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Abstract: An operating space partition method with control performance is proposed, where the
heterogeneous multiple model is applied to a nonlinear system. Firstly, the heterogeneous multiple
model is obtained from a nonlinear system at the given equilibrium points and transformed into a
homogeneous multiple model with auxiliary variables. Secondly, an optimal problem where decision
variables are composed of control input and boundary conditions of sub-models is formulated
with the hybrid model developed from the homogeneous multiple model. The computational
implementation of an optimal operating space partition algorithm is presented according to the
Hamilton–Jacobi–Bellman equation and numerical method. Finally, a multiple model predictive
controller is designed, and the computational implementation of the multiple model predictive
controller is addressed with the auxiliary vectors. Furthermore, a continuous stirred tank reactor
(CSTR) is used to confirm the effectiveness of the developed method as well as compare with other
operating space decomposition methods.

Keywords: heterogeneous multiple model; operating space partition; nonlinear system; model
predictive control

1. Introduction

Modeling and control of nonlinear dynamical systems is one of the most important but also most
challenging areas of system theory. The multiple model approach, also known as local model networks,
has received a great deal of attention in the past few decades due to its success in handling nonlinear
system problems with both large set-point changes and wide operating ranges, as well as in converting
complex problems into simpler subproblems [1–3]. According to the partition strategy, sub-model
structure, sub-model transition, method of realization, and different structures of the multiple model
are presented in the literature, including the Takagi–Sugeno (T–S) model [4], piecewise affine model [5],
piecewise linear model [6], linear parameter varying model [7], and local model network [8,9]. Most of
these model structures can be classified into heterogeneous and homogeneous structures [10,11].

In the homogeneous multiple model structure, all sub-models have a uniform variable space and
model structure. The homogeneous multiple model was first presented by Takagi and Sugeno with
the well-known T–S model, which is used for fuzzy system modeling and control [4,12], and was
theorized by Murray-Smith and Johansen with the multiple model approach [3]. The homogeneous
multiple model has been widely applied to nonlinear system modeling [13–15], nonlinear system
control and optimization [16,17], fault detection [18], learning [19,20], etc. However, in some cases
the curse of dimensionality, where the number of state variables increases with nonlinear system
complexity, is troublesome [13].

In the heterogeneous multiple model structure, the sub-models have different model structure
or state space [21,22]. Due to the degree of freedom of heterogeneous structure, sub-models in
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the heterogeneous multiple model have the capacity to fit the system complexity in each operating
space with different dimensions of sub-models. Hence, this kind of multiple model has much more
flexibility and generality than a homogeneous multiple model, having more extensive prospect. The
heterogeneous model was initially proposed by Filev [23], and different heterogenous model structures,
such as the local model network [24–27] and decoupled multiple model [28,29], have been applied to
nonlinear system modeling, control, optimization, etc. [30,31].

There are two problems in the multiple model approach—operating/state space decomposition and
sub-model combination. In decomposition, a nonlinear system decomposes into several sub-models
and the operating/state space of the nonlinear system is partitioned into corresponding operating
zones. In the usual multiple model approach, researchers used to consider the decomposition and the
combination as two independent procedures [32]. The decomposition is first accomplished, and then
the combination of sub-models is carried out [33]. Du et al. used the gap metric to decompose
the nonlinear system into model bank determination [34]. Song et al. developed a closed loop
decomposition method based on an optimal control problem for nonlinear systems [35,36].

However, the above-mentioned decomposition/combination method is mostly applied to
homogeneous multiple model structures. With the idea of closed loop decomposition and combination
methods [34], a control-performance-based partitioning operating space approach in heterogeneous
multiple models is proposed. Initially, the heterogeneous multiple model is obtained at given
equilibrium points of a nonlinear system, then auxiliary variables are selected to transform a
heterogeneous multiple model into a homogeneous multiple model. An optimal problem where
decision variables are composed of control input and the boundary condition of sub-models is
formulated with the hybrid model developed from the homogeneous multiple model. Finally, a
multiple model predictive controller is designed, and the computational implementation of the multiple
model predictive controller is addressed with the auxiliary vectors.

The rest of this paper is organized as follows: Section 2 presents how to obtain the heterogeneous
multiple model and transform the obtained model into a homogeneous multiple model by auxiliary
variables. In Section 3, an optimal control problem with hybrid model is developed. Meanwhile,
optimal boundary conditions with state space partitioned are addressed. The proposed algorithm
of obtaining the boundary condition with operating space partitioned is discussed in Section 4. In
Section 5, a hybrid model predictive control (MPC) controller is briefly discussed. Section 6 applies the
proposed method to a continuous stirred tank reactor (CSTR). Conclusions are given in Section 7.

2. Heterogeneous Multiple Model of Nonlinear System

Suppose that the nonlinear system has M operating points (ui, yi), i ∈ I , {1, 2, · · · , M}. Given
enough input–output pairs (u(k), y(k)) at the operating point (ui, yi), the input–output model without
noise term can be identified as the following form:

ai,0y(k− ni) + ai,1y(k− ni + 1) + · · ·+ ai,ni−1y(k− 1) + y(k) =
bi,0u(k−mi) + bi,1y(k−mi + 1) + · · ·+ bi,mi−1u(k− 1)

(1)

where u(k) ∈ U ⊂ R and y(k) ∈ Y ⊂ R are the output and input, respectively, of the nonlinear system at
time k ∈ Z. The real vectors

[
bi,0 · · · bi,mi

]
and

[
ai,0 · · · ai,ni

]
are the dynamics vector of the input–output

model at ith operating point. mi and ni are the order of identified model in the ith operating point; mi < ni.
In general, it is assumed that the order of each model is equal, m1 = m2 = · · · = mM,n1 = n2 = · · · = nM.
However, under the different identification criterion, the order of each identification model may be
different, namely, mi , m j and/or ni , n j, i ∈ I.

Then, the input–output model set can be transformed into a state space model with the following
state variables:

x(k) = [y(k) y(k− 1) · · · y(k− ni + 1) u(k− 1) u(k− 2) · · · u(k−mi + 1)]′ (2)
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Finally, the state space form is shown as:{
x(k + 1) = Aix(k) + Biu(k)
y(k) = Cix(k)

i ∈ I (3)

Ai =



−ai,ni−1 · · · −ai,1 −ai,0 bi,mi−2 · · · bi,1 bi,0
1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 1 0 0 · · · 0 0
0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · 1 0


(4)

Bi =



bi,mi−1

0
...
0
1
0
...
0


(5)

Ci =
[

1 0 · · · 0
]

(6)

In Equation (3), sub-models may have different numbers of state variables, and the dimensions of
the state space model (Equation (3)) are different. This is the heterogenous multiple model structure.
When the multiple model is determined, the remaining work is to select the scheduling variables and
to decompose the operating space to acquire the operating region of each sub-model.

Firstly, auxiliary variable x̃(k) is employed to transform the heterogeneous multiple model into a
homogeneous multiple model:

x̃(k) =
[

ỹ(k)
ũ(k)

]
(7)

where ỹ(k) = [y(k− ni) y(k− ni − 1) · · · y(k− nm − 1)]′ , ũ(k) = [y(k−mi) u(k−mi − 1) · · ·u(k−mm − 1)]′ ,
nm , max{n1, n2, · · · , nM}, and mm , max{m1, m2, · · · , mM}.

Then, the original state variable x(k) is combined with the auxiliary state variable x̃(k) into the
new state variable x(k):

x(k) = [y(k) y(k− 1) · · · y(k− ni + 1) ỹ(k) ũ(k) u(k− 1) u(k− 2) · · · u(k−mi + 1)]′ (8)

Finally, the homogeneous multiple model is obtained as follows:{
x(k + 1) = Aix(k) + Biu(k)
y(k) = Cix(k)

(9)
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Ai =



−ai,ni−1 · · · −ai,1 −ai,0 0 · · · 0 bi,mi−2 · · · bi,1 bi,0 0 · · · 0
1 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 · · · 1 0 0 · · · 0 0 · · · 0 0 0 · · · 0
0 · · · 0 1 0 · · · 0 0 · · · 0 0 0 · · · 0
0 · · · 0 0 1 · · · 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 · · · 0 0 0 · · · 1 0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 0
0 · · · 0 0 0 · · · 0 1 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 · · · 0 0 0 · · · 0 0 · · · 1 0 0 · · · 0
0 · · · 0 0 0 · · · 0 0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0 0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
0 · · · 0 0 0 · · · 0 0 · · · 0 0 0 · · · 1



(10)

Bi =



bi,mi−1

0
...
0
1
0
...
0


(11)

Ci =
[

1 0 · · · 0
]

(12)

In Equation (9), state variables x(k) ∈ Ω , Ynm ∪Umm are measurable and controllable. When
state variables are selected as scheduling variables, with Ω as the operating space of the system
(Equation (9)), Ωi is the operating space of ith sub-model of the system (Equation (9)), and Ωi ⊆ Ω,
∪

M
i=1Ωi = Ω, Ωi ∩Ω j = ∅, i , j, i, j ∈ I. Define ∂Ω as the boundary of Ωi and it may be a manifold
∂Ωi = 0 that may be formulated as an equality, Eix(k) − Fi = 0, where Ei and Fi are constant unknown
parameter matrices to be determined.

When the multiple model of a nonlinear system (Equation (9)) is determined, the system has M
modes and renders a hybrid model feature. Thus, the system described by the homogeneous multiple
model can be reformulated as follows:

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k)
y(k) = Cσ(k)x(k)
σ(k) = il, k ∈ [τl, τl+1)

τl+1 = inf
{
k|Eil,il+1x(k)& = Fil,il+1

} il, il+1 ∈ I, l ∈ N (13)

with initial variables σ(0) = il, x(0) = x0, y(0) = y0, and τ0 = 0.

3. Hybrid-Model-Based Optimal Control

The remarkable characteristic of the hybrid model is that the discrete and continuous dynamics
coexist and interact with each other. Therefore, the optimized variables include not only the continuous
variables, but the discrete variables in the general optimal problem of the hybrid model. In the
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model given as Equation (13), the discrete optimized variable is model mode σ(k), and the continuous
optimized variable is input u(k). In this paper, σ(k) is formulated by {Ei, Fi}.

Based on Equation (13), the following optimal control problem is established:

Problem 1. Find the mode trajectory σ(k) ∈ I and an input set u(k) ∈ U to minimize the objective function
(Equation (14)) [33]:

J[σ(k), u(k)] ,
N∑

k=0

{
‖y(k) − ye‖

2
Q + ‖u(k) − ue‖

2
R

}
(14)

where N is the final time, N→∞ , ye and ue are target values for the output and input variables, respectively.

We define the cost function V(σ, x) for Problem 1 with initial variables (i0, x) at time k ∈ [0, N] as:

V(σ, x) , inf
u

 N∑
k=0

{
‖y(k) − ye‖

2
Q + ‖u(k) − ue‖

2
R

} (15)

Along with the optimality of optimal control of the hybrid model [37], the optimality of Problem 1
can be reformulated as Theorem 1:

Theorem 1. σ(k) and u(k) are optimal state feedback input and optimal mode trajectory of the Problem 1,
respectively. Then, the cost function V(σ, x) must satisfy the Hamilton–Jacobi–Bellman equation.

min
{
min

u

{
V(σ(k), x(k)) −V

(
σ(k), Aσ(k)x(k) + Bσ(k)u(k)

)
− ‖y(k) − ye‖

2
Q+

‖u(k) − ue‖
2
R

}
, min
σ(k+1),σ(k)

{
V(σ(k + 1), x(k))

−V(σ(k), x(k))
}
} = 0

(16)

Suppose σ(k) = i,σ(k + 1) = j,i, j ∈ I; the optimal boundary conditions {Ei
∗, Fi

∗
} can be, directly

evaluated, when the value function V(·) is known, by:

{Ei
∗, Fi

∗
} = arg{Ei,Fi}

{
Eix < Fi

∣∣∣V( j, x) −V(i, x) = 0
}

(17)

4. A Partitioned Operating Space Algorithm

If we can solve the Problem 1 directly, then the optimal boundary condition {Ei, Fi} can be found.
However, when decision variables involve not only admissible discrete-time control u(k) but also the
discrete mode trajectory σ(k) in Problem 1, then obtaining {Ei, Fi} is a nontrivial task. The following
algorithm provides a framework for evaluating V(σ, x) and obtains the optimal boundary condition
{Ei, Fi}.

Let G be the finite difference grid of the state space X, Go and ∂G denote the
interior and the boundary of G, respectively, and Vh be the numerical solution of V where
h is the step of the finite difference grid G. Define I =

[
1 · · · 1

]
1×(nm+mm)

Jl = 0 0 · · · 0︸                   ︷︷                   ︸
l−1

1 · · · 0


1×(nm+mm)

, then update the value function Vh(σ, x) for interior

point x ∈ Go:

Vh(σ, x) = min
u∈U

nm+mm−1∑
l=1

[
Pi+

xl
Vh(σ, x + elh) + Pi−

xl
Vh(σ, x− elh)

]
+ ∆ti

(
‖xl − ye‖

2
Q + ‖u− ue‖

2
R

} (18)
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where ∆ti =
h

I(Aix+Biu)
, Pi+

xl
=

Jl(Aix+Biu)
I(Aix+Biu)

, and Pi−
xl
= −

Jl(Aix+Biu)
I(Aix+Biu)

.
V(σ, x) is evaluated for boundary point x ∈ ∂G with reflecting boundary technique [38]:

Vh(σ, x) =
n∑

j=1

(
α+x j

Vh
(
i, x + e jh

)
+ α−x j

Vh
(
i, x− e jh

))
(19)

where α+x j
,α−x j
∈ [0, 1] and

∑n
j=1

(
α+x j

+ α−x j

)
= 1. Therefore, the following Algorithm I for evaluating Ei,

Fi is proposed:

Algorithm 1. Boundary Calculation

1: Initialize The parameters of the system, Aσ, Bσ, Cσ, Dσ, etc.
2: Discretize the state space X into finite difference grid G by discrete step h and obtain Go and ∂G.
3: Numerical solution of value function in ith model, Vh(i, x), and give an initial guess of V(i, x).
4: For interior point x ∈ Go, update V(i, x) using Equation (18). For boundary point x ∈ ∂Eo, update V(i, x)

using Equation (19).
5: Calculate the convergence error, ei = Vh(i, x) − Ṽh(i, x) where Ṽh(i, x) is the obtained value function in

previous iteration. Compare ei with convergence constant ε; if ei ≤ ε then jump to Step IV, else go to Step II.
6: Collect the optimal state point in set X∗i of boundary condition ∂Gi by:

X∗i =
{
x|Vh( j, x) −Vh(i, x) = 0

}
7: Optimal boundary {Ei

∗, Fi
∗
} in state space is fitted by least square method by:{

Ei j
∗, Fi j

∗
}
= argmin{Ei j∗,Fi j∗}‖Eix∗i j − Fi‖

where x∗i j ∈ X∗i locate on the same polyhedron and
{
Ei j
∗, Fi j

∗
}

is the jth element of {Ei
∗, Fi

∗
}.

8: Output: {Ei
∗, Fi

∗
}

5. Multiple Model Predictive Controller

Model predictive control (MPC), also named receding horizon control, has been widely adopted
in process industries [39]. MPC solves an optimal control problem in each time and applies the first
input to the nonlinear system. When the work of operating space partition is accomplished, the
optimal control of the nonlinear system can be implemented with MPC. The multiple model predictive
controller is stated as:

Given a fixed time interval
[
t0, t f

]
and {Ei, Fi}, minimize the cost function

J(x(0)) ,
N∑

k=0

{
‖y(k) − ye‖

2
Q + ‖u(k) − ue‖

2
R

 (20)

subject to Equation (13) and y(N) = ye, where Q, R, are the weight matrix, ye and ue are the set point of
the nonlinear system.

Define binary variables δi ∈ {0, 1}, i ∈ I. If mode i is valid at time k, δi = 1, and δi is zero if mode i
is invalid. The constraint that only one mode is valid at any time can be expressed as:

N∑
i=1

δi = 1, t ∈
[
t0, t f

]
(21)

Define auxiliary variables zi and si as [40]:

zi = δix, si = δiu
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For zi = δix, we have

zi = δix⇔


zi ≤ Xmaxδi
zi ≥ Xminδi

zi ≤ x−Xmin(1− δi)

zi ≥ x−Xmax(1− δi)

(22)

For si = δiu, we have
si = δiu⇔
si ≤ Umaxδi
si ≥ Uminδi

si ≤ x−Umin(1− δi)

si ≥ x−Umax(1− δi)

(23)

Thus, Equation (13) can be reformulated as Equation (26), and there are only equality constraints
and inequality constraints; Equation (19) poses linear model structure [9]:

x(k + 1) =
∑M

i=1(Aizi(k) + Bisi(k))
y(k) =

∑M
i=1 Cizi(k)∑M

i=1 δi = 1,
∑M

i=1 Eizi(k) ≤
∑M

i=1 Fiδi(k)
zi(k) ≤ Xmaxδi, zi(k) ≤ x−Xmin(1− δi)

zi(k) ≥ Xminδi, zi(k) ≥ x−Xmax(1− δi)

si(k) ≤ Umaxδi, si(k) ≤ x−Xmin(1− δi)

si(k) ≥ Uminδi, si(k) ≥ x−Xmax(1− δi)

(24)

The above model (Equation (24) also can be generalized by describing mixed logical dynamical
(MLD) systems through the linear relations [12]. The proposed multiple model predictive control is
formulated by:

min(
uN−1

k , δN−1
k

) N−1∑
i=1

‖u(k) − ue‖
2
Q + ‖y(k) − ye‖

2
R (25)

s.t. (26), y(N) = ye.

6. Case Study

Consider as a nonlinear process, a continuous stirred tank reactor (CSTR). The CSTR process
consists of an exothermic, irreversible reaction in a constant volume reactor. The input variable u ∈
[–2,2] is the dimensionless cooling jacket temperature. Output variable y ∈ [0, 1] is the dimensionless
concentration [17].

CSTR has three steady-state operating points (OPi , (yi, ui), i = 1, 2, 3) with nominal values,
shown as OP1(0.856, 0), OP2(0.5528, 0), and OP3(0.2354, 0) (17). Three input–output models can be
identified according to the three operating points, as shown in Table 1.

Table 1. Continuous stirred tank reactor (CSTR) identification model at three operating points.

Mode Identification Model

Mode1 −0.004806z−1

1−0.9468z−1

Mode2 0.009823z−1

1−1.992z−1+0.9921z−2

Mode3 −0.005565z−1

1−1.659z−1+0.7163z−2

Figure 1 shows the open-loop output of the identification model in three modes in comparison
with the output of CSTR.
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Figure 1. Open-loop output between the identification model and CSTR. (a) The open-loop output
between Mode1 and CSTR. (b) The open-loop output between Mode2 and CSTR. (c) The open-loop
output between Mode3 and CSTR.

In Table 1, the order of Mode1 is less than the order of Mode2 that is equal to Mode3. Then, the
three models, Mode1, Mode2, and Mode3 form the heterogeneous multiple models of the nonlinear
system, the CSTR. When transforming the input–output transfer function into state, mode1 has one
state variable, x̂(k) = y(k), and mode2 and mode3 have two state variables x(k) = [y(k) y(k− 1)]′ ,
thus obtaining three state-space equations as follows:{

x̂(k + 1) = 0.9492x̂(k) − 0.0043u(k) + 1.6685
y(k) = x̂(k)

(26)

 x(k + 1) =
[

1.992 −0.9921
1 0

]
x(k) +

[
0.009823

0

]
u(k) +

[
0.5175

0

]
y(k) = [1 0]x(k)

(27)

 x(k + 1) =
[

1.659 0.7163
1 0

]
x(k) +

[
−0.005565

0

]
u(k) +

[
0.9549

0

]
y(k) = [1 0]x(k)

(28)

Define auxiliary state variable x̃(k) = y(k− 1) for the state space equation of Mode1, then the new
state variables of mode1 are x(k) = [x x̃]′ = [y(k) y(k− 1)], and x(k) = x(k). With the state variable
x(k), the state space equation of mode1 (Equation (26)) can be transformed into the following equation: x(k + 1) =

[
0.9492 0

1 0

]
x(k) +

[
−0.0043

0

]
u(k) +

[
1.6685

0

]
y(k) =

[
1 0

]
x(k)

(29)

Equations (27)–(29) are the multiple model of CSTR. The cost function is given by:

J = min
{Ξ,u}

N∑
k=1

[(y− ye)
′Q(y− ye) + (u− ue)

′R(u− ue)] (30)

where Q = 800, R = 1, and [ye, ue] ∈ OP1.
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With Step I to Step VI in the proposed algorithm, the optimal boundary {Ei
∗, Fi

∗
} in operating

space is evaluated and the decomposition result, 0.27x1 + 0.24x2 − 0.0648 = 0, is shown in Figure 2.
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Figure 2. Boundary condition of operating space obtained with proposed method. x1, x2 are the state
variables of the multiple model.

In Figure 2, only two modes, Mode1 and Mode2, are required for CSTR in the proposed
method. Another decomposition method—gap metric—is introduced with which the output space of
CSTR is decomposed into three sub-regions, Mode3 =

{
y
∣∣∣y ∈ [0, 0.35)

}
, Mode2 =

{
y
∣∣∣y ∈ [0.35, 0.78)

}
,

and Mode1 =
{

y
∣∣∣y ∈ [0.78, 1]

}
, as shown in Figure 3 [41].
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Figure 3. Boundary condition of operating space with gap-metric method.

Finally, based on the obtained optimal operating regions and corresponding multiple model, a
hybrid-model-based MPC is designed and implemented, where the terminal time t f = 15, and OP3 is
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the initial point. The trajectories of input u, output y, mode i, and objective function value J with two
methods are presented in Figure 4.
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Figure 4. Simulation profile of multiple model predictive control with two decomposition results. (a)
The input u profile of multiple model predictive control with two methods; (b) the output y profile of
multiple model predictive control with two methods; (c) the mode i profile of multiple model predictive
control with two decomposition results, and (d) the objective function J profile of hybrid-model-based
MPC with two methods.

As shown in Figure 4, MPC controllers designed with two methods can operate the CSTR to the
set point accurately. From the mode trajectories (Figure 4c), with the gap-based method, we know that
the process undergoes three modes, namely, starting at Mode3, reaching Mode2, and finally at Mode1.
However, with the proposed method, only Mode1 is available in the entire operating procedure. From
the output profile (Figure 4b), settling time of the CSTR with the proposed method is much faster
than with gap-based method. From the control policy profile (Figure 4a), control input jumps more
frequently with the gap-based method. Consequently, we can say that only using one mode achieves
better system performance than using three modes. From the objective function profile, achieving the
optimal objective with the gap-based method requires much more energy than with proposed method.

7. Conclusions

Following our previous work [33,34], which proposed an integrated framework of operating
space partition and optimal control of the homogeneous multiple model, this paper proposes a new
systematic operating space partition method of the heterogeneous multiple model where the closed
loop performance is considered. The heterogeneous multiple model of nonlinear systems is obtained
by an identification technique and formulated by an input–output model. Due to optimal control
performance being explained in the state space field, the input–output model is transformed into a state
space model. With auxiliary variables, the obtained heterogeneous state space model is transformed
into a homogeneous multiple model underlying each state having the same physical meaning, and
the optimal operating range partition is obtained by optimal boundary conditions in state space. The
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existing decomposition methods of heterogeneous multiple model approaches are according to the
properties of open-loop system dynamics. In contrast, the proposed decomposition method is from
the perspective of closed-loop systems performance, thus guaranteeing the overall performance of
nonlinear systems.

Future research will include the improvement of computational algorithms derived in this paper,
when transforming the heterogeneous multiple model into a homogeneous multiple model may
increase the number of state variables of a multiple model and further lead to computational burden in
subsequent work.
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