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Abstract: A new type of silica hybrid material functionalized with Schiff base-propyl-thiol and
propyl-thiol groups (adsorbents 1 and 2, respectively) was synthesized using a co-condensation
method. The synthesized materials and their starting materials were successfully characterized
using a variety of techniques such as Fourier transform infrared spectroscopy (FTIR), scanning
electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption–desorption isotherms,
the Brunauer–Emmett–Teller (BET) surface area calculation method, the Barrett, Joyner, and Halenda
(BJH) pore size calculation method, thermogravimetry analysis (TGA), and 1H and 13C nuclear
magnetic resonance (NMR) spectra. The results indicate that the new material (adsorbent 1) has
a large surface and possesses different functional groups (-SH, -OH, -C=O and –N=C). The newly
synthesized hybrid materials (1 and 2) were investigated as potential adsorbents for removal of toxic
heavy metals, such as Pb(II) from aqueous solutions. The adsorption results show that materials 1
and 2 have different sorption properties and were found to be effective adsorbents for Pb(II) removal
from aqueous solutions. In addition, compound 1 exhibited a higher adsorption capacity for Pb(II)
compared to compound 2. The results showed that the optimum pH for Pb(II) sorption was 6.5.
Contact time was observed to occur after 30 min for 25 mg L−1 Pb(II) concentration and adsorbent
dose of 0.4 g L−1 at 25 ◦C.

Keywords: heavy metals; hybrid materials; functionalized; Schiff base; lead; Langmuir and Freundlich

1. Introduction

Excessive heavy metal concentrations in drinking water pose significant threats to human health
and the environment. For example, lead (Pb) is a very commonly used metal with a relatively high
atomic mass, atomic number, and density of 11.34 g/cm3. Pb is widely used in battery production, paints,
and fertilizers. However, exposure to high Pb levels can cause major problems in the biosynthesis of
hemoglobin (Hb), which is important for oxygen transport in humans and other vertebrates. In addition,
Pb can cause serious damage to the liver, kidneys, and nervous system. Elimination of highly toxic
heavy metal ions, such as Pb, mercury (Hg), chromium (Cr), copper (Cu), cobalt (Co), and zinc (Zn),
from water is necessary and recently has been the subject of extensive research. Polluted water can
cause serious environmental problems and can cause harm to both humans and other animal life [1–4].

A number of techniques are used for treatment of wastewater discharge. Some of the primary
methods include precipitation, flocculation, flotation, and chelation reactions. Other methods include
ion-exchange columns, solvent extraction, reverse osmosis, and electrolytic plating on an anode.
Nonetheless, these methods suffer from being costly and inappropriate for removing a lot of
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contaminants; for instance, large amounts of chemicals are needed for lime precipitation, and
its electrolytic recovery suffers from corrosion [5–13]. Recently, low-cost adsorbents derived from
functionalized inorganic–organic hybrid materials have been extensively used as adsorbents for
removal of heavy metal from wastewater because of their notable properties, such as strong binding
affinities and high adsorption capacities towards heavy metal ions; in addition, they have large surface
areas and good chemical, thermal, and mechanical stabilities [14–24].

Among the different types of adsorbents is mesoporous silica material, which is widely used and
a well-known adsorbent for removal of toxic heavy metals. This material consists of a porous structure,
and there are two types: (1) hexagonal (MCM-41), which is a silica-based mesoporous material with
size between 50 and 120 nm, with different morphologies and hollow and core-shell spheres and (2)
three-dimensional cube (MCM-48), which has four different structures (worm-like, helical, radial, and
lamellar). MCM-41 has been extensively used in different applications, such as catalysis, adsorption,
and separation processes, and as drug carriers [25]. Recently, modifications of MCM-41 with organic
compounds in order to enhance the properties of MCM-41 and to improve its adsorption capacities
towards toxic heavy metals has attracted more interest [26–29]. For example, Liu and co-workers [30]
prepared novel zwitterion hybrid polymer adsorbents for adsorption of Pb(II) and Cu(II) ions from
aqueous solution. Pavan et al. [31] prepared a stable mesoporous aniline/silica sorbent material for
adsorption of Co, Zn, and cadmium chlorides (CoCl2, ZnCl2, and CdCl2, respectively) from aqueous
and ethanol solutions.

On the other hand, the stable azomethine group (-C=N-R, in which R is either an alkyl or aryl),
also known as an imine or Schiff base, has been shown to play an important role in stabilizing metal
complexes because it can act as a good binding site for many transition metals and therefore can form
stable coordination complexes. Recent studies have demonstrated that mesoporous silica materials
(MCM-41) can be immobilized with organic groups such as thiols, anilines, and Schiff bases and then
used successfully for removal of toxic heavy metals from contaminated water. For example, Radi et
al. [32] anchored a Schiff-base on silica gel for adsorption of Cd(II), Cu(II), and Zn(II) from aqueous
solutions. The author concluded that the adsorbent can be regenerated and used several times without
loss of its activity. However, the disadvantage of their adsorbent was the maximum sorption of Cu(II),
Zn(II), and Cd(II) occurred at a pH of >8. Therefore, at this pH, hydrolysis of these metal ions may
occur, and this hydrolysis makes it difficult to distinguish between hydrolyzed and adsorbed metals.

The goal of this present study was to prepare new modified mesoporous silica materials as
adsorbents with large surface areas, regular pores, and high adsorption capacities for removal of toxic
heavy metal ions from contaminated water. For this purpose, we have fabricated two hybrid materials,
namely, Schiff base-modified and propyl-thiol-modified silicas (adsorbents 1 and 2, respectively)
by a direct co-condensation method using (3-mercaptopropyl) trimethoxysilane as the silica source.
The removal of heavy metal ions such as Pb(II) from aqueous solutions by adsorbents 1 and 2 was
examined by considering the effect of different factors, such as pH and contact time, between the
absorbent and surrounding solution.

2. Materials and Methods (Experimental Section)

2.1. Materials

2-amino-4,5-dimethoxybenzoic acid, 4-hydroxybenzaldehyde, (3-mercaptopropyl) trimethoxysilane,
and the 1000 mg/L standard solution with Pb(II) were purchased from Sigma Aldrich and used without
modifications. HCl 0.5 M and NaOH 0.5 M were used to adjust the required pH. All reagents and solvents
(analytical grade) were used without any further purification. All solutions were prepared with fresh
deionized water obtained from a Milli-Q water system.



Processes 2020, 8, 246 3 of 22

2.2. Instrumentation

The residual Pb (II) concentration was determined by inductively coupled plasma mass
spectrometry (ICP-MS; Agilent 7500). A digital pH meter was used to determine the pH of water
samples. Fourier-transform infrared (FTIR) spectra were obtained with a Perkin Elmer System 2000.
Scanning electron microscopy (SEM) images were obtained on an FEI-Quanta 200. The 1H and 13C
nuclear magnetic resonance (NMR) spectra of the Schiff base were obtained with a CP MAX CXP 300
MHz. A specific area of modified silica was determined by using the Brunauer–Emmett–Teller (BET)
equation. Nitrogen adsorption–desorption was obtained by means of a Thermoquest Sorpsomatic
1990 analyzer after the material had been purged in a stream of dry nitrogen. Thermal gravimetric
analysis (TGA) was conducted on a SDT Q 600 analyzer. Powder X-ray diffraction (XRD) patterns for
determining phase purity and structure of the end product were performed on an XRD P-6000-Shimadzu
X-ray diffractometer (40 kV/20 mA) using a conventional θ–2θ reflection geometry and Cu K α radiation
(λ = 1.5406 A◦).

2.3. Preparation of the Schiff Base 2-(4-Hydroxybenzylideneamino)-4,5-Dimethoxybenzoic Acid

2-amino-4,5-dimethoxybenzoic acid (1 mmol) and 4-hydroxybenzaldehyde (1 mmol) were mixed
and heated to reflux for 4 h in ethanol (40 mL). The orange precipitate of the Schiff base was filtered,
washed with cooled ethanol, and dried. The yield was 80% (Scheme 1). Analytical conditions were set
for several different methods: (1) FTIR (KBr, cm−1): 1521 (νC=N Schiff base), 1601 (νC=O), 1452–1354
(νC=C), 3442 phenolic hydroxide ν (OH); (2) 1HNMR (DMSO, ppm, 400 MHz): 3.62 (s 3H), 3.72 (s, 3H),
6.32 (s H), 6.91–0.6.93 (d, 2H), 712 (s, H), 7.75–7.77 (d, 2H) and 9.78 (s, H); and (3) 13C NMR (dimethyl
sulphoxide, DMSO, ppm, 400 MHz): 55.64, 55.38, 99.49, 101.05, 113.59, 116.31(2C), 128.84, 132.61(2C),
139.55, 148.71, 154.94, 163.80, 169.62, and 191.50.
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Scheme 1. Schiff base synthesis.

2.4. Preparation of Schiff Base-Thiol Silica (Adsorbent 1)

The Schiff base 2-(4-hydroxybenzylideneamino)-4,5-dimethoxybenzoic acid) (3) (first reaction)
was added to a solution of deionized water/EtOH (25.0 mL, 50% v/v). The resulting suspension was
stirred for 30 min. To this suspension, 3-(triethoxysilyl) propane-1-thiol (two equivalents) in deionized
water/EtOH (25.0 mL, 50% v/v) was added. A few drops of base were added as catalyst. The mixture
was stirred for 72 h at 60◦C. The resulting yellowish solid (adsorbent 1) was filtered and washed several
times with distilled water and ethanol. The solid was then dried under vacuum overnight at 105 ◦C
before characterization (Scheme 2).

The propyl-thiol functionalized silica material (adsorbent 2) was prepared by the sol-gel method
(direct synthesis) after stirring (3-mercaptopropyl) trimethoxysilane in an ethanol/water mixture (50%
v/v) using base as catalyst (Scheme 3). The mixture was stirred for 72 h at 60 ◦C. The resulting white
solid was filtered and washed several times with distilled water and ethanol. The solid was then dried
under vacuum overnight at 105 ◦C (Scheme 3).
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2.5. Sorption Experiment

2.5.1. pH Optimization

The effects of pH on the adsorption of Pb(II) by adsorbents 1 and 2 was investigated at room
temperature. Adsorption checks were carried out by adding 10 mg of adsorbent 1 or 2 to each flask
in a series of 100 mL Erlenmeyer flasks. To each flask, 50 mL of Pb(II) solution (25.52 mg/L) was
added. Hydrochloride acid (HCl; 0.5 M) and sodium hydroxide (NaOH; 0.5 M) were used to adjust the
initial pH of the solutions between 2 and 7. A pH meter was used to measure the pH of the solutions.
Each suspension was stirred at room temperature for 2 h at 25 ◦C over various pH ranges (2.0, 4.0, 6.0,
and 7.0). The solution was then filtered, and the amount of Pb(II) ions in the filtrate was analyzed for
residual Pb(II) ions using inductively coupled plasma mass spectrometry (ICP-MS) in triplicate.

2.5.2. Effect of Contact Time for Pb(II)

The 1000 mg/L standard solution of lead Pb(II) ions was diluted with deionized water to obtain
50 mL of 40 mg/L. Adsorption checks were carried out by adding 20 mg of each adsorbents 1 and 2 to
three Erlenmeyer flasks (100 mL). To each flask, 50 mL of Pb(II) solution (of 40 mgL−1) was added.
The pH of solutions was adjusted to the optimum values (6.5 ± 0.2). The mixture was stirred constantly
at 300 rpm in order to allow contact at different contact times. Five milliliter portions from each solution
were filtered at measured time intervals (0 to 340 min), and the residual Pb(II) ion concentrations were
measured using ICP-MS in triplicate. Results expressed as ppm for adsorbents 1 and 2, respectively.
The sorption capacities at equilibrium (mg g−1) and the percentage adsorption (% ads) of adsorbents 1
and 2 were calculated using the following Equations (1) or (2) [4]:

qe = [C0 − Ce]/m × V (1)

% ads = [C0 − Ce]/C0 × 100 (2)

where qe is the equilibrium uptake capacity (mg g−1), C0 is the initial concentration of Pb(II) (mg L−1),
Ce is the equilibrium concentration of Pb(II) expressed in mg L−1, V is the volume of aqueous solutions
(L), and m is the weight of the adsorbent 1 or 2 (g).

3. Results and Discussion

3.1. Synthesis of Adsorbents 1 and 2

The aim of this work was to improve the sorption efficiency of silica for removal of toxic heavy
metals from polluted water. For this purpose, two mesoporous silica materials (adsorbents) were
prepared. Adsorbent 1 was silica functionalized with Schiff base-propyl-thiol and adsorbent 2 was silica
functionalized with propyl-thiol. The Schiff base was synthesized from 2-amino-4,5-dimethoxybenzoic
acid and 4-hydroxybenzaldehyde via a condensation reaction in ethanol using acetic acid as a catalyst
(Scheme 1). The Schiff base purity was confirmed by FTIR (Figure 1), 1H and 13C NMR spectroscopy
(See Supporting Information; Supplementary Materials, Figures S1 and S2). The synthetic route
of adsorbent 1 is shown in Scheme 2, the organic precursor 3-(triethoxysilyl) propane-1-thiol was
added to a suspension containing Schiff base 2-(4-hydroxybenzylideneamino)-4,5-dimethoxybenzoic
acid), ethanol, water and ammonia as a catalyst to obtain Schiff base-thiol silica gel (adsorbent 1)
through the sol-gel reaction. The silica functionalized with propyl-thiol (adsorbent 2) was prepared by
co-condensation (direct synthesis) of the organic precursor 3-(triethoxysilyl) propane-1-thiol in the
presence of ammonia as a catalyst (Scheme 3).
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Figure 1. FTIR spectra of (a) free Schiff base and (b) adsorbent 1.

The two adsorbents (1 and 2) were isolated as yellowish and white powders, respectively.
The hybrid materials were washed several times with water, ethanol, and dried under vacuum before
characterization. The synthesized adsorbents were completely characterized by FTIR, XRD, SEM,
energy-dispersive X-ray spectroscopy (EDX), TGA, and BET analyses.

3.2. Characterization

3.2.1. The FT-IR Spectra of Free Schiff Base and the Schiff Base Functionalized Silica (Adsorbent 1)

The FT-IR spectra of free Schiff base and the Schiff base functionalized silica (adsorbent 1) are
shown in Figure 1. Figure 1a displays the characteristic peaks of free Schiff base. The broad band at
3442 cm−1 was assigned to the vibration of the phenolic group υ(OH). In addition, the absorptions
at 1601 and 1521 cm−1 in the free Schiff base were due to carbonyl υ(C=O) and azomethine υ(C=N),
respectively. These vibrations appeared at lower frequencies due to strong intramolecular hydrogen
bonds in the solid state of the free Schiff base. The weak peaks observed at 2921 cm−1 belonged to
the stretching modes of the aliphatic -C-H bond. Figure 1b, shows the FT-IR spectrum of adsorbent 1.
The characteristic vibration of the phenolic group υ(OH) at 3442 cm−1 in free Schiff base (Figure 1a)
was decreased indicating successful functionalization of Schiff base on the silica surface. However,
adsorbent 1 displayed broad bands in the region of 3250 to 3600 cm−1, which were assigned to the
silanol stretching modes ν(Si-OH). The intensive absorption peaks observed at 1122–1032 cm−1 are
due to asymmetric ν(Si–O-Si) and the band at 804 cm−1 is due to symmetric stretching vibrations of
Si-O-Si [33]. The weak peaks observed at 2930 cm−1 belong to the stretching modes of the aliphatic
-C-H bond. The appearance of bands around 1665–1402 cm−1 were caused by C=O, C=N, and C=C
vibrations, confirming the anchoring of the organic molecule (Schiff base) onto the silica surface [34].
Moreover, the characterization features of adsorbent 1 compared with the free Schiff base were the
shift of the carbonyl group from 1601 cm−1 (in free Schiff base) to 1665 cm−1 (in adsorbent 1) and the
disappearance of the thiol S-H peak at 2556 cm−1 compared to adsorbent 2.
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3.2.2. The FT-IR Spectra of Adsorbent 1 before and after Loading Pb(II) Ions

The FT-IR spectra of adsorbent 1 before and after loading Pb(II) ions are shown in Figure 2. It can
be seen that the results for the Pb(II) ions loaded sample were almost same as the pre-adsorption
sample, However, some of the bands after lead ions were loaded shifted to a lower value than that of the
pre-adsorption sample, confirming the adsorption of the Pb(II) ions on the silica surface. This suggests
the involvement of the oxygen atom of the carboxylate anion with the azomethine nitrogen and the
Pb(II) ion [35]. The infrared spectrum in Figure 2b revealed the asymmetric stretching vibration of
νas(COO−) of adsorbent 1 at 1665 cm−1 was shifted to a lower wave number (1642 cm−1) after the
Pb(II) ion was loaded, indicating that the lead ion coordination took place via the oxygen atom of the
carboxylate anion [36].
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3.2.3. The FT-IR Spectra of Adsorbent 2 before and after Loading Pb(II) Ions

Figure 3 shows the FT-IR spectroscopy results of adsorbent 2 samples taken before and after Pb(II)
ion adsorption studies. The spectrum of synthesized adsorbent 2 before adsorption studies (Figure 3a)
presents a broad band centered at 3495 cm−1, which was assigned to the OH vibrations in the silica
framework, while the strong absorption peak located at 1128 cm−1 was due to asymmetric ν(Si–O-Si),
and the band at 804 cm-1 was due to symmetric ν(Si–O) stretching vibrations [33]. The weak peaks
observed at 2921 cm−1 belong to the stretching modes of the aliphatic -C-H bond. The characteristic
thiol S-H functional group peak was detected at 2556 cm−1 confirming the anchoring of the organic
molecule (propyl-thiol) onto the silica surface. Compared with the spectrum of adsorbent 2 after Pb(II)
ion loading (Figure 3b), it can be seen that the results for the lead ion loaded sample were similar to that
before adsorption, except the intense broad peak centered at 3431 cm−1 was attributed to coordinative
water in the coordination sphere of Pb(II) Schiff base complex. The characteristic peaks at 2556 cm−1

has diminished, suggesting that adsorbent 2 interacted with soft Lewis acid Pb(II) ions through the
thiol groups.

3.2.4. XRD of Adsorbents 1 and 2

The XRD patterns of Schiff base-functionalized silica (adsorbent 1) and propyl-1-thiol
functionalized silica (adsorbent 2) are illustrated in Figure 4. The XRD patterns of both adsorbents 1
and 2 showed weak broad peaks at a low 2θ angle (7.47◦) and broad peaks at a high 2θ angle (20.21◦)
for adsorbent 1 and at 23.57◦ for adsorbent 2, indicating the amorphous nature of the silica in both
adsorbents [37]. Furthermore, the shift of the broad peak at a high 2θ angle (23.57◦) for adsorbent
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2 to 20.21◦ for adsorbent 1 suggests structural perturbations resulting from the incorporation of the
Schiff base within the silica framework [34]. The XRD patterns of adsorbent 1 show sharp peaks at
37.73, 43.79, 64.29, 77.47, 81.81, and 98.37 of 2θ. These sharp peaks were due to the ligand (Schiff base)
immobilized on the surface of silica [38].
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3.2.5. SEM of Adsorbents 1

The SEM images of adsorbent 1 are shown in Figure 5. As revealed in Figure 6, adsorbent 1
showed uniform distribution of spherical particles with different sizes. The presence of the organic
components (Schiff base and propyl thiol groups) on the overall surface caused the surface of adsorbent
1 to be rough as a result of the microporous structure. Furthermore, the EDX pattern of adsorbent 1 is
shown in Figure 6. EDX data in Table 1 confirm the formation of adsorbent 1, as shown by the Si, S, N,
C, and O peaks, thus confirming the presence of organic components (Schiff base and propyl thiol
groups) on the silica surface.
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Table 1. (EDX) data of adsorbent 1 before adsorption.

Element Weight % Atom %

C 20.99 34.36
N 1.19 1.66
O 22.46 27.59
Si 28.09 19.66
S 27.28 16.73

Total 100.00 100.00

Figure 7 presents an SEM micrograph of Pb(II) ions loaded onto adsorbent 1. SEM analysis
revealed that adsorbent 1 displayed agglomerated spherical particles with different sizes and granular
morphologies. The accompanying EDX spectrum of the silica-functionalized Schiff base shown
in Figure 8 confirms the presence of Pb(II) ions on the surface of adsorbent 1. The EDX data in
Table 2 confirmed that adsorbent 1 was very effective in removing Pb(II) ions from aqueous solutions.
The EDX results were in good agreement with the results obtained by inductively coupled plasma
mass spectrometry (ICP-MS).

Processes 2020, 8, 246 11 of 25 

 

Table 1. (EDX) data of adsorbent 1 before adsorption. 

Element Weight % Atom % 

C 20.99 34.36 

N 1.19 1.66 

O 22.46 27.59 

Si 28.09 19.66 

S 27.28 16.73 

Total 100.00 100.00 

Figure 7 presents an SEM micrograph of Pb(II) ions loaded onto adsorbent 1. SEM analysis 

revealed that adsorbent 1 displayed agglomerated spherical particles with different sizes and 

granular morphologies. The accompanying EDX spectrum of the silica-functionalized Schiff base 

shown in Figure 8 confirms the presence of Pb(II) ions on the surface of adsorbent 1. The EDX data 

in Table 2 confirmed that adsorbent 1 was very effective in removing Pb(II) ions from aqueous 

solutions. The EDX results were in good agreement with the results obtained by inductively coupled 

plasma mass spectrometry (ICP-MS). 

 

Figure 7. SEM images of adsorbent 1 after adsorption. Figure 7. SEM images of adsorbent 1 after adsorption.

Table 2. (EDX) data of adsorbent 1 after adsorption.

Element Weight % Atom %
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As 0.00 0.00
Pb 0.66 0.06

Total 100.00 100.00
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3.2.6. Field Emission Scanning Microscope (FESEM) of Adsorbent 2

Figure 9 shows the field emission scanning microscope (FESEM) image of adsorbent 2. As shown in
Figure 10, the hybrid is spherical with a rough surface. The SEM image showed a homogeneous material
with pores covering the entire structure. The pore size varied between 2 and 8 µm. The presence
of the overall surface of the propyl thiol groups caused the surface of adsorbent 2 to be rough with
a microporous structure. Moreover, the EDX pattern of adsorbent 2 (Figure 10) confirms the purity
of adsorbent 2 and also confirms the presence of propyl thiol groups on the silica surface. The EDX
spectrum also presents a minor peak of Au and Cl that resulted from the thin film of gold deposited on
the insulating sample in order to make it conductive and, hence, easy to visualize using SEM.
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Figure 10. EDX images of adsorbent 2 (inset is the EDX data of adsorbent 1 before adsorption).

Figure 11 presents an SEM micrograph of Pb(II) ions loaded onto adsorbent 2. SEM analysis
revealed that adsorbent 2 displayed spherical particles with different sizes and rough morphology.
The accompanying EDX spectrum of the silica-functionalized Schiff base, shown in Figure 12, confirms
the presence of Pb(II) ions on the surface of adsorbent 2 (see Table 3). However, the EDX spectrum
confirmed that adsorbent 2 was also effective in removing Pb(II) ions from aqueous solutions. EDX studies
have shown that both adsorbents (1 and 2) have strong affinities to divalent metal cations (Pb(II)).
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Figure 12. EDX spectrum of adsorbent 2 after adsorption.

Table 3. EDX data of adsorbent 2 after adsorption.

Element Weight % Atom %

C 30.19 46.20
O 24.74 28.42
Si 21.87 14.32
S 18.54 10.63

As 0.10 0.02
Pb 4.55 0.40

Total 100.00 100.00

3.2.7. TGA of Adsorbent 1 and 2

The TGA thermal details of adsorbents 1 and 2 are presented in Figure 13. The thermogram
of adsorbent 1 (Figure 13a) shows that there are essentially two regions of weight loss; in the first
region, a slight weight lost in the range of 45 to 285 ◦C due to the loss of physiosorbed solvents used in
the preparation (2.85%) can be seen. The second region appears in the range of 285 to 475 ◦C (with
lost weight equal to 28.1% and with DTGmax at 346 ◦C) due to decomposition of the Schiff base and
propyl-thiol groups immobilized on the silica surface [39]. The remaining weight loss in the range of
475 to 885 ◦C (with total weight loss equal to 26.23%) was due to the condensation of the hydroxyl
group silanol (Si-O-OH) to yield siloxane bonds (Si-O-Si) [38]. At 885 ◦C, adsorbent 1 around 57.18%
was degraded, leaving 42.82% behind as residue.

3.2.8. Surface Properties of Adsorbents 1 and 2

Using nitrogen adsorption isotherms, the surface area, pore volume, and pore size of adsorbents
1 and 2 were measured. It is noted that adsorbent 1 exhibited a BET surface area of 22.0452 m2/g,
the pore volume (BJH) of adsorbent 1 was 0.120986 cm3g−1 with pore sizes of 15.7644 nm (BET)
and 22.7447 nm (BJH). On the other hand, adsorbent 2, which was prepared by direct hydrolysis
and condensation of 3-(triethoxysilyl) propane-1-thiol, exhibited a BET surface area of 9.3475 m2g−1.
The pore volume (BJH) of adsorbent 2 was 0.049107 cm3g−1 with pore sizes of 9.68719 nm (BET) and
25.0027 nm (BJH). The reduced surface area and pore volume of adsorbent 2 were due to the smaller
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size of the propyl-thiol group. The noticeable increase in the BET surface area of adsorbent 1 was
attributed to the Schiff base and propyl-thiol groups anchored on the silica framework. This indicates
that adding more organic moieties to silica framework results in a large surface area, which increases
the possibility of extracting metal ions [40].
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3.3. Adsorption Study

3.3.1. Effects of pH on the Adsorption of Pb(II) by Adsorbent 1

The effects of the pH value on the adsorption of Pb(II) ions by adsorbents 1 and 2 are shown in
Figure 14. The results show an increase in percent adsorption (% ads) for sorption of Pb(II) ions by both
adsorbents with increasing pH reaching a maximum of 91.30% and 73.54% at pH 7.0 for adsorbents 1
and 2 respectively.
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Figure 14. Effects of pH on the adsorption of Pb(II) (mean ± RSD) by adsorbent 1 and adsorbent 2.
(Experimental conditions: Co = 25.52 mg/L, dosage = 0.01 g per 50 mL, shaking time 2 h, mixing rate =

300 rpm; T = 25 ◦C). Each pH measurement was done in triplicate.
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From the plot in Figure 14, it can be observed that the Pb(II) ion uptake sharply increased from
pH 2.0 to 7.0. At low pH values, the interaction of Pb(II) with adsorbents 1 and 2 decreases because
the surfaces of the adsorbents were fully covered by hydronium (H3O+) ions, resulting in minimum
adsorption. As pH increased, the interaction of Pb(II) with adsorbents 1 and 2 increased, and the
adsorption also increased. Hence, the optimum pH for the maximum sorption of Pb(II) was pH = 7.0.
Above a pH of 7.0, we observed precipitation of Pb(II) ions in the form of Pb(OH)2 in a control sample
(without adsorbents).

3.3.2. Effect of Contact Time and Kinetics for the Adsorption of Pb(II) by Adsorbents 1 and 2

The kinetics of Pb(II) removal were determined in order to understand the adsorption behavior of
adsorbents 1 and 2. Figure 15 illustrates the Pb(II) ions adsorption on adsorbents 1 and 2 as a function
of contact time (0–340 min). As can be seen from Figure 15, the rate of adsorption of Pb(II) ions was
fairly rapid in the initial stages (in the first 50 min). After 60 min, the rate of adsorption slowed down
as time progressed and reached a constant value around 60 min (equilibrium time). The initial rapid
adsorption rate before 50 min could be explained by the fact that at the beginning of the adsorption
process, the sites for adsorption were available and open for Pb(II) ions leading to a higher adsorption
rate. As time progressed to greater than 60 min, the adsorption of Pb(II) ions slowed down because all
binding sites were occupied by Pb(II) ions.
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T = 25 ◦C).

3.3.3. Adsorption Kinetics for the Adsorption of Pb(II) by Adsorbents 1 and 2

The dynamics of the adsorption by the adsorbents 1 and 2 were evaluated using the Lagergren’s
pseudo-first-order and the McKay and Ho’s pseudo-second-order models as defined in Equations (3)
and (4), respectively [41,42]:

Log (qe − qt) = −K1 t/2.303 + Log (qe) (3)
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t/qt = 1/K2qe2 + t/qe (4)

where qe is the adsorption capacity (mg g−1) at equilibrium, qt is the adsorption capacity (mg g−1) at
any time t, k1 is the rate constants of first-order sorption (min−1), and k2 (g mg−1 min−1) is the rate
constant for the pseudo-second-order adsorption.

Figure 16 shows the linear plot of t/qt versus t for the Lagergren’s pseudo-second-order model
for the adsorption of Pb(II) for adsorbents 1 and 2, respectively. The equilibrium rate constants of
the pseudo-second-order model (k2) were 1.23 × 10−4 and 1.03 × 10−3 g mg−1 min−1 for Pb(II) for
adsorbents 1 and 2, respectively (Table 4). The pseudo-second-order model (Equation (4)) fit the
experimental data very well with a correlation coefficient (R2) of 0.99, which was close to unity as
shown in Table 4 and Figure 16. On the other hand, our calculations demonstrated that the resulting
experimental data were not fitted to the pseudo-first-order model. Therefore, the adsorption kinetics of
Pb(II) ions on the three adsorbents showed that the Pb(II) adsorption followed a second-order reaction.
Moreover, the experimental values of qe (Exp.) for both adsorbents were very close to the calculated
values qe (Cal.) measured from the pseudo-second-order equation.
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Figure 16. Lagergren pseudo-second-order kinetics adsorption for Pb(II) onto adsorbents 1 and 2
(Experimental conditions: pH 6.5 ± 0.2, initial metal concentration = 20 mg/L, dosage = 50 mg/50 mL,
mixing rate = 50 rpm, T = 25 ◦C).

Table 4. Coefficients of sorption kinetics (Lagergren’s pseudo-second-order model) for Pb (II) removal
by adsorbents 1 and 2 and their correlation coefficient (R2). (Experimental conditions: pH 6.5 ± 0.2,
initial metal concentration = 20 mg/L, 50 mg/50 mL, mixing rate = 50 rpm, T = 25 ◦C).

Parameters Adsorbent 1 Adsorbent 2

Calculated equilb. uptake qe (mg/g) 90.09 71.43

K2 (g mg−1 min−1) 1.23 × 10−4 1.03 × 10−3

R2 0.9982 0.9969

Furthermore, the effect of temperature on the adsorption behavior for Pb(II) ions was also
investigated. The effect of temperature on Pb(II) ions adsorption by adsorbents 1 and 2 is shown in
Figure 17. The removal of Pb(II) ions by both adsorbents increased slightly with increasing solution
temperature from 25 to 50 ◦C. This result suggested that the adsorption mechanism associated with Pb(II)
ions on both adsorbents involved a temperature-dependent process to some extent. The adsorbent’s
weak sensitivity to temperature is essential to practical applications, thereby enabling both synthesized
adsorbents to be potentially applied to the practical treatment of Pb(II) ions at room temperature.
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Figure 17. Effect of the temperature on Pb (II) ion adsorbtion (mean ± RSD) on adsorbent 1 and
adsorbent 2. (pH 6.5 ± 0.2, initial metal concentration = 20 mg/L Pb(II), dosage = 50 mg/50 mL,
at different temperatures for 60 min). Each measurement has been done in triplicate.

3.3.4. Adsorption Isotherms

The adsorption isotherms were used to determine the affinity of adsorbents 1 and 2 to Pb(II) ions.
The amount of Pb(II) ion per gram of adsorbent (qe) was defined as shown in Equation (1) above. The sorption
of Pb(II) into adsorbents 1 and 2 was described by Langmuir [43,44] and Freundlich [45] models:

• The Langmuir Isotherm Model [43]

qe = qm KL Ce/1 + KL Ce (5)

where qe is the is the lead concentration adsorbed per specific amount of adsorbent (mg g−1), Ce is
the equilibrium concentration of Pb(II) expressed in mg L−1, and qm is the maximum amount of
lead ions required to form a monolayer (mg g−1). The Langmuir equation can be rearranged to
a linear form (Equation (6)) for the convenience of plotting and determination of the Langmuir
constant (KL, the first coefficient related to the energy of adsorption) as below. The values of qm

and KL can be determined from the linear plot of 1/Ce versus 1/qe:

1/qe = 1/qm + 1/KL qm × 1/Ce (6)

The dimensionless equilibrium parameter or separation factor (RL) could be expressed as in the
following equation [44]:

RL = 1/1 + KLC0 (7)

where C0 is the initial concentration of the lead ion, and KL is the Langmuir constant. The value of
RL is between 0 and 1 for favourable adsorption, while RL > 1 represents unfavorable adsorption,
and RL = 1 represents linear adsorption. The adsorption process is irreversible if RL = 0.

• The Freundlich Isotherm Model [45]
qe = KF Ce

1/n (8)

Log qe = LogKF + (1/n) Log Ce (9)

where, qe is the equilibrium uptake capacity (mg g−1) and Ce is the equilibrium concentration of
Pb(II)) expressed in mg L−1. kF is the first coefficient related to the energy of adsorption, and n is
a coefficient. Both constants kF and n can be calculated from the plot of log qe vs. log Ce.



Processes 2020, 8, 246 18 of 22

* The coefficients were calculated from linearized forms of sorption isotherms models Equations (6)
and (9).

3.3.5. Linear Fitting of the Isotherm Models

Linear fitting of the Langmuir and Freundlich isotherm models is shown in Figures 18 and 19
respectively; the corresponding parameters of sorption isotherm models calculated are illustrated in
Table 5. From the results shown in Table 5, the adsorption process of Pb(II) on both adsorbents can be
described by the linear form of the Langmuir Isotherm Model, which produced higher R2 values of
0.959 and 0.983 for Pb(II) onto adsorbents 1 and 2, respectively, compared to the Freundlich isotherm
model, which produced low R2 values of 0.902 and 0.871 for Pb(II) onto adsorbents 1 and 2 respectively.
Therefore, the adsorption isotherms for both adsorbents fitted well with the Langmuir model more
than with Freundlich model; hence, the sorption process of Pb(II) ions involved in both adsorbents
occurred by chemical complexation (chemisorption). The separation factor RL (Equation (7)) was found
to be between 0 and 1 (Table 5) indicating a favorable adsorption process [44].
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Figure 18. The Langmuir Isotherm Model adsorption for Pb(II) onto (A) adsorbent 1 and (B) adsorbent
2. (Experimental conditions: dosage = 0.015 g (adsorbent 1) and 0.1 (adsorbent 2) per 50 mL; T = 25 ±
1 ◦C; contact time = 60 min.; pH = 6.5 ± for Pb(II).Processes 2020, 8, 246 21 of 25 
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Figure 19. The Freundlich Isotherm Model adsorption for Pb(II) onto (C) adsorbent 1 and (D) adsorbent
2. (Experimental conditions: dosage = 0.015 g (adsorbent 1) and 0.1 (adsorbent 2) per 50 mL; T = 25 ±
1 ◦C; contact time = 60 min.; pH = 6.5 ± for Pb(II).
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Table 5. Coefficients of two different sorption isotherm models for Pb(II) removal by adsorbents 1 and
2 and their correlation coefficient (R2). (Experimental conditions: dosage = 0.015 g (adsorbent 1) and
0.1 (adsorbent 2) per 50 mL; T = 25 ± 1 ◦C; contact time = 60 min.; pH = 6.5 ± 0.2 for Pb(II).

Adsorbent
Langmuir Isotherm

Freundlich Isotherm

qm (mg/g) K (L/mg) RL R2 KF 1/n R2

1 39.37 0.0333 0.601 0.956 2.032 1.54 0.902
2 1.134 0.079 0.717 0.983 0.051 0.470 0.871

a. The Langmuir Isotherm Model
b. The Freundlich Isotherm Model

3.3.6. Complexation of Pb(II) by Adsorbent 1

Adsorbent 1 showed adsorption of Pb(II) ions due to the presence of Schiff base functionality
(azomethine (C=N), carboxylate oxygen, and active thiol and silanol groups on the surface), whereas
adsorbent 2 adsorbs Pb(II) ions due to the presence of active thiol and silanol groups only on the
surface. Adsorbent 1 showed better adsorption of Pb(II) ions, which may be attributed to the presence
of potentially good coordinating Schiff base sites and active carboxylate oxygen, in addition to thiol
and hydroxyl groups. The shift of asymmetric stretching vibration of νas(COO−) of adsorbent 1 at 1665
cm−1 to a lower wave number 1642 cm−1 and the disappearance of the thiol S-H peak at 2556 cm−1

after Pb(II) ion was loaded confirmed the chemical complexation of Pb(II) by adsorbent 1 (Figure 2b).
The FTIR results (Figure 2b) support the structures proposed for Pb(II) ion interaction with adsorbent 1
(complex) during the adsorption process [46]. The Pb (II) ions interaction with adsorbent 1 is shown in
Figure 20 below.
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4. Conclusions

In this study, novel silica functionalized with Schiff-base (adsorbent 1) and propyl-thiol (adsorbent
2) were successfully prepared. Direct hydrolysis of 3-(triethoxysilyl) propane-1-thiol gave adsorbent 2,
and mixing 3-(triethoxysilyl) propane-1-thiol with a Schiff base produced a good yield of adsorbent
1. The new materials were well characterized by FTIR, SEM, XRD, nitrogen adsorption–desorption
isotherms, BET surface area, BJH pore sizes, TGA, and 1H and 13C NMR spectra. The newly synthesized
adsorbents 1 and 2 displayed good thermal stability and adsorption capacity from aqueous solutions
towards Pb(II) ions. The higher removal efficiency for Pb(II) by adsorbent 1 could be attributed to
the higher surface area (20.1656 m2/g), which facilitated the interaction of free Pb(II) ions present
in solution with the surface of adsorbent 1. The adsorption isotherms of Pb(II) fitted well with the
Langmuir Isotherm Model, indicating that the adsorption mechanism followed Langmuir monolayer
adsorption, and the adsorption kinetics of Pb(II) followed the pseudo-second-order kinetic models.
In addition, the newly synthesized materials were proven to be cost-effective adsorbents and could be
used for the selective extraction of Pb(II) from contaminated water. Overall, our studies suggested that
adsorbent 1 could be considered as a good candidate for removing Pb(II) from aqueous solutions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/8/2/246/s1,
Figure S1. 1H-nuclear magnetic resonance (NMR) absorption spectrum of the Schiff base. Figure S2. 13C NMR
spectra of the Schiff base. Figure S3. Thermogravimetric (TGA) curves of the Schiff base.
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agreed to the published version of the manuscript.
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