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Abstract: Radial Basis Function Neural Network (RBFNN) is a class of Artificial Neural Network
(ANN) that contains hidden layer processing units (neurons) with nonlinear, radially symmetric
activation functions. Consequently, RBFNN has extensively suffered from significant computational
error and difficulties in approximating the optimal hidden neuron, especially when dealing with
Boolean Satisfiability logical rule. In this paper, we present a comprehensive investigation of the
potential effect of systematic Satisfiability programming as a logical rule, namely 2 Satisfiability (2SAT)
to optimize the output weights and parameters in RBFNN. The 2SAT logical rule has extensively
applied in various disciplines, ranging from industrial automation to the complex management system.
The core impetus of this study is to investigate the effectiveness of 2SAT logical rule in reducing
the computational burden for RBFNN by obtaining the parameters in RBFNN. The comparison is
made between RBFNN and the existing method, based on the Hopfield Neural Network (HNN) in
searching for the optimal neuron state by utilizing different numbers of neurons. The comparison
was made with the HNN as a benchmark to validate the final output of our proposed RBFNN with
2SAT logical rule. Note that the final output in HNN is represented in terms of the quality of the
final states produced at the end of the simulation. The simulation dynamic was carried out by using
the simulated data, randomly generated by the program. In terms of 2SAT logical rule, simulation
revealed that RBFNN has two advantages over HNN model: RBFNN can obtain the correct final
neuron state with the lowest error and does not require any approximation for the number of hidden
layers. Furthermore, this study provides a new paradigm in the field feed-forward neural network by
implementing a more systematic propositional logic rule.

Keywords: Radial Basis Function Neural Network; Hopfield Neural Network; satisfiability;
optimization; logic programming

1. Introduction

Artificial neural network (ANN) is a powerful data processing model which has been widely
studied and applied by practitioners and researchers due to its capacity and capability in handling
and representing complex-non-linear problems. Generally speaking, ANN contains interconnected
neurons that become building blocks for the input layer, one or more processing layers (hidden layers)
and output layer. In this paper we specifically consider only the case of networks with a single
processing (hidden) layer. Each of the layers is responsible for signal and data processing. In order
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to comply with high dimensional data, Moody and Darken [1] proposed multiple layers of ANN
which consist of a single hidden layer (with just one hidden layer). The discovery of the search for a
better number of neuron response functions in the hidden layer leads to the development of the Radial
Basis Function Neural Network (RBFNN). RBFNN is commonly applied for regression analysis [2],
forecasting [3], pattern recognition [4], image processing [5] and classification [6]. Besides its superior
global approximation capability, RBFNN can approximate any continuous network [7] and has a good
noise tolerance. Similar to typical ANN structure, RBFNN typically consists of a single hidden layer
containing three main parameters: the output weights, widths and centers. Conventionally, the center
and the width in the hidden layer will be obtained during the first stage. In the second stage, the
output weight between the hidden layer and the output layer will be obtained. Several approaches
such as k-means clustering [8], decision tree [9] and metaheuristics algorithm [10] have been utilized
to optimize the two stages. Despite the advantages of RBFNN in solving a various real-life problem,
the learning structure of RBFNN, which produces the desired outcome, is poorly understood.

Wan Abdullah [11] proposed logic programming in HNN to obtain the synaptic weights by
minimizing the logical inconsistencies. When the logical inconsistency is realizable by an HNN,
the synaptic weight of the network can be obtained by comparing cost function with the Lyapunov
energy function. The proposed HNN model has been further improved in Sathasivam [12]. She
implemented a specific logical rule, namely Horn Satisfiability (HornSAT), into discrete HNN. In
this study, conventional Hebb rule has been replaced by a more effective method, namely the Wan
Abdullah method. The correct synaptic weight will facilitate the update of the output layer during the
retrieval phase. The final state of the HNN will be computed by using Lyapunov energy function and
if the solution achieves the lowest minimum energy, the final state containing HornSAT information
is likely optimal. The disadvantages of the proposed HNN model are the storage capacity [13],
high computation time [14] and easily trapped in local minima [15]. Since then, the usage of logic
programming in ANN has been integrated into several disciplines such as Pattern Reconstruction [16],
Agent Based Modelling [17] and Circuit modelling [18]. The rapid development of logic programming
in ANN was extended to accommodate real-life datasets. In this case, a logic mining technique called
Reverse Analysis [19] method utilized the feature of logic programming in HNN in extracting the
logical relationship of the dataset. It is worth mentioning that the common denominator in these
studies is the implementation of HornSAT in HNN.

The new direction of logic programming in ANN was further developed by incorporating a logical
rule in RBFNN [20]. The proposed RBFNN implemented single operator logic by proposing a unique
technique to generate the dataset. In terms of training, Hamadneh et al. [21] proposed no training,
half training and a full training scheme to calculate the output weight of the RBFNN. Despite the
advantages of logic programming in RBFNN, finding the optimal parameters such as center and width
using conventional logical rule has a common limitation in terms of performance error. For example, it
is highly possible that the training process produces large error when using non-systematic logical
rule. Moreover, most of the RBFNNs are very sensitive to their initial parameter settings and require
an additional clustering layer to obtain optimal output weight. Error management during the training
phase of RBFNN creates two perspectives of optimizations. Firstly, error accumulation can be reduced
by implementing a good optimization algorithm such as Metaheuristics [22] or clustering method [8].
The complexity of the algorithm increases with the number of hidden neurons. The second perspective
is by optimizing the logical rule embedded in RBFNN. Although it has been verified that full training
of RBFNN has dramatically reduced the computational error during the training phase, higher-order
HornSAT is easily trapped in a suboptimal solution. In this case, the choice of the logical rule is critical
in creating optimal logic programming in RBFNN. To this end, the implementation of the mentioned
work only manages to train HornSAT that expose RBFNN with the computational burden.
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Representing implicit knowledge by using a set of rules containing the Satisfiability (SAT) is
a powerful strategy in solving various industrial problems. Recently, SAT representation has been
proposed in mathematical modelling [23], model checking [24] and industrial management [25]. SAT
is an important language that can store important information which leads to two possible outcomes
(True or False). In the typical use case, representing the generalized SAT is beneficial, but what if the
systematic SAT can represent the same information value with less computational error? The pursuit
of creating a more systematic logical rule was developed by Mansor et al. [26] where they proposed
3 Satisfiability (3SAT) in HNN. The usage of the 3SAT as the logical rule is due to the fact that all
k Satisfiability can be reduced to 3SAT. The proposed HNN model managed to achieve more than
95% accuracy and retrieve the correct output within an acceptable time range. In another perspective,
Kasihmuddin et al. [27] proposed an alternative form of Satisfiability by incorporating 2 Satisfiability
(2SAT) into HNN. It is worth mentioning that the proposed HNN model is considered significant since
there is no solid proof that can reduce 3SAT into 2SAT (unless P = NP). The systematic implementation
of SAT in ANN motivate the development of logic mining namely k Satisfiability based Reverse
Analysis method [28].

Unfortunately, there has been no recent effort to discover the effect of the systematic logical rule in
RBFNN. The current work only involves the Satisfiable logic because a higher-order Satisfiable logic
can be reduced to a lower order logic. By constructing logic programming in ANN, we investigate the
impact of 2SAT programming in RBFNN. Thus, the contributions of the present paper are: (1) This
paper explores the representation of the dataset by using implicit representation namely 2SAT. (2) A
novel feed forward neural network is proposed by implementing 2SAT as a systematic logical rule
in RBFNN and obtain the optimal value of parameters (center and width). (3) A comprehensive
comparison with various performance metrics has been conducted to reveal the effectiveness of 2SAT
logical rule when integrated with RBFNN. Therefore, the proposed model can be utilized in finding
important information based on logical extraction for various engineering problems such as control
systems and prediction models. The developed scheme is evaluated using a well-known and widely
adopted performance evaluation. The simulation results indicate a significant improvement in terms
of performance evaluation when the 2SAT logical rule is implemented into RBFNN.

2. Satisfiability Programming in Artificial Neural Network

2.1. 2 Satisfiability Representation

In this paper, 2 Satisfiability, or abbreviated as 2SAT, can be defined as a logical rule that comprises
of strictly two literals per clause. Thus, 2SAT logic can be expressed as a 2 Conjunctive Normal Form
(2 CNF) [29]. The three components of 2SAT logic are as follows:

(a) Consist of a set of m variables: v1, v2, . . . , vm.
(b) A set of literals. A literal is a variable or a negation of a variable.
(c) A set of n distinct clauses: l1, l2, . . . , ln. Each clause consists of only literals combined by only ∧

logical AND.

Each of the variable in 2SAT takes binary value {0, 1} which exemplified the idea of false and true.
The goal of 2SAT programming is to optimize the parameters in ANN [30]. The general formula for
2SAT logic is as follows [29]:

P2SAT =
n
∧

i=1
li, where li = Ai ∨ Bi, n > 0, n ∈ N (1)

where ∨ is the Disjunction (OR), and ∧ is the Conjunction (AND). P2SAT is chosen in our research
because the general SAT can be reduced to specific domain of k = 2. Gramm et al. [31] has formulated
the reducibility theorem for the general SAT problem into Maximum 2 Satisfiability (MAX2SAT) which
is a foundation to instruct symbolically the proposed neural networks. In this work, the implementation
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of P2SAT has paved the way of the logical development in HNN and RBFNN, especially in improving
the capability of these networks to deal with higher order constraints. The clauses in P2SAT can be
either represented in Conjunctive Normal Form (CNF) and the variable can be either represented in
Disjunctive Normal Form (DNF), which is widely being used to represent clauses. One of the specific
examples of P2SAT is given as follows:

P2SAT = (G∨H)∧ (I ∨¬J)∧ (K ∨¬L) (2)

where the number of clauses is n = 3. Note that, one of the inconsistencies of Equation (2) is
(G, H, I, J, K, L) = (0, 0, 1, 1, 1, 1) that leads to P2SAT , 1. It was substantiated by various studies [32,33]
that numerous combinatorial problems could be formulated by using P2SAT. The choice of 2 literals per
clause in the satisfiability logic reduces the logical complexity in discovering the relationship between
the variables in the dataset. These fundamental reasons make P2SAT has become a relevant approach
to represent logical rules in neural network.

2.2. 2 Satisfiability in Radial Basis Neural Network

Radial Basis Function Neural Network (RBFNN) is a feedforward neural network. Here we
consider only three-layers: an input layer, a hidden layer with Radial Basis function as activation units,
and the final output layers. The most classical approach in RBFNN is to find the parameters for each
layer by using unsupervised learning which leads to suboptimal output weight [34,35]. In this section,
systematic input data via P2SAT will be embedded during the training phase of RBFNN. P2SAT will
create a systematic partition between input neuron and the output neuron by obtaining a true value of
RBFNN as an input data. During training phase of RBFNN, the input data for each clause in P2SAT is
given in the following equation:

xi =
n∑

i=1

I(Ai) +
n∑

j=1

I
(
B j

)
(3)

where each of the state of the variable in Equation (3) can be defined as follows

I(Ai) or I
(

B j
)
=

{
1, i f A or B is True
0, i f A or B is False

(4)

Note that, {0, 1} indicates the Boolean values that exemplify False and True respectively. Consider
the following P2SAT in the form of logic programming:

P2SAT = A; B←, D← C, E← F (5)

Note that ← is a symbol of implication, which is a standard notation in logic programming.
(;) refers to the (∨), (,) is the (∧). In terms of the variable, (A; B← ) represents A; B as the positives
variables and ← C represent C as negative variable [36]. Converting Equation (5) into Boolean Algebra
CNF form

P2SAT = (A∨ B)∧ (¬C∨D)∧ (E∨¬F) (6)

where ¬ refers to the negation of the variables, ∨ is the Disjunction (OR), and ∧ is the Conjunction
(AND). According to Equation (6), RBFNN contains 6 variables that will represent the input neurons
with 3 clauses which represent output neurons. In this case, the training pattern will be obtained by
determining the number of hidden neurons used. The input data of the P2SAT in Equations (5) and (6)
is given in Table 1.



Processes 2020, 8, 214 5 of 16

Table 1. The input data form and the training data of P2SAT in Radial Basis Function Neural
Network (RBFNN).

Clause A; B← D← C E← F
DNF A∨ B ¬C∨D E∨¬F

Input data form xi x = A + B x = D−C x = E− F
Input data in the training set 0 1 1 2 −1 0 0 1 −1 0 0 1

The Target Output data yi 0 1 1 1 0 1 1 1 0 1 1 1

From Table 1, the input data xi will be used to calculate the parameters such as the width, σi and
center, ci in the hidden layer. yi is the target output that will be used in finding the output weight of
RBFNN. Hence, the center of the hidden layer will be calculated by using the following equation:

ci =
1
m

NH∑
i=1

xi (7)

where m is the number of literal for each clause in P2SAT, and NH is the number of the hidden neuron.
The distance di between input data and the center of the hidden layer is calculated by using:

di = ‖w′i xi − ci‖ (8)

In our case, we considered w′i = 1 as the input weight between input neuron and hidden
neuron [37]. By using the distance in Equation (8), the width of each hidden neurons in hidden layer is:

σ2
i =

1
m

NH∑
i=1

[d(xi, ci)]
2 (9)

Based on the value of the ci and σi, the Gaussian Function of the hidden layer based on P2SAT is

ϕi(x) = e
−

‖

n∑
i=1

xi−ci‖
2

2σ2
i . (10)

By using yi and φi the corresponding output weight wi is calculated implicitly by using:

yi =
n∑

i=1

wiφi(xi) (11)

where yi is the target output obtained from Table 1. Hence, the final output classification of the RBFNN
f (xi) is expressed as

f (xi) =


1,

n∑
i=1

wiφi(xi) ≥ 0

0,
n∑

i=1
wiφi(xi) < 0

(12)

The proposed RBFNN in this paper is different from Hamadneh et al. [21]. In their article, Horn
SAT and general SAT were utilized to calculate the input data. One of the drawback of non-systematic
logical rule is the need to approximate the number of hidden neuron in RBFNN. By that standard,
the number of hidden neurons for P2SAT is always between the number of input neurons and output
neurons. Figures 1 and 2 show the implementation and structure of P2SAT in RBFNN.
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2.3. Satisfiability Programming in Hopfield Neural Network

The notion of doing logic programming in ANN is a relatively new concept. The whole concept of
logic programming in ANN is to obtain the final neuron state that behaves according to pre-determined
systematic logical rule. Since the popularized version of this perspective emerged from doing logic
programming in Hopfield Neural Network (HNN), we will examine the structure of HNN as a
benchmark of ANN against our proposed network which is RBFNN. HNN is a recurrent neural
network [38], consists of interconnected neuron Si and is divided into input and output layers with
no hidden layer involved. The connection between Si and S j are given as Si j where both neurons are
connected by Synaptic weight, Wi j. The general definition of the neuron update is given as follows:

Si =

 1, i f
N∑

j=1
Wi jS j > ξ

−1, otherwise
(13)

where ξ is a pre-defined threshold. According to Cantini and Caselle [39], the asynchronous neuron
update is necessary to ensure the convergence of the network. P2SAT can be implemented in HNN
by assigning neuron for each variable. The primary aim of the network is to reduce the logical
inconsistencies by minimizing the following cost function:

EP2SAT =
NC∑
i=1

NV∏
j=1

Li j (14)

where NC and NV are denoted as the number of clauses and variables, respectively. Note that, the
inconsistencies of logical clause Li j is given as follows:

Li j =

{ 1
2 (1− Sx), i f¬x
1
2 (1 + Sx), otherwise

(15)
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It is worth mentioning that the synaptic weight of HNN is derived by using Wan Abdullah
method [11] whereas EP2SAT is compared with the following final energy function HP2SAT

HP2SAT = −
1
2

N∑
i=1, i, j

N∑
j=1, i, j

W(2)
i j SiS j −

N∑
i=1

W(1)
i S j (16)

For example, by comparing the cost functions defined in Equations (14) and (15) with Equation (16),

the synaptic weights that connect the neurons in Equations (5) and (6) are
(
W(2)

AB , W(2)
CD, W(2)

EF

)
=

(−0.25,−0.25,−0.25), W(2)
AA = W(2)

BB = W(2)
CC = W(2)

DD = W(2)
EE = W(2)

FF = 0 with no self-connection for

second order and
(
W(1)

A , W(1)
B , W(1)

C , W(1)
D , W(1)

E , W(1)
F

)
= (0.25, 0.25, 0.25, 0.25, 0.25, 0.25) for first order.

The final state of the neuron can be obtained by computing the local field hi(t) of the network:

hi(t) =
N∑

j=1

W(2)
i j S j + W(1)

i (17)

where the final state of the neuron is given a follows:

Si =


1, i f

N∑
j=1,i, j

W(2)
i j S j + W(1)

i ≥ 0

−1, i f
N∑

j=1,i, j
W(2)

i j S j + W(1)
i < 0

(18)

Note that, the value of the global minimum energy, Hmin
P2SAT

can be pre-calculated because the
magnitude of the energy for each clause is always constant [30,36]. Hence, the optimized neuron state

can be obtained by examining
∣∣∣∣Hmin

P2SAT
−HP2SAT

∣∣∣∣ ≤ ∂ where ∂ is pre-defined by the user.

3. Experimental Setup

In this paper, the proposed network (RBFNN) and the existing network (HNN) were executed by
using Microsoft Visual#2008 Express software as a platform for simulation. Then, the simulations were
carried out by using the same processor, with the specification: 3.40 GHz processor, 4096 MB RAM
via Windows 10.1 operating system. In order to attain fair comparison, the models were terminated
after being executed for no more than 24 h. Simulated data is a randomly generated data by our
program during the simulation. In this case, the simulated dataset will be obtained by generating
random clauses and literals for a particular P2SAT. The generated data considers the binary values
with the structure based on the number of clauses defined by the researchers. Thus, the simulated
data is commonly used to authenticate the performance of our proposed networks in discriminating
the neuron state, whether it is an optimal or suboptimal neuron state. The concept of simulated data
in SAT logic with ANN has been initially coined in the work of Sathasivam and Abdullah [40] and
Hamadneh et al. [21]. The learning methods for HNN and RBFNN are based on the Genetic Algorithm
proposed in Kasihmuddin et al. [27] for HNN and Hamadneh et al. [22] for RBFNN. Based on the
simulations for HNN and RBFNN, the quality of the retrieval phase of P2SAT are assessed by using
numerous performance metrics, such as, Root Mean Square Error (RMSE), Sum of Squared Error (SSE),
Mean Absolute Percentage Error (MAPE) and Central Processing Unit (CPU) time. The formula that
calculate each error are given as follows:

RMSE =
n∑

i=1

√
1
n
( f (xi) − yi)

2 (19)
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SSE =
n∑

i=1

( f (xi) − yi)
2 (20)

MAPE =
100
n

n∑
i=1

∣∣∣∣∣∣ f (xi) − yi

yi

∣∣∣∣∣∣ (21)

where f (xi) is the output value, yi is the target output value, and n is number of the iterations. RMSE
is a measure of error deviation around the average for non-Satisfiable neurons. In this case, this metric
examines the distribution of the error around the Satisfiable neuron state. The accumulation of error
can be examined by using SSE. SSE is very sensitive to small error and magnifies each wrong final state
and makes it empirically validated. In addition, the fraction of the non-Satisfiable neuron state can be
measured by the use of MAPE. In this case, the higher MAPE value suggests the higher proportion of
the suboptimal neuron state.

It is worth mentioning that the final output for HNN will be converted to binary representation
before we evaluate the performance error by using Equations (19)–(21). In addition, both networks
with a different initial neuron state will lead to the biasedness of the retrieval state due to the fact that
the network simply overfits with the computational environment. Thus, the network will transform
into a phase whereby it memorizes the final state without producing a brand new state. In order to
avoid such circumstances, all possible positive and negative bias can be minimized by producing
all the neuron states randomly. The randomization scheme for HNN and RBFNN are shown in
Equations (22) and (23)

(
SHNN

1 , SHNN
2 , SHNN

3 , . . . , SHNN
N

)
=

{
1, rand(0, 1) < 0.5
−1, otherwise

(22)

where the states of true and false are given as 1 and −1, respectively.

(
SRBFNN

1 , SRBFNN
2 , SRBFNN

3 , . . . , SRBFNN
N

)
=

{
1, rand(0, 1) < 0.5
0, otherwise

(23)

where the states of true and false are given as 1 and 0, respectively. Note that, the number of neuron
combination used in HNN is set to be 100, with energy tolerance being set to ∂ = 0.001 and number
of learning cycle Ω = 100 [12,27]. Subsequently, the parameters for the both RBFNN model are
summarized systematically in Table 2.

Table 2. List of Parameters in RNFNN.

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning Cycle (Ω) 100
No_Neuron String 100

Input data (xi) xi ∈ {−1, 0, 1, 2}
No_Chromosomes 100

Generation 1000
Selection_Rate 0.1
Mutation_Rate 0.01
Crossover_Rate 0.9

4. Result and Discussion

In this section, the evaluation results for both proposed models of RBFNN and HNN are presented
based on P2SAT. Both systems are evaluated based on the RMSE, SSE, MAPE and CPU time.
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Figures 3 and 4 show the RMSE and SSE for the proposed model RBFNN and existing approach,
HNN from NN = 6 to NN = 108, in P2SAT. According to Figure 3, RBFNN has the lowest value of
RMSE for all the number of neurons as compared to HNN. Specifically, during NN = 60, RBFNN
recorded 91.78% lower than HNN in terms of RMSE. P2SAT is observed to comply with RBFNN which
a feed-forward neural network in obtaining the optimal weight. Based on Figure 3, it can be seen that
the value of RMSE recorded by HNN was increasing significantly from NN = 6 until NN = 108. The
higher value of RMSE manifests the lower performance of HNN in generating the optimal final state
for P2SAT. Figure 4 depicts the value of SSE obtained by RBFNN and HNN for a different number
of the neuron. The value of SSE recorded in RBFNN is apparently lower than in HNN, indicating
that the RBFNN has a significant effect in obtaining the optimal final state for P2SAT logical rule.
According to the value of MAPE in Figure 5, it was obvious that our proposed RBFNN recorded MAPE
consistently less than 1% for all number of neurons. On the contrary, the MAPE for HNN increases
significantly up to 8% until the last simulations. The fraction of non-Satisfiable neuron for HNN can
be seen as significantly higher than RBFNN. The lower value of fraction of non-Satisfiable neuron
provides profound evidence of the performance of RBFNN to work well with P2SAT programming.
The optimization operators during obtaining the output weight and final outputs have minimized the
percentage of suboptimal state as opposed to HNN.
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Figure 6 shows the CPU time for the proposed model, RBFNN and existing approach, HNN in
P2SAT programming. CPU time is defined as the execution time taken by the model to generate the
final neuron state. Generally, as the number of the neuron increase, we can observe that the CPU time
will increase over the number of the neurons. The plot of the CPU time in Figure 6 revealed that the
compatibility and capability of RBFNN in generating the final neuron state with different complexity
in terms of the different numbers of the neuron. It can be seen clearly that the execution time RBFNN
is faster than HNN, indicating that RBFNN has outperformed HNN in terms of the robustness of the
network. The lower value of CPU time indicates the better performance of the proposed model in
attaining the convergence (optimal state). Specifically, when the NN = 90, the RBFNN executes the
program 60.99% faster than HNN. Therefore, the obvious difference in the CPU time can be observed
ominously from NN = 6 until NN = 108. The above results show that the RBFNN outperformed HNN
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in generating the optimal state P2SAT with different complexity. Apart from indicating the robustness
and computational speed, CPU time also describes the complexity of the networks in this research.
The complexity of RBFNN and HNN can described as linear as suggested from the CPU time recorded
in Figure 5. Both models proven to deal with higher-order neurons, even though the computational
burden is getting higher.Processes 2020, 8, 214 12 of 16 
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The simulation also provides evidence that RBFNN can obtain the optimized weight by optimally
connecting the hidden layer and output layer. The loss of information from the input layer is minimized
due to the Gaussian Function and the optimized parameters. Hence, the optimized weight reduced the
possible neuron oscillation during training. We estimate that the performance of RBFNN will be similar
if the simulation is repeated with another systematic logical rule proposed in Dahllöf et al. [41]. On the
other hand, HNN has been proven by Hopfield [42] to converge to the nearest local minimum energy.
This is an interesting result considering the result in RBFNN agrees with the trend by outperforming the
error illustrated by HNN. This comparison is considered significant because this simulation compares
both the ANN structure with different discipline (Recurrent and Feedforward ANN). P2SAT reduces
the computational burden by fixing the number of hidden neurons in the hidden layer in RBFNN.
The constant value of the hidden neurons in the hidden layer reduces the possible error during the
retrieval phase. The limitation of the proposed RBFNN is the network only considers Satisfiable
formula. Another non-Satisfiable logical rule such as Maximum Satisfiability [43] and Minimum
Satisfiability [44] requires more specified neuron partition to reduce complexity in the hidden layer.
Different logical rules must be investigated in depth to verify the effectiveness of the systematic logical
rule in RBFNN. Besides, other latest metaheuristics such as Artificial Bee Colony [45] and Grey Wolf
Optimization algorithm [46] are required to reduce heavy computation during the training phase.
Furthermore, our proposed RBFNN is not guaranteed to perform optimally in another set of NP
problems. This observation is in accordance with No Free Lunch Theorem [47] where the proposed
method is not universally superior for all type of problems. The Satisfiability formula can be used to
generalize and extract the information from the data set of various applications. Thus, we believe that
our proposed RBFNN integrated with P2SAT has the potential to be an alternative for the standard
RBFNN in processing numerous types of data ranging from the medical classification, industrial
automation and stock market prediction. The existing RBFNN can be integrated with a systematic
logical rule such as P2SAT and reduce the computational burden for the parameters.
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5. Conclusions

We have shown the capability of P2SAT in optimizing the final state obtained by the RBFNN.
We have also shown that the embedded systematic P2SAT in RBFNN has reduced the computational
burden significantly for all of RBFNN parameters. This result has manifested a massive leap in the
development of RBFNN itself, especially in terms of producing the best weight to connect the input
and output layer effectively with minimum errors. Hence, the impact of optimized output weights
generated by RBFNN has successfully enhanced the training with different levels of complexities. The
stability of the P2SAT logical rule in RBFNN can be attained due to the fewer number of the neuron in
the hidden layer than other rules. Based on this research, we can conclude the conventional learning
method [11,12] is not necessarily ideal in output weight optimization in ANN. Our proposed model,
RBFNN has outperformed the HNN in the compatibility with the P2SAT. On all cases and complexities,
the P2SAT logical rule has proven to optimize the parameters for RBFNN, which is a feed-forward
neural network. Using this approach, the error and robustness measures are well presented, indicating
the performance of P2SAT optimized RBFNN model.

The evolution of the systematic P2SAT logical rule optimization is still in the infancy stage and
requires more in-depth research especially in the other variant of the neural network, especially
feed-forward neural network. In the future, we will venture the deep convolutional neural network [48]
and optimize the possible parameters via P2SAT. Our research can be further employed by manipulating
different variant of logical rule such as randomized k Satisfiability (Rand kSAT) [49] and other
Unsatisfiable logical rule, namely Weighted Maximum Satisfiability (Weighted MAX-SAT) [50] and
Minimum Satisfiability (MIN-SAT) [51]. We would be able to extend the structure of optimized P2SAT
with RBFNN as the knowledge extraction paradigm via logic mining perspective. In fact, the direction
will open numerous opportunities for real life applications. Additionally, the RBFNN parameters can be
optimized by integrating robust Metaheuristic algorithms such as Ant Lion Optimization approach [52],
Harmony Search [53], modified Flower Pollination Algorithm [54], fine-tuning Metaheuristics [55] and
particle swarm optimization algorithm [56].
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