed particles as an important feature for ensuring the reliable mathematical
modeling, numerical simulation, and designing the separation equipment.
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2. Literature Review

High requirements of output product quality are presented to modern separation and mass transfer
equipment that is why their design requires reliable calculation methods as noted above. Therefore,
a significant amount of research is aimed at determining the basic hydrodynamic characteristics of
both individual devices and separation, contact devices, developing and improving new methods
for separating multi-component systems, and studying the behavior and characteristics of dispersed
particles in the continuous phase. In turn, these studies allow for more accurately describing and
understanding separation and mass transfer mechanisms with considering secondary factors, in
addition to an increase in their efficiency and intensity, at the same time developing new or improve
existing algorithms for calculating process equipment.

Most researchers determine the effective interfacial surface area by experimental studies. In [1],
the effective mass transfer area in a turbulent contact absorber has been determined using chemical
absorption of CO2 in an aqueous solution of NaOH and it has been established that the effective phase
contact area is 3–6 times larger than the exact geometric area of the solid filler. Similar studies have been
performed to determine the effective mass transfer area for unstructured filler (Raschig metal rings,
nominal diameter 20–70 mm) using chemical absorption [2]. In [3–7], the effective surface area of the
rotating filtering packing section has been determined. The influence of the packing radial thickness,
the rotational speed, and the liquid and gas volume flow rate on the effective interface has been also
studied. The effective surface of phase contact is also determined for porous media [8] by using
the gas-absorption/chemical-reaction (GACR) method, which is also used to estimate the gas–liquid
interfacial space in the reaction system. In [9–12], synchrotron X-ray microtomography has been
used for obtaining solid/liquid phases three-dimensional images with high resolution in structured
nozzle columns. The obtained images have been processed to obtain quantitative characteristics of the
distribution area of the organic liquid/water and the gas phase/water for calculating of the organic liquid
droplets size. A comparison of methods for estimation of the interfacial surface in porous media is
carried out in [10,12]. The interfacial area between mutually insoluble liquids has been experimentally
calculated using high-resolution microtomographic imaging and interfacial partitioning tracer tests
(IPTT). It should be noted that most studies that aimed at the determination of the interfacial surface
are experimental. This is caused by the absence of the universal analytical or mathematical methods
of calculating the interfacial surface area for separation and heat transfer processes, which could be
used for easier development of the innovative separation equipment and solving the problem of the
optimal layout at the initial design stages. New methods of separating multicomponent systems have
been created for example separation in a vortex flow [13], separation under the action of a magnetic
field [14], inertia-filtrating, gas dynamic, vibration-inertial, and acoustic separation. The ways for
intensification of the operating process [15,16], and methodology of numerical simulations of heat
and mass exchange processes, as well as approaches to improve parameters for the corresponding
multi-functional oil–gas separators and shell-and-tube heat exchangers, are presented in [17,18].

Attention should be paid to the rapid development of superoleophobic/superoleophilic,
superhydrophilic/superhydrophobic surfaces [19–23] and membranes [24–27] as well as energy-efficient
modular separation devices, which are used for separation of oil–water emulsions and gas–liquid
mixtures. Additionally, the appliance of inertial gas-dynamic separation of gas-dispersion flows in the
curvilinear convergent–divergent channels [28] to improve the reliability of compressor equipment is
presented in [29].

Recently, the concepts of the hydrodynamic characteristics of dispersed particles in the continuous
mobile phase have also been expanded. The phenomena of coalescence of dispersed particles,
their transition into a continuous phase, and behavior on hydrophobic surfaces have been studied [30–
32]. The practical significance of the research in this field is highlighted in previous studies by the
need to develop oil–gas cleaning equipment [33], to design spray towers [34], and to improve the
inertia-filtering separation process [35,36] with a highly developed interfacial surface.
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Finally, considering the abovementioned studies, the aim of the research is to create a mathematical
model to determine the interfacial surface for the separation of multicomponent systems. To achieve
this goal, the following objectives were formulated: description of the discrete model for determining
the interfacial surface; creation of a probabilistic model of the interfacial surface; determination of
a range for variation coefficients of the proposed models for the cases of different distribution laws;
evaluating ranges of the variation coefficient for the developed mathematical model; evaluating a
range of the correction factor to clarify the general dependence for the specific interfacial surface;
proving the reliability of the proposed approach on the example of calculation of the interfacial surface
in the gas–liquid reactor.

3. Research Methodology

3.1. The Deterministic Approach

According to the deterministic approach, for the development of a mathematical model for
determining the surface of heat and mass transfer, a two-phase multi-component system is considered.
This hydromechanical system consists of a limited set of spherical particles with radius Ri (i = 1, 2, . . . ,
N) of the total amount N, in a limited volume V of a medium.

The total volume of the disperse phase is determined by the following dependency:

V0 =
4πN

3

P∑
j=1

n jR3
j , (1)

where j = 1, 2, . . . , P—index of the set of particles with the same size Rj; P—number of dispersed
compositions; nj—frequency of dispersed particles in the set j determined as a ratio of their number Nj
to the total number N of particles in the hydromechanical system (Figure 1):

n j =
N j∑P

j=1 N j
=

N j

N
(2)
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In this case, the obligatory identity must be fulfilled:

P∑
j=1

n j = 1. (3)
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The interfacial surface is determined as a sum of areas for all particles in the hydromechanical
system:

S = 4πN
P∑

j=1

n jR2
j . (4)

The volume concentration of the dispersed phase determined as a ratio of the total volume of
particles to the total volume of the medium:

c =
V0

V
, (5)

can be rewritten considering the dependence (1) in the following form:

c =
4πN
3V

P∑
j=1

n jR3
i . (6)

Since the total interfacial area is proportional to the square of particle radiuses, and the total
volume of the disperse phase is proportional to their cube, it is expedient to introduce the contact area
ratio as follows:

α =
S

V2/3
0 N1/3

, (7)

which takes the following form considering the dependencies (4) and (6):

α = 4.84

∑P
j=1 n jR2

j(∑P
j=1 n jR3

j

)2/3
, (8)

where the value α =
3√36π ≈ 4.84 is equal to the contact area ratio for a single particle.

It should be noted that, in general, the dimensionless ratio α depends on the distribution law of
dispersed particle in terms of its size. Additionally, it can be evaluated empirically using dimensionless
criteria [37]. Moreover, the introduction of this ratio allows one to obtain a universal dependence for
determining the total interfacial area in the separation of two-phase multicomponent systems with
joint heat and mass transfer. In this case, considering the dependence (5), it can be calculated from
Equation (7):

S = αN1/3V2/3
0 . (9)

Thus, the total interfacial area depends on the volume of a medium and on the concentration of
the dispersed phase. In this case, it does not depend directly on particle size, but only on the law of
their distribution that determines the contact area ratio α.

3.2. The Probabilistic Approach

The abovementioned deterministic approach for the determination of the total area of the interfacial
surface is limited by the discrete feature of the distribution of particles in terms of radii/diameters,
and by their total amount. This disadvantage is eliminated by considering the relatively infinite set of
particles with the continuous distribution law for their size. In this case, the density of the probabilistic
distribution of particles is introduced (Figure 2):

p(R) = lim
P→∞

(
n j

)
, (10)
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which corresponds to the following obligatory condition:∫ Rmax

Rmin

p(R)dR = 1 (11)

for the entire range [Rmin, Rmax] of dispersed particle sizes.
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Additionally, the sum of the discrete values for the contact surfaces is replaced by a definite
integral, and the dependence (4) takes the following form:

S = 4πN
∫ Rmax

Rmin

R2p(R)dR. (12)

Similarly, the dependence (6) for the volume concentration is as follows:

c =
4πN
3V

∫ Rmax

Rmin

R3p(R)dR. (13)

In this case, the contact area ratio (8) is determined by the formula:

α = 4.84

∫ Rmax

Rmin
R2p(R)dR[∫ Rmax

Rmin
R3p(R)dR

]2/3
(14)

and the universal dependence (9) remains unchanged for the determination of the total contact area of
phases in the separation of two-phase multicomponent systems with the joint heat and mass transfer.

Finally, the application of the probabilistic approach for developing a continuum mathematical
model of determining the interfacial surface is reduced to identifying the ratio α as a function of
parameters of the distribution law for dispersed particles.

4. Results

4.1. Uniform Distribution Law

Considering the uniform distribution of the continuous, randomly variable, dispersed particle
size, the probability density is determined by the following formula:

p(R) =
1

Rmax −Rmin
= const. (15)
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Substitution of this dependence to Equation (14) allows one to obtain the analytical dependence
for determining the contact area ratio (Figure 3):

α = 4.06
1 + Rmin

Rmax
+

( Rmin
Rmax

)2

(
1 + Rmin

Rmax

)2/3
[
1 +

( Rmin
Rmax

)2
]2/3

. (16)
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Particularly, in the case of similar size of particles (Rmin/Rmax→ 1), α = 4.84 as it was found above.
Thus, for the entire range of the ratio Rmin/Rmax, the contact area ratio α changes insignificantly in

a range of 4.06–4.84. The exact bounds of this range are equal to αmin = 4 3√
π/3 ≈ 4.06 for the widest

range of particle size variation (Rmin/Rmax→ 0), and αmax =
3√36π ≈ 4.84—for the narrowest range of

particle size variation (Rmin/Rmax→ 1). Additionally, the integral mean value for the entire range of the
ratio Rmin/Rmax is determined as follows:

α = 4.06
∫ 1

0

1 + Rmin
Rmax

+
( Rmin

Rmax

)2

(
1 + Rmin

Rmax

)2/3
[
1 +

( Rmin
Rmax

)2
]2/3

d
(Rmin

Rmax

)
= 4.59. (17)

It should be noted that in the case of the presence of particles with a relatively wide range of
changes in their size (Rmin/Rmax < 0.4), it is expedient to present the linearized expression for the contact
area ratio. Applying the Maclaurin’s series in terms of the first order of smallness with respect to the
ratio Rmin/Rmax, the following can be obtained (Figure 3):

α ≈ 4.06
(
1 +

1
3

Rmin
Rmax

)
. (18)

Thus, for a relatively wide range of particle size variations (Rmin/Rmax→ 0), with enough accuracy
for practical purposes, the contact area ratio equal to α = 4.59 can be chosen.

4.2. Normal Distribution Law

In the case of the normal distribution law of the continuous random variable distribution of
dispersed particles, the probability density is determined by the following formula [38]:

p(R) =
a
√

2πσ
exp

−
(
R−R

)2

2σ2

, (19)
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where R—the mathematical expectation of a continuous random variable as the mean radius of particles;
σ—mean square deviation determined by the formula:

σ = κR, (20)

where κ—variation coefficient.
The normalizing factor a is introduced since the dispersed particle size varies in a range [Rmin,

Rmax] instead of traditional [0,∞).
Considering the dependence (11), the normalizing factor is determined as follows:

a =

√
2πσ∫ Rmax

Rmin
exp

[
−
(R−R)

2

2σ2

]
dR

. (21)

The substitution of this dependence on Equation (14) allows one to determine the contact area
ratio. Due to the complexity of this dependence, it is expedient to use the three-sigma rule to determine
a range of the most probable values of particle size with the quantile equal to 0.99:

Rmin = R− 3σ = (1− 3κ)R;
Rmax = R + 3σ = (1 + 3κ)R.

(22)

In this case, it can be shown that the expression for determining the contact area ratio does not
depend on the particle size, but only on the variation coefficient. Additionally, up to the second-order
smallness, it can be represented by the following analytical dependence:

α ≈ 4.84
(
1− 0.52κ5/3

)
. (23)

Particularly, in the case of similar size of particles (κ→ 0), α = 4.84 as it was found above.
It should be noted that in the maximum range [0, 1/3] of changing the variation coefficient κ,

the interfacial surface ratio α varies insignificantly in a range of 4.44–4.84. Moreover, the mean integral
value for the entire range of this ratio (Figure 4) can be determined as follows:

α = 3·4.84
∫ 1/3

0

(
1− 0.52κ5/3

)
dκ = 4.69. (24)

Processes 2020, 8, x FOR PEER REVIEW 8 of 12 

 

𝛼 = 3 · 4.84∫ (1 − 0.52𝜅5/3)𝑑𝜅
1/3

0

= 4.69. (24) 

 

Figure 4. The dependence of the contact area ratio on the variation coefficient for the normal 

distribution law. 

Thus, for enough accuracy for practical purposes, the contact area ratio can be chosen equal to 

its mean value α = 4.69. 

The comparison of the existing dependence for the specific interfacial surface with the proposed 

approach leads to introduce the correction factor k: 

𝑘 = √
𝛼3

36𝜋
. (25) 

as a part of the following clarified expression: 

𝑎 = 𝑘
6𝑐

𝑑𝑝
. (26) 

Particularly, for the case of uniform distribution of particle sizes, the minimum value of this 

coefficient is equal to k = 4√3/9 ≈ 0.77. Additionally, for the case of the normal distribution of particle 

sizes, its minimum value is equal to k = 0.88. 

As an example of calculation, determination of the interfacial surface between gaseous and 

liquid phases in the gas–liquid reactor with self-priming mixing device is presented for the following 

parameters: specific power E = 2.8·10−5 W/kg; average liquid flow rate vL = 4 m/s; diameter and width 

of impeller dm = 0.105 m and b = 0.020 m, respectively; coefficient of surface tension σ = 0.0733 N/m; 

density of liquid and air ρL = 1·103 kg/m3 and ρa = 1 kg/m3, respectively. The density of the gas–liquid 

mixture 𝜌𝑚 = 𝜑𝜌𝑎 + (1 − 𝜑)𝜌𝐿 is equal to 935 kg/m3. 

According to the practical recommendations for designing gas–liquid reactors, the average 

diameter of particles can be approximately evaluated as 𝑑𝑝 = 7.25 · 10−3 (
𝜎

𝜌𝐿
)
0.6

𝐸−0.4, which is equal 

to 1.58 mm. To evaluate a range of particle diameters according to the proposed methodology, the 

following parameters were used: height of the liquid layer under the impeller hp = 0.150 m; 

acceleration of gravity g = 9.81 m/s2; dynamic viscosity of liquid μL = 1·10−3 Pa·s. 

Experimental studies in a range of Reynolds numbers Re = (3.2−7.5)·104 have shown that the 

resistance coefficient of the mixing device ζ = 0.8 is independent of Froude (Fr), Reynolds (Re), and 

homochronicity (Ho) numbers, but is the function of geometrical similarity simplexes only. For this 

case, a rotating frequency is evaluated by the expression 𝑓 = 𝑅𝑒
𝜇𝐿

𝜌𝐿𝑑𝑚
2 , which is in a range of 3.2–7.5 

Hz. However, its critical value 𝑓𝑐𝑟 =
1

𝜋𝑑𝑚
√
2𝑔ℎ𝑝

𝜁
 is equal to 5.8 Hz. Consequently, the average value 

of the operating frequency fav = (5.8 + 7.5)/2 = 5.4 (Hz). In this case, the Froude number, which is 

determined as 𝐹𝑟 =
𝑓2𝑑𝑚

𝑔ℎ𝑝
, varies in a range of 0.7–2.0. Consequently, considering the empirical 

Figure 4. The dependence of the contact area ratio on the variation coefficient for the normal
distribution law.

Thus, for enough accuracy for practical purposes, the contact area ratio can be chosen equal to its
mean value α = 4.69.



Processes 2020, 8, 306 9 of 12

The comparison of the existing dependence for the specific interfacial surface with the proposed
approach leads to introduce the correction factor k:

k =

√
α3

36π
. (25)

as a part of the following clarified expression:

a = k
6c
dp

. (26)

Particularly, for the case of uniform distribution of particle sizes, the minimum value of this
coefficient is equal to k = 4

√
3/9 ≈ 0.77. Additionally, for the case of the normal distribution of particle

sizes, its minimum value is equal to k = 0.88.
As an example of calculation, determination of the interfacial surface between gaseous and

liquid phases in the gas–liquid reactor with self-priming mixing device is presented for the following
parameters: specific power E = 2.8·10−5 W/kg; average liquid flow rate vL = 4 m/s; diameter and width
of impeller dm = 0.105 m and b = 0.020 m, respectively; coefficient of surface tension σ = 0.0733 N/m;
density of liquid and air ρL = 1·103 kg/m3 and ρa = 1 kg/m3, respectively. The density of the gas–liquid
mixture ρm = ϕρa + (1−ϕ)ρL is equal to 935 kg/m3.

According to the practical recommendations for designing gas–liquid reactors, the average

diameter of particles can be approximately evaluated as dp = 7.25·10−3
(
σ
ρL

)0.6
E−0.4, which is equal

to 1.58 mm. To evaluate a range of particle diameters according to the proposed methodology, the
following parameters were used: height of the liquid layer under the impeller hp = 0.150 m; acceleration
of gravity g = 9.81 m/s2; dynamic viscosity of liquid µL = 1·10−3 Pa·s.

Experimental studies in a range of Reynolds numbers Re = (3.2−7.5)·104 have shown that the
resistance coefficient of the mixing device ζ = 0.8 is independent of Froude (Fr), Reynolds (Re), and
homochronicity (Ho) numbers, but is the function of geometrical similarity simplexes only. For this
case, a rotating frequency is evaluated by the expression f = Re µL

ρLd2
m

, which is in a range of 3.2–7.5 Hz.

However, its critical value fcr =
1
πdm

√
2ghp
ζ is equal to 5.8 Hz. Consequently, the average value of the

operating frequency fav = (5.8 + 7.5)/2 = 5.4 (Hz). In this case, the Froude number, which is determined

as Fr =
f 2dm
ghp

, varies in a range of 0.7–2.0. Consequently, considering the empirical coefficient K =

0.28, the gas volume fraction ϕ = K b
dm

Frmax−Frmin
1+K b

dm
(Frmax−Frmin)

is equal to 0.07, and the interfacial surface

S = 8.2 m2.
As a result of the numerical calculations for the internal diameter of the apparatus D = 0.325

mm and the height of the mixture H = 0.475, the total volume V = πD2

4 H is equal to 0.039 m3. In this
case, according to Equation (26), the average diameter of particles varies in a range of 1.4–1.9 mm,
and the average value is equal to 1.65 mm, which corresponds to the previously evaluated parameter
dp = 1.58 mm with the relative error of about 4.5%.

5. Conclusions

Thus, a mathematical model for determining the interfacial surface during the separation process
is proposed for the case of two-phase multicomponent systems with joint heat and mass transfer. As a
result, a universal dependence (9) for determining the total surface of a heat and mass transfer is
developed. It is proved that the total area of this surface depends on the volume of a medium and the
volume concentration of the dispersed phase.

Based on the proposed probabilistic mathematical model, the dependence for determining a
contact area ratio is proposed. The values of this ratio are determined for different laws of the
distribution of dispersed particles. Particularly, for the case of the uniform distribution law, considering
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all the possible range of size for dispersed particles, the contact area is in a range of 4.06–4.84, and its
mean value is equal to 4.59. Additionally, in the case of normal distribution law, the contact area ratio
is in a range of 4.44–4.84, and its mean value is equal to 4.69. The maximum value of this coefficient for
all the distribution laws is equal to 4.84, and its averaged value varies insignificantly in a range of
4.59–4.69.

Moreover, the coefficient α for the uniform or normal distribution laws can be determined
experimentally by comparing the dependence with the existing dimensionless criteria for the heat and
mass exchange case studies using the proposed regression procedure.

The proposed approach allows one to clarify analytical dependencies for determining the interfacial
surface during the mass-transfer processes in two-phase multicomponent systems considering the
different fractional distribution of dispersed particles, which is valuable for ensuring the operating
process in the corresponding technological equipment. As a result of the comparison of the existing
dependence for the specific interfacial surface with the proposed approach, the correction factor
was introduced. The minimum value of this factor varies in a range of 0.77–0.88 depending on the
distribution law for dispersed particles.

Finally, the reliability of the developed model was proved on the example of the calculation of the
interfacial surface in the gas–liquid reactor with a self-priming mixing device. As a result of numerical
calculations, the relative error of determining the average size of dispersed particles is about 4.5%.
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