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Abstract: In this paper we have considered a staggered cavity. It is equipped with purely viscous fluid.
The physical design is controlled through mathematical formulation in terms of both the equation
of continuity and equation of momentum along with boundary constraints. To be more specific,
the Navier-Stokes equations for two dimensional Newtonian fluid flow in staggered enclosure is
formulated and solved by well trusted method named finite element method. The novelty is increased
by considering the motion of upper and lower walls of staggered cavity case-wise namely, in first case
we consider that the upper wall of staggered cavity is moving and rest of walls are kept at zero velocity.
In second case we consider that the upper and bottom walls are moving in a parallel way. Lastly,
the upper and bottom walls are considered in an antiparallel direction. In all cases the deep analysis
is performed and results are proposed by means of contour plots. The velocity components are
explained by line graphs as well. The kinetic energy examination is reported for all cases. It is trusted
that the findings reported in present pagination well serve as a helping source for the upcoming
studies towards fluid flow in an enclosure domains being involved in an industrial areas.

Keywords: staggered cavity; Newtonian fluid model; Moving Walls; finite element method

1. Introduction

The field of fluid mechanics deals with the flow of fluids and forces us to understand the underlying
physics. To study the fluids flow one needs mathematical treatment as well as experimentations. Owing
theoretical frame it is well consensus that to study the fluids flow field the simplest mathematical model
is Navier-Stokes equations. The both compressible and incompressible flow fields can be studied by
coupling the Navier-Stokes equation with stress tensors of concerned fluid models. In this direction,
the simpler classical problem of viscous fluid model in two dimensional space was developed by
Crane [1]. The analytical solution was proposed for this problem. Since then many investigations in
similar manner were carried to inspect the flow field properties of both Newtonian and non-Newtonian
fluid models like Devi et al. [2] studied flow due to stretched surface in three dimensional frame.
An exact solution of Navier-Stokes equations subject to stretched surface was proposed by Smith [3].
Pop and Na [4] extended the study by considering time dependent flow field. The mathematical
equations were developed by assuming that the viscous fluid flow is attain due to stretching sheet.
Later, the developed partial differential equations were converted into ordinary differential equations
and power series solution was exercised. The mathematical model for two dimensional stagnation
point flow in the presence of heat transfer aspects was proposed by Chaim [5]. In this attempt it is
assumed that the surface was stretched linearly. The numerical solution via shooting method was
proposed in this paper. The electrically conducting fluid flow along with convective heat transfer
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individualities was studied by Vajravelu and Hadjinicolaou [6]. In this problem they assumed linear
stretching of an isothermal sheet. The rest of physical effects includes heat absorption, heat generation
and natural convection. The flow field is controlled mathematically in terms of partial differential
equations. To narrate flow field characteristic the numerical solution was proposed. Chamkha [7]
mathematically formulated the flow over a non-isothermal stretching sheet manifested with unsteady
hydrodynamic and porous medium. The both heat generation and heat absorption effects were carried
in a magnetized flow field and numerical solution was reported for this attempt. The mathematical
model was constructed for viscoelastic fluid model in the presence of heat transfer aspects by Sarma
and Nageswara [8]. The flow was developed by stretching surface. It is important to note that
the power-law surface heat flux was taken along with heat generation, heat absorption and viscous
dissipation effects. The asymptotic outcomes were enclosed for temperature. The additional effect
of porous medium for the viscoelastic fluid flow along with heat transfer properties was taken by
Subhas and Veena [9]. The heat generation, heat absorption and frictional heating were additional
physical effects in this analysis. The developed flow narrating differential system was solved case-wise
namely wall heat flux and prescribed surface temperature. Vajravelu and Roper [10] investigated flow
field properties of second grade fluid model in the presence of heat transfer characteristics. The flow
was developed via stretching of sheet. The numerical solution was offered for developed fourth
order non-linear equations. Yürüsoy and Pakdemirli [11] found the exact solution for boundary layer
equations against non-Newtonian fluid flow due to stretching surface. The third grade fluid model was
used as non-Newtonian fluid model. The solution was proposed by using Lie group analysis. One can
find the concluding past and recent mathematical study of flow fields subject to various geometric
illustration in references [12–32]. Over the last few decades the interpretation of the dynamics of
lid driven enclosure is topic of great interest for the researchers. In this direction, the numerical
solution is the mainstays. One can assessed the motivation towards study of flow fields in cavities in
References. [33–39]. Owning such motivation the novelty of our problem includes:

• Staggered cavity
• Newtonian fluid model
• Upper wall is moving (Case-I)
• Both upper and lower walls are moving parallel (Case-II)
• Both upper and lower walls are moving antiparallel (Case-III)
• Kinetic energy evaluation
• Hybrid meshing

The geometry of problem is shown in Figure 1. The design of present article is carried in such a
way: the limited literature survey of mathematical analysis on flow filed via Navier-Stokes equations
is reported in Section 1. The mathematical formulation for purely viscous fluid flow towards staggered
cavity is provided in Section 2. The directory for numerical scheme is offered in Section 3. The detail
analysis for obtained results for each case is reported in Section 4. The key assumptions are added as
Section 5.
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2. Mathematical Modeling

The physical illustration can be controlled through mathematical model. The subjects in which the
mathematical model is used are computer science, political science, electrical engineering, chemistry,
physics, biology, sociology, psychology and many more. The structuring mathematical model is
known as mathematical modeling. The continuity equation and Navier-Stokes equations are generally
acceptable differential equations for the field of Newtonian fluid rheology. To investigate flow field in
staggered cavity the mathematics is reviewed as follows:

2.1. Continuity Equation

The general form of continuity equation is as follows:

∂ρ(x̃, ỹ, z̃)
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the Equation (1) can be expressed alternatively as follows:
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When the fluid flow is assumed to be two dimensional, steady and incompressible, than the
Equation (2) reduces to
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to obtain dimensionless form we have used
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and hence the Equation (3) reduce to
∂u
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= 0 (5)

2.2. Momentum Equation

The general vectorial notation of momentum equation can be written as:
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In the absence of body force, for two dimensional, steady and an incompressible fluid flow,
the component form of Equation (6) can be written as:

ũ
∂ũ
∂x̃

+ ṽ
∂ũ
∂ỹ

= −
1
ρ

∂p̃
∂x̃

+ ν

(
∂2ũ
∂x̃2 +

∂2ũ
∂ỹ2

)
(7)

ũ
∂ṽ
∂x̃

+ ṽ
∂ṽ
∂ỹ

= −
1
ρ

∂p̃
∂ỹ

+ ν

(
∂2ṽ
∂x̃2 +

∂2ṽ
∂ỹ2

)
. (8)

To achieve dimensionless system, we have used the following setup:

u =
ũ
U

, v =
ṽ
U

, x =
x̃
L

, y =
ỹ
L

, P =
p̃
ρU2 , (9)

the governing Equations (7) and (8) reduce to

u
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+ v
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+
1
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(
∂2u
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∂2u
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)
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u
∂v
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+ v
∂v
∂y

= −
∂P
∂y

+
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
(11)

where, Re = UL
ν denotes Reynolds number.

2.3. Boundary Conditions

The left and right walls are manifested with no slip condition. The rest of boundary reading for
each case is listing as follows:

Case-I
(12)Upper wall velocity u = 0.5, v = 0.

Velocity of rest of walls u = 0, v = 0.
Case-II

(13)
Upper wall velocity u = 0.5, v = 0.
Lower wall velocity u = 0.5, v = 0.
Velocity of rest of walls u = 0, v = 0.
Case-III

(14)
Upper wall velocity u = 0.5, v = 0.
Lower wall velocity u = −0.5, v = 0.
Velocity of rest of walls u = 0, v = 0.

3. Solution Procedure

It is important to note that one cannot find exact solution of Equations (10) and (11) along with
boundary conditions provided in Equations (12)–(14), therefore, the finite element scheme is utilized
to report the better approximation. A finite element method [39–41] is one of the most powerful
numerical method and commonly used approach to solve the boundary value problems. This method
has the application for the modeling and simulation of different physical phenomena in interconnect
structures. For the finite element method the key six steps are

1. Discretization of the domain.
2. Establish simpler finite element equations.
3. Assemble/Combine element equations.
4. Incorporate the initial conditions or boundary constraints.
5. Solve the developed equations.
6. Post processing (Visualization).
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To yield accuracy we discretize the computational domain with the help of both rectangular and
triangular elements as hybrid meshing.

4. Analysis

The fluid flow narrating differential equations in a staggered enclosure are Equations (10) and (11)
along with the boundary constraints provided in Equations (12)–(14) are solved numerically. For better
novelty, the staggered cavity as a computational domain is discretized in nine different refinement levels.
The lowest refinement level divide the cavity into 332 domain elements and 44 boundary elements.

The geometric illustration is offered in Figure 2. The level two in which the computational domain
consists of 450 domain elements and 56 boundary elements is disclosed in Figure 3. The refinement
level three is consists of 72 boundary elements and 724 domain elements is given in Figure 4. The four
level consists of 108 boundary elements and 1272 domain elements and it is displayed in Figure 5.
The Figure 6 shows that the level five consists of 1884 domain elements and 136 boundary elements.
The six refinement level consists of 2950 domain elements and 172 boundary elements as illustrated
in Figure 7. The level seven consists of 7248 domain elements and 340 boundary elements as shown
in Figure 8. The Figure 9 depicts the level eight which consists of 18,664 domain elements and
652 boundary elements. Lastly, the highest level is the extremely fine which divides the cavity into
24,014 domain elements and 652 boundary elements is shown in Figure 10. The primitive variables
namely, the velocity and pressure are evaluated at level-9 for all cases. The first case includes the
motion of top wall with velocity u = 0.5, and rest of walls are taken zero. The key to the graphs for
this case are as follows: Figure 11 is velocity distribution at Re = 50. The velocity plot at Re = 100,
Re = 400 and Re = 1000 are offered in Figures 12–14 respectively. The pressure distribution at Re = 50,
Re = 100, Re = 400 and Re = 1000 are provided in Figures 15–18 respectively. For better insight the
line graph study is executed to examine the u and v velocity profiles against variation in µ = 0.02
(Re = 25), µ = 0.01 (Re = 50), µ = 0.0025 (Re = 200), and µ = 0.001 (Re = 500). Such output is offered
in Figures 19 and 20. In detail, the velocity distribution in staggered cavity is examine at Re = 50
and the outcome is displayed in Figure 11. It is noticed that the streamlines near the top wall has
maximum visibility and there are two secondary vortices appears in the left and right corners of the
top wall. There is only one primary vortex appear at the center of upper region. Further, for Re = 100
there is a trifling change in the streamlines of the secondary vortices, see Figure 12. For Re = 400,
the secondary vortex in right corner has prominent as compare to the secondary vortex in the left
corner see Figure 13. The velocity distribution is examined at Re = 1000 and the one primary vortex
is observed. The Figure 14 is plotted in this direction. One can note that the increase in Reynolds
number cause prominence of secondary vortices. The corresponding pressure evaluation is recorded
for Re = 50, Re = 100, Re = 400 and Re = 1000. In detail, Figure 15 is pressure distribution at Re = 50.
It is noticed that the pressure seems maximum at corners of top wall. The Figures 16–18 are pressure
plots for Re = 100, Re = 400 and Re = 1000 respectively. It is noticed that the higher values of Reynolds
number cause increase in pressure at top corners of staggered cavity.
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The Figure 19 is u-velocity line graph at different values of µ = 0.02 (Re = 25), µ = 0.01 (Re = 50),
µ = 0.0025 (Re = 200), and µ = 0.001 (Re = 500). The significant variation in the u-velocity is observed.
Similar is the case for the v-velocity line graph see Figure 20. In case-II we assumed that the both top
and bottom walls are moving in parallel with velocity u = 0.5, and left and right walls are taken at
rest. The velocity distribution is evaluated at level-9 for better accuracy. Figure 21 depicts the velocity
distribution at Re = 50. Once can see that the uniform trends are observed in both upper and lower
region of staggered cavity. The total of four secondary vortices in the left and right corners of the top
and bottom wall and two primary vortices are appeared. The velocity distribution is inspected at
Re = 100. The Figure 22 is evident in this direction. One can see that the secondary vortices becomes
more visible. The velocity distribution at Re = 400 and Re = 1000 is examined and offered with the
aid of Figures 23 and 24 respectively. One can see that the increase in Reynolds cause significant
deformation in primary and secondary vortices. The pressure distribution when upper and lower
walls of staggered cavity are moving parallel is examined at various of Reynolds number. The adopted
values of Reynolds number are Re = 50, Re = 100, Re = 400 and Re = 1000. To be more specific,
the Figure 25 offers pressure plot at Re = 50. One can see that the pressure seems maximum at corns
points of cavity. Figures 26–28 are the pressure examination at Re = 100, Re = 400 and Re = 1000
respectively. It is observed that the higher values in Reynolds number results dense pressure at corns
of staggered cavity. The Figure 29 is u-velocity line graph at different values of µ = 0.02 (Re = 25),
µ = 0.01 (Re = 50), µ = 0.0025 (Re = 200), and µ = 0.001 (Re = 500). The significant variation in the
u-velocity is observed while line graph study as v-velocity towards µ = 0.02 (Re = 25), µ = 0.01 (Re = 50),
µ = 0.0025 (Re = 200), and µ = 0.001 (Re = 500) is offered in Figure 30. It is noticed that the v-velocity
reflects inciting values towards higher values of Reynolds number. The case-III defines the antiparallel
motion of the top and bottom wall with same velocity. The finite element simulation is performed by
carrying hybrid meshing as a level-9. The primitive variables namely, the velocity and pressure are
inspected towards higher values of Reynolds number. The adopted values of Reynolds number are
Re = 50, Re = 100, Re = 400 and Re = 1000. In detail, the Figure 31 shows the velocity distribution at
Re = 50 when the upper and lower walls are moving antiparallel. The primary and secondary vortices
are formed in both upper and lower region of staggered cavity. The streamlines intersect at center
region of cavity. The velocity distribution at Re = 100 is observed and offered in terms of graphical
trend see Figure 32. One can see that the additional loop as a vortex is formed at the central region of
staggered cavity.
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The velocity distribution when top and bottom walls are moving antiparallel is observed at
Re = 400 and Re = 1000. The Figures 33 and 34 are plotted in this direction. It can be noticed
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from Figure 33 that the central region vortex shrinks by increasing Reynold number that is Re = 100.
At Re = 1000, the primary vortices becomes dominant and vortex at central region of staggered shrinks
significantly. The pressure plots when both walls namely upper and lower are moving antiparallel
are offered at different values of Reynolds number that is Re = 50, Re = 100, Re = 400 and Re = 1000.
Particularly, Figure 35 is pressure plot at Re = 50. Figure 36 is pressure plot at Re = 100 while the
Figures 37 and 38 are pressure distribution at Re = 400 and Re = 1000 respectively. Collectively, one can
see that the pressure distribution becomes higher in strength against increasing values of Reynolds
number. The line graph study of velocity distribution when walls are moving antiparallel is performed
for both u and v components. In detail, the Figure 39 is u-velocity line graph at µ = 0.02 (Re = 25),
µ = 0.01 (Re = 50), µ = 0.0025 (Re = 200), and µ = 0.001 (Re = 500) while Figure 40 offers the v-velocity
line graph study towards µ = 0.02 (Re = 25), µ = 0.01 (Re = 50), µ = 0.0025 (Re = 200), and µ = 0.001
(Re = 500). The trifling sinusoid variation is observed for v-velocity. The kinetic energy is a very
important benchmark quantity for the driven cavity flow problems which shows the momentum scale
for the entire flow. It can be defined as

E =
1
2

∫
Ω

‖u‖2dΩ (15)
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To show the grid convergence, we tabulate the kinetic energy at different refinement levels at a
fixed Re = 1000 shown in the Table 1. We can see that grid convergence is achieved for the kinetic
energy at level 9. The variation in kinetic energy is recorded for case-I, case-II and case-III towards
Reynolds number (by varying viscosity µ and fixing L = 1, U = 0.5). Tables 2–4 are plotted in this
regard. In detail, Table 2 provides the value of kinetic energy when only the upper wall of staggered
cavity is moving. The kinetic energy values when both the upper and lower walls are moving parallel
are reported in Table 3. The values of kinetic energy in Table 4 are recorded when both upper and
lower walls of staggered cavity are moving antiparallel.

Table 1. Grid convergence for kinetic energy.

Levels Kinetic Energy Degrees of Freedom Elements

1 0.002863911552553985 687 244
2 0.0030835306134654886 918 338
3 0.0033370689891919383 1401 580
4 0.004028228946886208 2385 1056
5 0.004383161489717805 3429 1612
6 0.005003038830862626 5190 2606
7 0.005995053179359121 12,393 6568
8 0.006462725137468749 30,921 17,360
9 0.006480098617604942 39,024 22,762

Table 2. Kinetic energy values when only upper wall is moving.

µ Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9

0.0050 0.00252 0.00264 0.00269 0.00277 0.0028 0.00285 0.00294 0.00299 0.00299
0.0025 0.00222 0.00239 0.00248 0.00265 0.00271 0.0028 0.00297 0.00306 0.00306
0.0016 0.00198 0.00217 0.00229 0.00254 0.00264 0.00279 0.00306 0.00319 0.00319
0.0012 0.00182 0.00202 0.00216 0.00246 0.00258 0.00277 0.00311 0.00328 0.00329
0.0010 0.00172 0.00192 0.00207 0.00239 0.00254 0.00275 0.00314 0.00334 0.00335
0.0008 0.00161 0.0018 0.00195 0.0023 0.00246 0.00271 0.00316 0.0034 0.00341
0.0007 0.00155 0.00173 0.00188 0.00223 0.0024 0.00268 0.00317 0.00343 0.00344
0.0006 0.00149 0.00166 0.00179 0.00215 0.00233 0.00263 0.00317 0.00346 0.00347

0.00055 0.00146 0.00162 0.00174 0.00209 0.00229 0.0026 0.00317 0.00347 0.00349
0.0005 0.00143 0.00158 0.00169 0.00204 0.00223 0.00256 0.00317 0.00349 0.00351

0.00041 0.00137 0.00149 0.00158 0.00191 0.00212 0.00247 0.00315 0.00351 0.00353
0.00033 0.00131 0.00142 0.00148 0.00177 0.00198 0.00235 0.0031 0.00352 0.00355
0.00025 0.00125 0.00133 0.00136 0.0016 0.00179 0.00217 0.00302 0.00351 0.00355
0.0002 0.00121 0.00126 0.00127 0.00147 0.00163 0.00202 0.00292 0.00348 0.00353

0.00016 0.00117 0.00119 0.00119 0.00136 0.00149 0.00187 0.0028 0.00342 0.00349
0.00014 0.00114 0.00113 0.00114 0.00129 0.00141 0.00178 0.00271 0.00338 0.00346

0.000125 0.00113 0.0011 0.0011 0.00124 0.00135 0.00171 0.00263 0.00334 0.00342
0.000111 0.00111 0.00108 0.00106 0.00118 0.00129 0.00163 0.00254 0.00329 0.00339

0.0001 0.0011 0.00108 0.00103 0.00113 0.00123 0.00156 0.00247 0.00324 0.00335



Processes 2020, 8, 226 21 of 24

Table 3. Kinetic energy values when upper and lower walls are moving parallel.

µ Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9

0.0050 0.00518 0.00526 0.00539 0.00556 0.00565 0.00574 0.00591 0.006 0.00601
0.0025 0.00464 0.00476 0.00498 0.00531 0.00547 0.00565 0.00598 0.00615 0.00616
0.0016 0.00418 0.00432 0.00461 0.0051 0.00536 0.00563 0.00616 0.00642 0.00643
0.0012 0.00387 0.004 0.00434 0.00494 0.00525 0.00561 0.00628 0.00661 0.00663
0.0010 0.00368 0.0038 0.00315 0.00481 0.00516 0.00557 0.00634 0.00673 0.00675
0.0008 0.00347 0.00356 0.00391 0.00462 0.00502 0.00549 0.00639 0.00685 0.00688
0.0007 0.00335 0.00342 0.00377 0.00449 0.00491 0.00543 0.00641 0.00692 0.00695
0.0006 0.00323 0.00326 0.00359 0.00432 0.00477 0.00534 0.00642 0.00699 0.00702

0.00055 0.00317 0.00318 0.0035 0.00422 0.00468 0.00528 0.00641 0.00702 0.00705
0.0005 0.00311 0.00309 0.00339 0.00411 0.00458 0.0052 0.00641 0.00705 0.00709

0.00041 0.00299 0.00292 0.00317 0.00386 0.00435 0.00503 0.00637 0.00710 0.00714
0.00033 0.00288 0.00276 0.00296 0.00358 0.00407 0.0048 0.00629 0.00712 0.00718
0.00025 0.00276 0.00257 0.00271 0.00323 0.0037 0.00447 0.00613 0.00710 0.00719
0.0002 0.00267 0.00244 0.00253 0.00297 0.0034 0.00416 0.00595 0.00704 0.00716

0.00016 0.00257 0.00232 0.00236 0.00273 0.00312 0.00385 0.00571 0.00694 0.00709
0.00014 0.00253 0.00224 0.00227 0.00259 0.00296 0.00367 0.00554 0.00686 0.00703
0.000125 0.00249 0.00219 0.00219 0.00248 0.00283 0.00352 0.00539 0.00678 0.00698
0.000111 0.00245 0.00213 0.00211 0.00236 0.0027 0.00336 0.00522 0.00668 0.00690
0.0001 0.00243 0.00209 0.00204 0.00226 0.00257 0.00322 0.00506 0.00657 0.00683

Table 4. Kinetic energy values when upper and lower walls are moving antiparallel.

µ Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9

0.0050 0.00504 0.00524 0.00534 0.00552 0.00558 0.00569 0.00586 0.00595 0.00595
0.0025 0.00445 0.00475 0.00494 0.00527 0.00539 0.00559 0.00591 0.00608 0.00609
0.0016 0.00397 0.00431 0.00456 0.00506 0.00524 0.00555 0.00607 0.00633 0.00634
0.0012 0.00365 0.004 0.00428 0.00489 0.00513 0.00552 0.00617 0.00651 0.00653
0.0010 0.00345 0.0038 0.00409 0.00476 0.00503 0.00547 0.00622 0.0066 0.00663
0.0008 0.00323 0.00356 0.00386 0.00457 0.00486 0.00538 0.00624 0.0067 0.00672
0.0007 0.00311 0.00343 0.00371 0.00443 0.00475 0.00530 0.00623 0.00672 0.00675
0.0006 0.00299 0.00328 0.00354 0.00426 0.00459 0.00519 0.00618 0.00669 0.00672

0.00055 0.00293 0.00319 0.00344 0.00415 0.0045 0.00511 0.00611 0.00661 0.00664
0.0005 0.00286 0.00311 0.00334 0.00403 0.00438 0.00500 0.006 0.00646 0.00648

0.00041 0.00275 0.00294 0.00312 0.00376 0.00412 0.00473 0.00561 0.00603 0.00604
0.00033 0.00264 0.00279 0.00291 0.00344 0.0038 0.00432 0.00513 0.00555 0.00555
0.00025 0.00252 0.00261 0.00266 0.00302 0.00333 0.00377 0.00455 0.00504 0.00498
0.0002 0.00243 0.00247 0.00248 0.00272 0.00297 0.00336 0.00411 0.00496 0.00456

0.00016 0.00234 0.00234 0.0023 0.00246 0.00265 0.00299 0.0037 0.00487 0.00416
0.00014 0.0023 0.00227 0.0022 0.00233 0.00248 0.00282 0.00347 0.0048 0.00394
0.000125 0.00226 0.00221 0.00212 0.00222 0.00235 0.00268 0.00328 0.00474 0.00375
0.000111 0.00223 0.00216 0.00204 0.00210 0.00222 0.00255 0.00308 0.00467 0.00356
0.0001 0.00221 0.00221 0.00198 0.00202 0.00212 0.00221 0.00292 0.00459 0.0034

5. Conclusions

The fluid equipped in staggered cavity is examined. The Newtonian fluid model is entertained.
The detail analysis is performed for three different cases. The first includes the motion of upper wall
of staggered cavity with uniform velocity. In second case both upper and lower walls are moving in
parallel direction and in third case the walls namely upper and lower are moving in an antiparallel
direction. The solution is obtained by finite element method and formulation of both the primary
vortices, secondary vortices and kinetic energy variation are debated for each case. We trusted that
this attempt will provide a directory for the investigators to handle unsolved problems in the field of
enclosure having uses in an industry and engineering areas.
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Nomenclature

x̃, ỹ, z̃ Dimensional space variables
x, y, z Dimensionless space variables
→

V(ũ, ṽ, w̃) Dimensional velocity field

V(u, v, w) Dimensionless velocity field
ρ Fluid density
L Characteristic length
U Reference velocity
p̃ Dimensional pressure
P Dimensionless pressure
Re Reynolds number
ν Dynamic viscosity
→

B Body force
→

∇ Del operator
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